

UNIVERSITY OF THE PUNJAB

Course Code: MATH-412

Roll No. Time: 3 Hrs. Marks: 60

Q.1. Solve the following:

(6x5=30)

1	1 A farm uses at least 800 lb of special feed daily. The special feed is a mi								
•	and soya bean meal with the following compositions.								
	lb per lb of feed stuff								
	Feed stuff	Protei		Fiber	Cost (\$/lb)				
	Corn	0.09		0.02	0.30				
	Soya bean meal	0.60		0.06	0.90				
	The diet requirement is at least 30% protein and at most 5% fiber. The farm wishes to								
	calculate the daily minimum cost of feed mix.								
1	Formulate the LP model for the problem.								
2	Use graphical method to find the optimal solution of the following LP model.								
	$\begin{array}{l} \text{Maximize } z = 3x_1 + 2x_2 \\ \text{Transformed to } \end{array}$								
	subject to								
	$5x_1 + x_2 \le 10$								
1	$2x_1 + 2x_2 \le 12 x_1 + 4x_2 \le 12 x_1, x_2 \ge 0$								
1									
3	Write the steps of Vogel approximation method.								
	and a supe of toget approximation moulou.								
4	Apply dual simplex method and find the first two iterations for the following problem.								
	$\text{Minimize } z = 2x_1 + 3x_2$								
	subject to								
	$2x_1+2x_2\leq 3$								
		$x_1 + 2x_2 \ge 1$							
	$x_1, x_2 \ge 0$								
- 5	XXZ-ita a mata an di								
3	Write a note on the case of degeneracy in the use of the simplex method.								
6	Solve the following assignment model using Hungarian method.								
		ours are reacting assignment model using mangarian method.							
		1	2	3	4				
	1	\$1	\$4	\$6	\$3				
	23	\$9	\$7	\$10	\$9				
	3	\$4	\$5	\$11	\$7				
	4	\$8	\$7	\$8	\$5				

Solve the following:

(3x10=30)

Q.2	Show that the M-method will conclude that the following problem has no feasible solution. Maximize $z = 2x_1 + 5x_2$ subject to							
	$3x_1 + 2x_2 \ge 6$							
1	$2x_1 + x_2 \le 2$ $x_1, x_2 \ge 0$							
Q.3	Solve the following problem using simplex method and find alternative optimal basic solutions. Maximize $z = 2x_1 - x_2 + 3x_3$ subject to							
	$x_1 - x_2 + 5x_3 \le 5$							
	$2x_1 - x_2 + 3x_3 \le 20$							
	$x_1, x_2, x_3 \ge 0$							
Q.4	Apply uv-multiplier method taking $u_1 = 0$ to find the optimal solution for the following transportation model. Use the least cost method to find the starting soluti							
	\$10	\$4	\$2	8				
	\$2	\$3	\$4	5				
	\$1	\$2	\$0] 6				
	7	6	6	_				