UNIVERSITY OF THE PUNJAB B.S. 4 Years Program : Seventh Semester – Fall 2021 Roll No. Paper: Number Theory-I Course Code: MATH-408 Time: 3 Hrs. Marks: 60 ## Q.1. Solve the following: (6x5=30) | (I) | Show that if p is prime and $p a_1a_2\cdots a_n$, then $p a_k$ for some k, where $1 \le k \le n$. | |-------|--| | (II) | State and prove Wilson theorem. | | (III) | Find the last two digits of (2022) ²⁰²³ . | | (IV) | Solve the system of linear congruence | | | $x \equiv 1 \pmod{3}, \ x \equiv 2 \pmod{5}, x \equiv 3 \pmod{7}.$ | | (V) | Show that if p is a prime, then are exactly $\varphi(p-1)$ incongruent primitive roots of p. | | (VI) | For $n = 2005060$, find $\varphi(n), \tau(n), \sigma(n)$. Where φ, τ, σ are Euler Phi, number of | | | positive divisors, and sum of positive divisors functions respectively. | ## Solve the following: (5x6=30) | Q2 | Show that a linear congruence $ax \equiv b \pmod{n}$ has a solution if and only if $d b$, where $gcd(a, n) = d$. Further, if $d b$ then it has d mutually incongruent solutions modulo n . | |----|--| | Q3 | Prove that if p is a prime number and $d (p-1)$, then there are exactly $\varphi(d)$ incongruent integer having order d . | | Q4 | If the integer $n > 1$ has prime factorization $n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$, then show that | | | $\tau(n) = (k_1 + 1)(k_2 + 1) \cdots (k_r + 1).$ | | Q5 | If n has a primitive root r and ind a denotes the index of a relative to r , then | | | (a) $\operatorname{ind}(ab) \equiv \operatorname{ind} a + \operatorname{ind} b \pmod{\varphi(n)}$, | | | (b) $ind(a^k) \equiv k \text{ ind } a \pmod{\varphi(n)}$. | | Q6 | Show that if F is a multiplicative function and | | | $F(n) = \sum_{d n} f(d),$ | | | then f is also multiplicative. |