

Code	Subject Title		Cr. Hrs	Semester
MATH-309	Complex Analysis – II		3	VI
Year		Discipline		
3		Mathematics-I,II		

Singularity and Poles

- Review of Laurent series
- Zeros, singularities
- Poles and residues

Contour Integration

- Cauchy's residue theorem
- Applications of Cauchy's residue theorem

Expansion of Functions and Analytic Continuation

- Mittag-Leffler theorem
- Weierstrass's factorization theorem
- Analytic continuation

Elliptic Functions

- Periodic functions
- Elliptic functions and its properties
- Weierstrass function $\varphi(z)$
- Differential equation satisfied by $\varphi(z)$
- Integral formula for $\varphi(z)$
- Addition theorem for $\varphi(z)$
- Duplication formula for $\varphi(z)$
- Elliptic functions in terms of Weierstrass function with the same periods
- Quasi periodic functions: The zeta and sigma functions of Weierstrass
- Jacobian elliptic functions and its properties

Recommended Books

- 1. H. S. Kasana, Complex Variables: Theory and Applications, (Prentice Hall, 2005)
- 2. M. R. Spiegel, *Complex Variables*, (McGraw Hill Book Company, 1974)
- 3. Louis L. Pennisi, *Elements of Complex Variables*, (Holt, Linehart and Winston, 1976)
- 4. W. Kaplan, *Introduction to Analytic Functions*, (Addison-Wesley, 1966)
- 5. E. D. Rainville, *Special Functions*, (The Macmillan Company, New York, 1965)
- 6. E. T. Whittaker and G. N. Watson, *A Course of Modern Analysis*, (Cambridge University Press, 1958)