UNIVERSITY OF THE PUNJAB

B.S. 4 Years Program : Fifth Semester - Fall 2021

Paper: Vector and Tensor Analysis Course Code: MATH-304

Roll No.

Time: 3 Hrs. Marks: 60

Q.1. Solve the following questions:

$$(6x5=30)$$

- i) If $F = 3xy\hat{\imath} y^2\hat{\jmath}$ find work done over C in the xy plane, where $y = 2x^2$ from (0,0) to (1,2).
- ii) Find the volume of the region common to the intersecting cylinders $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$.
- Verify Green's theorem in the plane for $M = xy + y^2$ and $N = x^2$, where C is the closed curve of the region bounded by y = x and $y = x^2$.
- iv) Express the velocity v and acceleration a of a particle in cylindrical coordinates.
- v) Express the determinant $g = \begin{vmatrix} g_{11} & g_{12} & g_{13} \\ g_{21} & g_{22} & g_{23} \\ g_{31} & g_{32} & g_{33} \end{vmatrix}$ in terms of the elements of second row and their corresponding cofactors.
- vi) a) If A_{rs}^{pq} is a tensor, prove the double contractions results in invariant.
 - b) state Quotient law for tensors.

Solve the following questions:

(3x10=30)

Q NO 2: State Stoke's theorem and verify for $A = (2x - y)\hat{\imath} - yz^2\hat{\jmath} - y^2z\hat{k}$ where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary. (10)

Q NO 3: Derive an expression for the Gradient $\nabla \phi$ in general curvilinear coordinate system. (10)

Q NO 4: (a) Is the function $\vec{f}(t) = ti + t^2j + \frac{1}{t}k$ continuous at t = 0?

(b) If $\vec{f}(t)$ is a vector function. Show that $\frac{d}{dt}[\vec{f}.(\vec{f'}\times\vec{f''})] = \vec{f}.(\vec{f''}\times\vec{f'''})$ (10)