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ORIGINAL ARTICLE
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ABSTRACT
Modelling has been used extensively by all national governments and the World Health
Organisation in deciding on the best strategies to pursue in mitigating the effects of COVID-
19. Principally these have been epidemiological models aimed at understanding the spread of
the disease and the impacts of different interventions. But a global pandemic generates a large
number of problems and questions, not just those related to disease transmission, and each
requires a different model to find the best solution. In this article we identify challenges
resulting from the COVID-19 pandemic and discuss how simulation modelling could help to
support decision-makers in making the most informed decisions. Modellers should see the
article as a call to arms and decision-makers as a guide to what support is available from the
simulation community.
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1. Introduction

COVID-19 looks set to be the worst infectious disease
pandemic of a generation in terms of numbers
infected, mortalities and the unprecedented demand
for healthcare services. To date (March 27 2020)
463,000 people have tested positive for the disease
and 20,800 have been recorded as having died
(WHO, 2020). The economic consequences from
organisational shutdowns and other measures taken,
such as school closures, are just beginning to become
real and estimates suggest that quarantine and social
isolation measures could be needed for as long as
18 months, with these being turned on and off during
the period based on the observed demand for intensive
care unit (ICU) beds (Ferguson et al., 2020). Likewise,
the detrimental effect on other routine emergency and
elective patients will be affected by the health service
response to COVID-19, and its impact on these
groups should not be ignored.

As the enormity of the threat has become clear,
governments appear to have relied heavily on compu-
ter simulations to determine how best to reduce its
impact, with a particular emphasis on how to flatten
the growth curve of the disease to reduce the pressure
on the healthcare systems. While considerable efforts
have been made on epidemiological modelling of the
spread of COVID-19 via computer simulation (e.g.,
Ferguson et al., 2020) the pandemic raises many more
challenges that computer simulation could be equally
useful in addressing. The modelling and simulation
community should now consider their role in

contributing to both improving the understanding of
the disease and planning to make better decisions and
reduce its impact. The modelling environment pro-
vides the opportunity to play out different scenarios in
silico rather than experimenting on the real popula-
tion and, in developing the models, often helps to
engender a much better understanding of the system
as a whole.

This article has two aims. First, to provide a guide
to how simulation models and which types of simula-
tion models can be used to support different decisions
that arise during a public health emergency such as
this one. Second, to act as a call to arms for simulation
modellers by providing a research agenda.

One of the key takeaways from this article should be
that different decisions require different models and
that the field of modelling and simulation is equipped
with a range of approaches that can provide support to
decisions at different levels of complexity. Modelling
approaches can also be connected or combined – for
example, forecasts from epidemiological models can
and should feed into operational models of hospitals.

Epidemiological models are ideal for predicting the
number of new cases or for identifying the best mea-
sures to reduce transmission, but they will not help to
organise Intensive Care Unit (ICU) beds and medical
staff, or consider the interplay of the impact of indivi-
duals’ behaviour on the capacity of every essential
system, particularly the health care system.
Furthermore simulation can also explore questions
relating to the disruption of essential supply chains
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inundated by unprecedented demands (e.g., hoarding
food, medicines and hygiene products); and support
decisions about how best to move on from the initial
isolation period in order to return to business-as-
usual. It is clear that models will need to evolve over
time as the research questions, the epidemic and the
available data change.

In what follows, we provide some initial back-
ground information about the current state of the
COVID-19 pandemic and an introduction to the key
simulation modelling techniques. We then go on to
identify a set of problems raised by the COVID-19
pandemic and particularly suited to simulation mod-
elling. For each, we describe the problem, how it might
be modelled and any specific data requirements. The
article concludes with a research agenda for the simu-
lation modelling community.

2. Background

2.1. COVID-19: Current Knowledge

COVID-19 was first reported to the World Health
Organisation (WHO) in December 2019 and is
a coronavirus disease caused by severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2). Typical
symptoms include a fever, cough and shortness of
breath and severe cases develop pneumonia, requiring
respiratory support and specialist care in ICU. While
there is still some uncertainty, COVID-19 appears to
have a basic reproduction number (R0) of 2.4 − 3.3
(Walker et al., 2020), while at the same time a large
proportion of those infected, estimated to be between
6-10%, become critically ill requiring hospitalisation
and access to ventilation support in an ICU (Pagel &
Utley, 2020). Based on recent research, the overall case
fatality rate is estimated as 0.25%–3.0% but this is
dependent on the quality of care available (Wilson
et al., 2020). The risk of developing symptomatic dis-
ease and the risk of death following symptoms
increases with age (Wu et al., 2020). As the epidemic
develops, more data are being collected, improving the
understanding of the natural history andWHO has set
up protocols for data collection to develop a better
understanding of the epidemiology.

Recent modelling papers on COVID-19 focus
principally on the epidemiology, attempting to
both estimate the basic reproductive number of the
disease and to provide estimates of the effectiveness
of different interventions in flattening the growth
curve of the epidemic in order to reduce the burden
on the healthcare system. The most popular model
for describing the epidemiology is the well-known
SEIR model (Susceptible – Exposed – Infectious-
Recovered), frequently used at a population level
to describe the proportion of the population in
each state at any given time. Using data from

China, Lin et al. (2020), Fang et al. (2020), and
Tang et al. (2020) all use an SEIR model to both
describe the epidemic and assess the impact of mass
social isolation policies. Hellewell et al. (2020) use
a stochastic transmission model to assess the effec-
tiveness of contact tracing and isolation of cases.
Both Wells et al. (2020) and Gostic et al. (2020)
determine the impact of international travel, with
Wells et al. (2020) focusing on how limiting inter-
national travel will impact the course of the epi-
demic, combining data on the probability of
transmission with data on global connectivity,
while Gostic et al. (2020) estimate the effectiveness
of screening of travellers.

2.2. Simulation modelling methods

We consider four main modelling methods in what
follows: discrete event simulation, agent-based model-
ling, system dynamics and hybrid simulation. It is
suggested that the choice of modelling method is
made based on decision makers’ requirements, type
of problem and system complexity and its character-
istics (Tako & Robinson, 2009, 2012; Borshchev &
Filippov, 2004; Brennan et al., 2006; Chahal &
Eldabi, 2010; McHaney et al., 2018).

● System dynamics (SD): differential equation
based models that represent real world systems
in terms of stocks (e.g., of material resources,
knowledge, people, money), flows between these
stocks, and information that determines the
values of the flows (Borshchev & Filippov,
2004). Feedback effects and delays are key SD
elements used to explain system behaviour. SD
was first developed by Jay Forrester in the late
1950’s to help managers better understand indus-
trial problems (Forrester, 1961). The best-known
within infectious disease epidemiology is the SIR
model (Kermack & McKendrick, 1927). These
models are typically used for strategic decisions
or decisions affecting a whole population.

● Agent based modelling (ABM): can be used to
model the interactions of individuals within
a population, allowing a decision-maker to deter-
mine how small changes in behaviour and inter-
action may influence population level outputs. In
models of disease spread, the modelling of social
networks and spatial movements are also vital for
accurately describing transmission and these can
be incorporated into ABMs. ABMs are stochastic
models, enabling the variability of human beha-
viour to be incorporated into the model to help
understand the variability in the likely effective-
ness of proposed interventions. In an opinion
piece, Epstein (2009) suggests that ABM is appro-
priate for modelling pandemics.
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● Discrete event simulation (DES): stochastic
models that take account of variability in the
time taken to carry out activities and the times
between arrivals into the system. Goldsman et al.
(2010) point out that while the roots of DES go
back to 1777, DES as we know it today was
mainly developed in the years 1945–1970. DES
models are typically used to model the operation
of systems over time, where entities (people,
parts, tasks, messages) flow through a number
of queues and activities. They are generally sui-
table for determining the impact of resource
availability (doctors; nurses), on waiting times
and the number of entities waiting in the queues
or going through the system.

● Hybrid simulation (HS): models that combine two
or more of the above modelling techniques
(Brailsford et al., 2019; Mustafee et al., 2017). HS is
typically used to represent a complex system beha-
viour where different parts of the system can be
better captured by two ormore simulationmethods.

For all of the modelling methods described above,
when simulation models become very complex, they
can take a long while to run. Distributed simulation
(DS) can be used to either speed up the simulation of
a discrete model or link together many simulations to
form a single, large-scale simulation. More recently DS
has focussed on speeding up simulation experimentation
(Taylor, 2019). Essentially, this involves the use of multi-
ple computers to run the experiments in parallel. DS
tends to play a “supporting role” with other simulation
modelling methods (e.g., a potential hybrid large-scale
simulation of a citywide Emergency Medical Service
(Anagnostou & Taylor, 2017), agent-based simulations
of epidemics, social interaction and people movement
(Bisset et al., 2014; Suleimenova et al., 2017)).

3. Decisions supported by modelling and
simulation

In what follows, we identify a set of crucial decisions
that need to be made as the epidemic progresses.
These are split into three sections: (1) decisions affect-
ing disease transmission and interventions; (2) deci-
sions regarding resource management; and (3)
decisions about care. Obviously, no classification is
perfect and several of the decisions we identify here
could fit into two or more of these sections. This is not
an exhaustive list of decisions that modelling and
simulation can support but we hope covers the major-
ity of different decision types.

For each of the identified decisions, we provide
a brief description, discuss potential modelling tech-
niques that could be used, and the data that would be
needed to address these challenges effectively. We also
indicate the geographic and time scales over which the

decision is being made. Our geographic scale ranges
from global to national to organisational to individual.
When defining the time scale, we couch it in terms of
the phase of the response that the challenge falls into.
Here, we have used the well-known disaster opera-
tions management (DOM) framework (Altay &
Green, 2006) that splits into four phases: mitigation –
activities to prevent the onset of disaster or reduce its
impact; preparedness – plans to handle an emergency;
response – implementation of plans, policies and stra-
tegies from the preparedness phase; recovery – long-
term planning actions to bring the community back to
normality. Note that these definitions differ from
those used by the UK government (https://www.gov.
uk/government/publications/coronavirus-action-plan
/coronavirus-action-plan-a-guide-to-what-you-can
-expect-across-the-uk). We also note that with
a pandemic, the phases are not as distinct as in other
disaster types because of its evolving nature. Figure 1
summarises the information, showing the identified
decisions and how they fit into the geographic and
time-based scales. In Table 1, we list the key modelling
methodologies suggested for each decision.

3.1. Decisions affecting disease transmission

This section covers decisions that must be made about
interventions to manage the spread of disease
throughout the course of the epidemic. The main
focus is on quarantine strategies and case isolation,
moving from the initial decisions about how these
should be imposed to decisions about managing the
end of the social isolation measures and the return to
normality.

3.1.1. Decision 1: Quarantine strategies and case
isolation
Quarantine strategies and case isolation are important
at every level (global, national, organisational and
individual) and fall into the preparedness and
response phases of the disaster response model. The
questions vary with different phases and at different
levels but the modelling is similar.

When index cases are discovered, contact tracing
allows known contacts of these individuals to be
traced, quarantined, and isolated from others so that
they do not cascade the infection to more people than
necessary. A variety of techniques can be used, such as
social network analysis, cellphone tracking of move-
ments, etc. On a larger scale, transportation networks
globally are being disrupted by national governments
in an attempt to reduce transmission between coun-
tries, and it seems likely that this will continue in some
form in the future. As the epidemic progresses, ques-
tions will arise as to which geographical areas should
be isolated, and for how long, including questions on
the size of the populations to isolate.
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WHO included research into “Comparative analysis
of different quarantine strategies and contexts for their
effectiveness and social acceptability” as one of their key
research questions in a recent commentary paper
(Bedford et al., 2020) and there has been somemodelling
on this already (Gostic et al., 2020; Hellewell et al., 2020;
Wells et al., 2020). While Hellewell et al. (2020) have
demonstrated that a Monte Carlo Simulation provides
useful results, another method that is commonly used to
model the dynamics of a complex system at the global
level is System Dynamics. System dynamics can capture

the number of people in various states (or stocks in
System Dynamics’ terminology) such as incubation and
in isolation, as well as the rates that control the flow of
people transitioning between states.

Quarantine strategies are used to control one of the
flows (i.e. move people to state “in isolation”). For exam-
ple, Sharareh et al. (2016) demonstrate that quarantine
has a significant impact on the spread of Ebola. The
simulation models that are used to estimate the impact
of quarantine strategies at the global level require many
simplifying assumptions such as perfect mixing (i.e. each

Figure 1. Summary of the key decisions and how they fit into the geographic and time-based scales. As the key below the diagram
shows, different colours describe the potential modelling techniques to be used.

Table 1. Summary of the main modelling methodologies suggested for each of the decisions identified below.
Decision Suggested Modelling Methods

1. Quarantine strategies and case isolation SD for population-level models; ABM for models that capture individual behaviour.
2. Social distancing measures SD for population-level models; ABM for models that capture individual behaviour, DES and HS for

operational models
3. How to manage the end of lock down SD for population-level models; ABM for models that capture individual behaviour.
4. Delivery of testing Targeting of testing: SD for population-level models; ABM for models that capture individual

behaviour. Delivery of testing: DES.
5. Targeting of vaccination Targeting of vaccination: SD for population-level models; ABM for models that capture individual

behaviour. Delivery of vaccination: DES.
6. Capacity of inpatient hospital beds and critical
care

DES or SD for models of resource requirements.
HS, combining DES models of hospital operations and SD model describing the progression of
the epidemic.

7. Staffing DES models of hospital operations. SD models to represent workforce availability at a national
level.

8. Management of resources within a region SD or DES models of logistics and supply chains, ABM for behavioural models of individuals
9. Investigation of the thresholds for admission and
discharge of patients

DES for operational models and SD for a more strategic view.

10. Minimising the impact on other patients DES models of operations, SD for feedback on rationing care
11. Health & well being SD models for population-wide impacts or HS combining SD and ABM.
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individual has the same probability to be infected by
anyone in the population). While some of these assump-
tions are accepted to model the impact of quarantine
strategies at the global (and large regional) level, they
may be unrealistic for the organisational/individual level.
For example, the spread of the virus at the local level is
affected by networks (e.g., social, public transport).
Hence, ABM is more suitable as we can model the
interaction between individuals through the networks.
Furthermore, ABM can model the heterogeneity of indi-
viduals in terms of their characteristics (e.g., age and
underlying condition) and behaviour (e.g., compliance
to quarantine measure and self-isolation practice). For
example, Yang et al. (2011) use an ABM to represent the
contact networks and different levels of compliance to
quarantine and isolation measures. The experiments
show that household quarantine is the most effective
measure to control the epidemic in a city. Interestingly,
although set for two different spatial levels, the two
examples, Hellewell et al. (2020) and Yang et al. (2011)
conclude that the effectiveness of quarantine and self-
isolation for an epidemic with high reproduction factor is
limited.

Healthcare staff, especially those in the front-line,
are exposed to the risk of contracting the disease from
patients even allowing for protective measures.
Quarantine strategies can therefore affect staffing of
hospitals and a hybrid model that links an operational
DES model of a hospital with an SD or ABM of
quarantine strategies may be useful (see Decision 7).

3.1.2. Decision 2: Social distancing measures
Social distancing measures of some form are in force in
the majority of countries around the world at this time
(March 2020) and recent modelling suggests that this
may continue in some form for 18 months. Social dis-
tancing is reducing the space between people in order to
reduce the spread of the disease andmeasures include: 1)
keeping a distance of two metres (six feet) between
people; 2) working from home; 3) cancelling large gath-
erings of people; 4) closing schools or going to online
classes; and 5) visiting relatives and friends electronically
rather than physically. In addition to attempting to
reduce the overall number of cases of the disease, the
goal of social distancing is to flatten the growth curve of
the disease in order to not overload the healthcare sys-
tem. Flattening the curve provides additional time to add
resources (e.g., respirators, medical staff, etc.) to handle
the increased burden on the healthcare system.

Modelling of social distancing and quarantining
(see Decision 1) can be treated as a spatial transmis-
sion problem (Robertson, 2019) with a variety of
modelling techniques available. This can be done at
a local level using a SD model or by modelling indivi-
dual agents in the population using ABM, including
behavioural rules on their movement and hence
spread of the disease. Incorporating behavioural

responses is important as all countries have seen
unwanted reactions to the social distancing measures,
e.g., full beaches, large numbers of people in parks.
Each individual may believe that they are following the
government advice but as a whole, the societal effect
may not actually have reduced transmission and may
have spread the infection more widely. An interesting
question for these behavioural models is to determine
how behaviour varies between different global regions.
For example, population flow between provinces in
China is likely to follow different patterns from move-
ment between states in the USA or countries in
Europe. Also, different populations may have different
social connectivity within local areas. Incorporating
data on social contact patterns into transmission mod-
els (e.g., Mossong et al., 2008 who carried out a large-
scale, prospectively collected, population-based survey
of epidemiologically relevant social contact patterns in
eight different European countries) may help to
explain variations in rates of disease transmission
and suggest how different control measures will per-
form more or less effectively in different countries.

One of the key social distancing strategies is educa-
tional closures. In the UK, school closures are mainly
at the national level at present but as the epidemic
progresses may become more focused at the organisa-
tional level. In the US, school closure decisions are
more often made at the local (or state) level. These,
and identifying the most effective social isolation stra-
tegies, are important in the preparedness and response
phases. Data from countries implementing these stra-
tegies as to how they affect public behaviour will be
vital in managing later stages of the epidemic and in
learning for potential future epidemics.

Universities have student and staff populations with
significant social contact within institutional boundaries.
Universities have the ability and responsibility to admin-
ister policies to foster social distancing while providing
medical and housing services to students. A university
health services office typically provides the primary
healthcare services on a campus and collaborates with
other external healthcare organisations and emergency
personnel. University administrators are responsible for
critical decisions during a pandemic, including cancella-
tion of classes, closure of research facilities and commu-
nication with university populations. Owing to the
frequency of international travel and the high density of
students and faculty on campus, university populations
can have a large impact on the spread of infectious
diseases within a community.

Many universities have developed pandemic influenza
emergency response plans in an attempt to control
a potential outbreak and balance the financial, opera-
tional and public health consequences of a pandemic,
but most are quite simple. Some universities, including
Arizona State University, have developed more sophisti-
cated plans based on the use of modelling and simulation
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(as described in Araz et al. (2011)). The objective of these
plans is to control the pandemic through proper actions
and appropriate policies to reduce the spread of the
disease while still maintaining essential university ser-
vices. Simulation models that address the population
dynamics with the disease characteristics are useful for
identification of preferred policies, improving under-
standing of consequences of policy decisions, and cover-
ing gaps in emergency response plans and public health
policies. It is possible to simulate the disease spread for
a university along with the policies that the university
developed for their response to pandemic influenza
(Araz et al., 2011). Since the university population is
formed by several groups of people (faculty, staff, stu-
dents living on campus, students living off campus, etc.),
the model should include the whole university popula-
tion in terms of several subpopulations based on their
different roles, responsibilities and behaviours. Because
the social distancing and isolation policies will force all
individuals on campus to have different mixing rates
with different individuals at various locations on and
off campus, new subpopulations after social distancing
policies are activated including evacuated students, stu-
dents on campus after evacuation, evacuated faculty and
staff, students in infirmary, overflow infirmary (if infirm-
ary capacity is exceeded). The model divides the popula-
tion into several compartments (susceptible, exposed,
infected and removed), and based on the defined rates
it moves individuals from one compartment to another.

The disease dynamics start with a number of infec-
tious individuals introduced into community and the
rest of the population is assumed to be susceptible.
Susceptible individuals have random mixing with
infectious individuals and they become exposed to
disease. Exposed individuals are typically assumed to
be infectious and asymptomatic. After a certain time
period (incubation period) these individuals start
showing symptoms and continue being infectious.
Finally, after the completion of the infection period,
individuals either recover or die. The simulation is
used to compare the spread of the disease with and
without school closure. The difficult part of the exer-
cise is to accurately predict the parameters of the
model including the contact rate, infection rate, incu-
bation period, mortality rates, etc.

School closures for primary and secondary schools
have the same goals, but generally do not have to be
concerned about having students on campus after
classes are suspended or moved to an online format,
with the possible exception of boarding schools. On
the other hand, there are some different challenges,
including the impacts of alternative education delivery
services and the impacts on both students and their
parents (Araz et al., 2012; Araz et al., 2013). In the US,
children from low income families are eligible to
receive free lunches and when schools are closed they
may miss meals. Parents that must work outside the

home are also forced to choose between going to work
and staying at home to supervise their children. This
can impact on the staff available in key roles such as
the health service and transportation. Balancing the
need for vital staff with the detrimental effect of social
mixing within school communities is a key decision
for governments. Modelling to address this challenge
may begin with a strategic overview using an SD
model but there is a real need to link models of disease
spread with operational models describing the num-
bers of staff needed to maintain the necessary health
and other services. These are typically DES models, or
potentially hybrid models that link SD models of dis-
ease spread with the DES operational models.

3.1.3. Decision 3: How to manage the end of lock
down
As the impact of social distancing or lock down mea-
sures takes hold and the number of new cases falls,
governments will need to make a decision about when
and how to reduce restrictions in order to avoid the
number of cases occurring during secondary epidemics
again exceeding the capacity of ICU departments.
Initial modelling suggests waiting until ICU admissions
from COVID-19 dip below a threshold value to relax
the restrictions, bringing them back into force when
cases exceed a given value (Ferguson et al., 2020), and
continuing until a vaccination has been developed. This
has implications at country, regional and organisational
levels and falls into the recovery phase.

Decisions to be made include the threshold values
for when to relax restrictions and when to re-impose
them; which social distancingmeasures tomaintain and
which to relax during the interim periods; and how
resources might be managed across countries and
even worldwide as different regions employ these stra-
tegies at different times. Inputs to themodel will include
results of other modelling studies indicating the supply
of resources (principally ICU beds with the trained staff
needed to monitor critically ill patients and respiratory
equipment) and the likely usage (discussed in the fol-
lowing section) as well as the impact of social distancing
measures on the general health and well-being of the
population. There could also be a link with the testing
strategy (Decision 4), which may impact on how social
isolation measures are relaxed.

Different models could work well here to help
answer subtly different questions. An SD model
would provide a strategic view of the system, allowing
competing demands to be taken into account, while an
ABM would allow individual behaviour to be
accounted for. Determining how best to manage the
end of the social distancing measures is well-suited to
so-called optimisation via simulation techniques (Fu,
2015); and, if data are sufficiently accurate and timely,
using some of the more novel methods in real-time
optimisation and digital twins to finely control the
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isolation measures could work well (Xu et al., 2016).
Colbourn (2020) discusses the potential impacts of the
timing of relaxing social distancing measures in
Hubei, China.

3.1.4. Decision 4: Delivery of testing
The delivery of testing could also fall into the follow-
ing section where we discuss the management of
resources. We put it here as testing, with accompany-
ing isolation, is a valuable intervention against the
spread of the virus. These decisions fall into the pre-
paredness and responses phases and tend to be made
at the national level, partly due to the connectivity
between the population within a country.

Testing is important to identify how widespread the
infection is. For this purpose, the delivery of wide-
spread testing and isolation strategies seems to have
worked well in South Korea and Iceland, although to
date little scientific literature exists to justify these
claims. There are two clear roles for modelling here.

● Demonstrate the effectiveness of mass testing and
isolation strategies to determine how they compare
with other prevention interventions such as those
observed in other countries. For large-scale models,
SD would work well but ABM is likely to prove
most effective at generating a nuanced answer.

● Determine demand and efficient procedures for
rolling out such a large-scale programme nation-
wide, including supply chain questions. DES is typi-
cally used for modelling operations of this nature.

If large-scale testing is considered infeasible, using
ABM to determine how best to allocate a limited
number of tests would be beneficial. Optimisation via
simulation techniques can be used to find the optimal
strategy. Modelling should also account for the imper-
fect sensitivity and specificity of tests. Initial reports
from Wuhan suggest that the standard RT-PCR test
only detected 59% of patients with COVID-19 after
one test, with this rising following subsequent tests (Ai
et al., 2020). More recent articles suggest that newly
developed rapid tests (IgM-IgG combined antibody
test) have better sensitivity and specificity (88.7% and
90.6% respectively) and a faster turnaround of results.
Accounting for these potential inaccuracies in the
simulation model is straightforward and examining
how an inaccurate test affects disease transmission is
a useful question.

Testing has another role to play in terms of ensur-
ing that key staff are able to return to work quickly and
we discuss this further in Decision 7. Home or mobile
testing kits can be used to reduce the burden of ambu-
lance use and to avoid unnecessary hospital visits. This
is particularly useful to avoid such incidents as taking
ambulances out of service for decontamination after
carrying potential cases to hospital for testing, where

the decontamination can take up to eight hours. DES
can be used to estimate the impact of home testing and
testing staff on capacity for care.

As the epidemic progresses, determining the per-
centage of the population who have been exposed to
the virus will help considerably in determining future
interventions. In this case, a different form of testing is
needed – to determine who has been exposed to the
virus rather than who is currently suffering from it.
This benefit needs to be factored in when deciding the
optimal strategy for testing delivery.

3.1.5. Decision 5: Targeting vaccination
Like testing, the delivery of vaccinations raises many
operational decisions and modelling studies exist for
how vaccination programmes can be run efficiently
(e.g., Lee et al., 2010; Özaltin et al., 2014). ABM
seems most likely to work well at modelling these
decisions (e.g., Lee et al., 2010; Özaltin et al., 2014),
although SD could also be beneficial (e.g., Araz, 2013;
Pruyt & Hamarat, 2010). In a new epidemic scenario,
where vaccinations will become available during the
epidemic and it will take some time to ramp up pro-
duction, there is also a need to target the initial vacci-
nations at sectors of society where they will have the
most impact. For COVID-19 this will form part of the
recovery phase with decisions likely being made on
a national (and possibly global) scale. The strategy for
vaccination delivery affects the decision to manage the
end of lock down (Decision 3).

3.2. Decisions regarding resource management

Management of resources is vital in dealing with the
implications of the COVID-19 epidemic. Principally,
we consider medical resources: hospital beds, respira-
tory equipment and staffing, but we also discuss the
supply of wider resources such as food, pharmaceuti-
cal products, protective equipment, testing kits and
vaccinations.

3.2.1. Decision 6: Capacity of inpatient hospital
beds and critical care
Decisions over the capacity of hospital beds both in
critical care and on standard wards form part of the
preparedness and response phases of the epidemic and
are likely to be made on a large scale nationally and at
an organisational level as the epidemic continues.

High COVID-19 disease transmission rates and
a relatively high percentage of patients requiring med-
ical care together pose an unprecedented pressure on
health service providers, as it presents a large demand
for critical care resources that exceeds their capacity.
Critical care resources including critical care beds and
ventilators, are limited within most hospitals in the
UK, USA and Europe. Italy for example, has been
experiencing extreme stress on its intensive care
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system (Grasselli et al., 2020; Remuzzi & Remuzzi,
2020), with patients being unable to access critical
care beds and dying in hospital corridors while waiting
for beds to be released. The same is starting to be
experienced in the UK at the time of writing this
article (March 2020), with critical care services
expected to be overwhelmed, due to an upsurge of
admissions in London hospitals. In normal operating
conditions, Intensive Care Units (ICU) are most effi-
cient if operated at around 70-75% capacity (Tierney
& Conroy, 2014) but this does not leave sufficient
spare capacity to cater for the increased demands of
COVID-19 patients requiring intensive care support.
Hence, national healthcare services and individual
hospitals are required to optimise the use of these
resources and to create additional capacity in order
to respond effectively to the unprecedented demand
they are faced with. For this, Public Health England
has established a COVID-19 Hospitalisation in
England Surveillance System (CHESS) to record
daily data on COVID-19 patients and critical care
utilisation, which can be used to forecast and estimate
the utilisation of health services (PHO, 2020).

Simulation models can effectively support decisions
taken at national (governments), inter organisational
(local governments or municipalities) and organisa-
tional level (individual hospitals) to create capacity
and manage scarce resources for the effective care of
critically ill patients. What-if scenarios can be imple-
mented to evaluate two types of decision policies on
the ability of the healthcare system capacity to cope
with expected demand.

(1) Creating extra bed capacity, such as decisions
to repurpose wards from other hospital units or
private hospitals; conversions of non-hospital
facilities such as hotels; cancellation of sched-
uled operations; earlier discharge of patients in
the community.

(2) Managing demand for services, through inter-
ventions such as reducing the height of the peak
cases and pushing it further into the future;
rationing care, triage protocols that aim to opti-
mise the availability of intensive care beds
(Pagel & Utley, 2020).

These models can play a crucial role in the prepared-
ness phase to inform plans to respond to the pandemic
and later in the response phase they can be further
updated and calibrated to support the implementation
of plans at shorter timescales.

At hospital level, DES models can represent the
stochastic arrival and flow of patients in ICU depart-
ments, based on expected infection rates and length
of stay. Model outputs could provide estimates of the
number of resources required and their utilisation
levels, including ICU beds, ventilators, and personal

protective equipment (PPE), the number of patients
expected to die waiting for care, and the number of
patients that can be treated. DES has been widely
used to model ICU in hospitals (e.g., Bai et al.,
2018) to consider primarily issues regarding ICU
capacity problems (Griffiths et al., 2010; Litvack
et al., 2008; Ridge et al., 1998; Zhu et al., 2012). SD
has also been used to model acute patient flows, in
workshops with healthcare stakeholders, to improve
patients’ experience within the system (Lane &
Husemann, 2008).

Similarly, DES models can model the overall ICU
resource requirements at national level, aggregating
data from individual hospitals. In this area, the use of
hybrid simulation that combine SD models for
describing the progression of the epidemic and DES
models for describing the workings of the hospital
system can be invaluable. Such hybrid models have
been used previously to model the management of
chlamydia infections (Viana et al., 2014).

3.2.2. Decision 7: Staffing
Staffing decisions tend to be made at the organisa-
tional level with only generic policy being made at
the national level (e.g., the initiative in the UK to
bring back retired health workers). These decisions
are made in the preparedness and response phases of
the epidemic but it could be argued that such model-
ling should have taken place during the mitigation
phase to ensure that sufficient trained staff were avail-
able to cope with an emergency such as that we are
experiencing now. In the UK, this capacity decision is
made at the national level.

Looking at a hospital level, DES modelling is parti-
cularly beneficial for identifying the best mix of staff to
have within a workforce, taking account of staff sick-
ness and differing resource needs of patients. DES has
already been used to investigate staff planning in ICU
(Griffiths et al., 2005). More strategic models may be
better described using SD to represent workforce
availability at a national level, accounting for aspects
such as stress in medical staff due to work overload,
staff infection rates and time off work.

A particular question that needs to be answered
during an infectious disease epidemic is how to ensure
that key staff such as frontline healthcare staff can
return to work quickly following an illness. A testing
strategy that can allow key staff to return to work
sooner after an illness or a suspected case within
their household, has the potential to increase the num-
ber of staff working significantly (see Decision 1).
Similarly, when a vaccination becomes available, care-
ful planning of vaccinations among staff could ensure
a greater number remain healthy and able to work (see
Decision 5). School closure (see Decision 2) may also
affect the staff availability if they have to stay at home
with their children. One way to mitigate this, as shown
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in the UK, is to provide special treatment for the
children of key workers to allow them to go to school.
Modelling could help in two ways here. First, to show
the benefits of rapid testing or vaccination of staff
and second to determine the most effective way of
doing this. Operational models, using DES, would
work well in both cases.

Of potentially equal importance is maintaining the
mental health of front line staff. While difficult to
model explicitly, it can be accounted for when setting
up potential operating strategies, e.g., ensuring that
schedules allow for adequate breaks, provision of
occupational health support.

The epidemic has necessitated changes in working
practices among the whole population and in particu-
lar in healthcare settings there has been an increase in
the use of telemedicine, where patients are either
triaged or consulted with over the phone and/or via
video conferencing software. This will have an impact
in the healthcare system and resource needs of provi-
ders in the aftermath of the pandemic, in the recovery
phase and beyond. It may also change the way that
demand arrives into the healthcare system.
Operational modelling, typically DES, will help with
a transition to a system in which more primary care is
delivered remotely.

3.2.3. Decision 8: Management of resources within
a region
As the COVID-19 pandemic spreads in different geo-
graphical regions, a coordination of sharing mobile
medical resources such as staff and PPE may be
required within countries. Resources may be repur-
posed from areas that are past the peak to areas that
are at an earlier phase in the epidemiological spread to
support the response to changing demand in areas
most affected by the virus. Operational planners need
to know the best mechanism to adjust to jumps in
both supply and demand of resources, and need tech-
niques to optimise the distribution networks to take
account of changes in demand. Such decisions will be
made during the response and recovery phases of the
epidemic, most likely at a national or regional level.
There is also a need during a severe epidemic to
manufacture more medical equipment. In the case of
COVID-19 there is increased demand for PPE for
health service workers; respiratory equipment; testing
kits and hand gel. When a vaccination has successfully
passed clinical trials there will also be a need for its
rapid rollout globally.

The food sector has seen changes in demand for
different food items such as pasta, rice, etc. in the
supply chain. Responding to this demand quickly
and forecasting how it will vary as the epidemic pro-
gresses is a key modelling question. The famous beer
game is a typical example of a SD model that shows
how small variations in customer demand can increase

exponentially upstream the supply chain (Sterman,
1992). SD would be a suitable method to model the
supply chain at global or national level to support
decisions regarding order and production quantities
at supplier and manufacturer level, as well as restric-
tions imposed to ensure customer demand for these
basic supplies is effectively matched during the
epidemic.

Logistics modelling using DES or SD is also needed
to satisfy the demand for deliveries among members of
the public who are self-isolating. For example, Ivanov
(2020) builds a DES model to predict the impact of
epidemic outbreaks on global supply chains.
Behavioural modelling (typically using an ABM fra-
mework) could also be beneficial in determining how
best to limit buying within the community. The latter
is particularly important in helping to reduce trans-
mission by reducing the queues within shops and the
need to visit several shops to obtain essentials.

3.3. Decisions about care

There are many decisions that must be made about the
care of individuals as a result of the COVID-19 epi-
demic. Here, we consider decisions that affect the care
of a group of individuals or individual patients, using
modelling to determine their impact on the system as
a whole. For example, medical decisions on admis-
sions and discharges of patients may change when
health services are overwhelmed and determining the
wider impact is important. We must also consider the
impact on non-COVID-19 patients and how the epi-
demic may have implications on other health indica-
tors such as mental health and wellbeing.

3.3.1. Decision 9: Investigation of the thresholds for
admission and discharge of patients
We consider here admission and discharge of all
patients, not just those with COVID-19. Admission
and discharge from hospital is usually calibrated
against health service capacity taking account of
patient needs and, under normal operations, the flow
of admissions into a hospital is of the same order as the
flow of discharges. The majority of hospitals will have
plans in place to adapt to changes in demand and staff
availability such as those observed during a pandemic,
e.g., the Operational Pressures Escalation Levels
(OPEL) Framework in the UK (NHS England, 2018).
When under the most extreme pressures, hospitals
will aim to discharge as many patients as possible
(“clear the decks” strategies) and to cancel routine
procedures. Changing thresholds for admission and
discharge will likely have a negative impact on other
patients and this must be balanced against the benefit
of additional beds for COVID-19 patients. DES and
SD are both beneficial here to provide operational and
strategic viewpoints respectively.
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Principally when deciding on admission to ICU, but
also relevant in other areas of the hospital is the idea of
triaging. Pagel and Utley (2020) discuss the difficulties
of triaging for an ICU, showing that thought needs to be
given both to length-of-stay and patient need when
making decisions over who to admit in a situation
where there are insufficient beds to meet demand.

3.3.2. Decision 10: Minimising the impact on other
patients
During the pandemic there will be a large number of
services that care for vulnerable and unwell members
of society that will come under considerable pressure.
Indeed a major concern within a pandemic is that
overloaded health systems result in high mortality in
patient cohorts both with and without the infectious
disease. The latter is caused by difficulties accessing
health services. Patients needing transport to clinics
for regular life-critical treatment are likely to be
amongst this vulnerable group. Patient transport pro-
viders and suppliers of regular medical services, e.g.,
dialysis, need to reorganise their services to protect
patients from potential infection.

DES has a long history of success in improving the
efficiency of routine health service delivery in areas
such as whole hospital flow (Ben-Tovim et al., 2016;
Günal & Pidd, 2011); blood and transplant supply
chains (Katsaliaki & Brailsford, 2007; Osorio et al.,
2017); and discharges from acute to the community
(Penn et al., 2019). DES must now go further and
support analyses of health system reconfiguration
under pandemic conditions.

An example of a group at risk are people suffering
from acute kidney injury or chronic kidney disease.
These patients require regular dialysis (a medical pro-
cess to replace the function of the kidney in filtering
toxins from the blood) and are at high risk of devel-
oping further complications from COVID-19. Renal
services need to determine both how to manage
COVID-19 negative, suspected, positive, and recov-
ered patients and, as the pandemic progresses, to
understand the consequences of rationing care.
Modelling could investigate how best to separate
patients to avoid transmission (either by time or by
using different facilities) using DES, and how chan-
ging the frequency of dialysis will affect outcomes.

3.3.3. Decision 11: Health & well being
Health and well-being decisions can arise at national,
regional and individual levels during the response and
recovery phases; it would however be useful to put
policies in place in the mitigation phase as commu-
nities prepare for the onset of the pandemic.

Due to the lock-down measures taken in different
geographical regions and countries and the psychological
impact caused due to the health risks associated with
COVID-19, an imminent issue to be considered is the

impact this could have on the mental health and well-
being of members of the public and the repercussions on
mental health at individual level. Lack of (or limited)
physical exercise and lack of social contact can impact
people’s mental health. In addition, high levels of anxiety
and concerns about health, loss of income and jobs can
in turn result in mental health problems and other soci-
etal problems leading to use of drugs and criminality.
Other health and social care services, such as counselling
and occupational therapy, psychology and psychiatry
could play a crucial role in supporting individuals during
the pandemic and the recovery phase. Such decisions can
be overlooked during the pandemic as they are consid-
ered of a lower priority compared to saving the lives of
those critically ill. However, if plans and measures to
reduce these adverse effects are made during the mitiga-
tion phase, these could support public health quality and
the take up of social distancingmeasures discussed above
(Decision 2).

SD can be used to model the public’s mental health
and to understand the impact that support measures
and care resources can have at a community level.
A small number of SD models have been used to
evaluate public health policies for the management of
mental health (Langellier et al., 2019; Rutter et al.,
2017), however there are opportunities to extend
modelling efforts in this area, especially in commu-
nity-based SD. HS models that combine SD with ABM
to represent behavioural aspects related to social dis-
tancing would be also useful.

4. The call to arms

The challenges we face as a result of COVID-19 will
evolve over the next months and possibly years, as will
the modelling that is needed. The paper has outlined
some preliminary ideas for decisions that can be sup-
ported by the simulation community. The quantitative
approaches that we suggest have the potential to inform
policy leaders needing to make scarce resources go
further, identify weaknesses in the system and potentially
save more lives. The aim of this paper is to bring the
community together and to create momentum, as well as
capacity, to better deal with disasters such as COVID-19
by shaping, sharing and supporting good practice, good
models and research findings. This is our call to arms.

A number of opportunities will emerge for the
modelling community to support the efforts made
globally and locally to deal with the phases of the
unfolding disaster brought on by the COVID-19.
Optimising our approach and engagement at this cri-
tical time could mean that we are able to support more
decisions and make the most of this specialist com-
munity. The following paragraphs outline some gen-
eral issues that we need to address as a modelling
community so that we can rise to the challenge of
COVID-19 and other future disasters.
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4.1. Bringing the community together

Bletchley Park in the UK was the home of the WW2
codebreakers made famous through the work of Alan
Turing. It offered a physical setting for teams from
diverse backgrounds to collaborate on wicked coding
problems emerging from the war, such as cracking the
Enigma. Whilst the majority of codebreakers were
British, other allied forces were also present at
Bletchley. What this shows is that good teams help to
solve difficult problems. In this pandemic, the teams
are, by necessity, virtual and, due to the global reach of
COVID-19, international. This presents challenges
and opportunities, with the principal challenge being
the need for a lead within the community to bring it
together to solve the right problems.

Opportunities exist for learning from regions with
more advanced epidemics. Data has been shared effec-
tively during the COVID-19 pandemic but developing
clear methodologies for fast updating of models within
the community would be beneficial for any future crises.
This could be helped significantly by ensuring that all of
the modelling that gets carried out for government
departments or for individual hospitals is made public
and reproducible using standardised guidelines (e.g.,
STRESS guidelines for simulation; Monks et al., 2019)
and Open Science practices (Taylor et al., 2017).
Standardisation allows other experts to comment and
refine the model assumptions or update them as new
data become available. It will also enable models to
easily be reused and avoid reinventing the wheel.
Openness and transparency of the modelling is impor-
tant and ideally one might hope that a model repository
is created alongside a data repository.

4.2. Managing uncertainty in models

One related issue to transparency is providing an effec-
tive description of the uncertainty inherent in the
results of simulation models, which is often not under-
stood by those using them in their decision-making.
Simulation models are often based on input data that
are still very uncertain or missing and in the case of
a fast-moving pandemic, inputs may be based only on
confirmed cases (Roda et al., 2020). Similarly, uncer-
tainties in how the disease spreads could mean that the
logic used is not completely verified. Tomitigate this for
COVID-19 or responding to other time-critical situa-
tions, we would advise keeping prediction horizons
short, updating parameters and model logic as more
data comes in and rerunning models frequently.

Modellers also have a responsibility to highlight the
uncertainty in the outputs from simulations. This
uncertainty is not always obvious, particularly in
sophisticated models and can lead to misplaced con-
fidence. Two kinds of uncertainty exist in simulation
models: input uncertainty, which describes our lack of

knowledge of the true parameters of models (Xiao
et al. (2020); and intrinsic variation in processes, e.g.,
travel times and durations of treatment (Barton &
Nelson, 2013). In addition, as soon as the situation
moves outside the tested domain of the model, the
model outputs will become much less reliable.
Uncertainty should be recognised and discussed with
all stakeholders, including clinicians, decision-makers
and the public and, when there is a high level of
uncertainty, focusing on conservative or robust solu-
tions seems the best policy. Identifying important
sources of input uncertainty of models will also help
to prioritise data collection.

4.3. Engaging effectively with policy makers and
experts in other disciplines

Research in health simulation has advocated stake-
holder involvement in simulation studies (Eldabi et al.,
2007; Fone et al., 2003). Dealing with COVID-19 will
require several decision makers, with a different under-
standing of the situation and/or expertise and/or power
to actively engage with the modelling process to have an
input into the design of themodel or just to engage with
the model for the purpose of exploring scenarios.
Involving stakeholders in the modelling process will
also help to avoid the potential problem of having
several competing models for a decision-maker to
choose between.

Two issues arise from this need to engage others. The
first issue is that whilst facilitated simulation modelling
in healthcare has received some attention (Tako &
Kotiadis, 2015; Kotiadis et al., 2014; Richardson &
Andersen, 1995; Robinson et al., 2014) this has not
been addressed when using ABM or HS and we have
less of an understanding of how to engage multiple
people in their design. Furthermore, the engagement
has been in face-to-face workshop environments and
COVID-19 will require remote meetings that may not
be suited to the current tools; for example, developed for
Participatory Simulation (PartiSim) (Tako & Kotiadis,
2015). New collaborative simulation practices that can
support virtual meetings will need to be developed.

Appropriate engagement will require a good com-
munication of the problem situation and that could be
done with the support of a problem structuring
method (Mingers, 2001) but there is still a need to
translate them for a virtual environment and a need
for training modellers in soft skills. The modelling and
simulation community has generally approached
modelling in the expert mode (favouring observation
and data driven models) rather than the facilitated
mode of interaction (favouring expert views in addi-
tion to data), which would necessitate some collabora-
tion with facilitators and problem structurers or
upskilling the modelling and simulation community.
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4.4. Rapid development of conceptual models

The rapid onset of the COVID-19 pandemic has meant
that models are needed quickly. This could be achieved
through rapid modelling or by repurposing existing
models, e.g., adjusting existing epidemiological models
for other diseases to COVID-19. Conceptual modelling
has been described in one of the key stages in the
modelling process and should be the initial stage of
any simulation study (Robinson, 2008). This precoding
stage, undertaken by a modeller, involves finding out
about the problem situation, determining the objec-
tives, inputs, outputs and model content. It is essen-
tially the design stage of a simulation study.

Currently this is the stage potentially leading to
delays for COVID-19 as it involves the modeller liaising
with busy stakeholders and accessing data and other
relevant information that may be hard to obtain. Hence
it might be more efficient if templates are created that
can be used by stakeholders to detail essential informa-
tion to speed up the commissioning of models and the
potential to sourcemore than onemodel for a particular
problem situation. Doing this in advance could also
help to highlight which data are crucial to the develop-
ment of a particular model, enabling data collection
protocols to be developed. This could alsomean quicker
repurposing of existing models. Kotiadis et al. (2014)
propose the use of facilitated modelling to support
stakeholder involvement but this approach still requires
modellers to lead the process.

Considering the limited timelines required to sup-
port decisions during the response phase of the pan-
demic, modellers should consider designing the
simplest possible models. Careful model abstraction
during conceptual modelling can reduce model com-
plexity to develop simple models that are suitable for
the purpose they are built for (Robinson et al., 2014).
We appreciate that not all the decisions presented in
this paper can be represented by simple models; how-
ever, where possible we call for modellers to consider
simplifying their requirements and assumptions in
their models, to enable rapid model development.

4.5. Developing research and tools to support the
mitigation phase

We considered the decisions that could be explored
for COVID-19 by the modelling and simulation com-
munity in its four phases of mitigation; preparedness;
response and recovery (Altay & Green, 2006; Amideo
et al., 2019) but given the time at which we are writing
the article, none of our decisions appear in the mitiga-
tion phase: this time has already passed. In places, we
have identified decision areas where modelling could
support the mitigation phase by considering develop-
ing models for stress testing of operational readiness.
This is envisaged as model-based game playing by

decision-makers – war games (see Araz et al., 2012).
It is also important for the models to be created during
the mitigation phase because managers would not
have much time to engage in model building activities
when they are busy dealing with a crisis. Ideally during
the crisis, they can use these ready-made models to
support their decision making. Even though managers
would be busy, remote model building practices could
be developed to enable their effective engagement with
the models and the modelling team as discussed
earlier.

4.6. Immediate priorities

For the current pandemic, models will be needed for
managing the exit from the lock-downs globally without
overloading hospitals with a second (hopefully much
reduced) peak of infections. There is also a need to
update models of ICUs and hospitals in general to
take account of the new threat of corona viruses based
on what we have seen here. Our health facilities may
need to be resourced differently if this virus is likely to
persist in the next few years. If the positive talk of
a vaccine is true then determining who to vaccinate
first and how to roll out a population-wide vaccination
programme will also be vital; these decisions can defi-
nitely be supported by modelling and simulation.

4.7. Concluding remarks

There are clearly a host of research questions raised
by the COVID-19 pandemic and we do not assume
that we have identified all of them. Funding is
needed for modelling studies to help with improving
and focusing the response to this deadly virus and
those that will occur in the future. The number and
scale of the decisions identified here suggests that
there may not be sufficient modellers to answer all
of them effectively and thoroughly, and it is impor-
tant that we choose what we work on carefully and
share findings and models quickly via our interna-
tional networks in order to maximise the benefits of
simulation modelling to reducing the impact of
COVID-19 globally.
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