

UNIVERSITY OF THE PUNJAB

B.S. 4 Years Program : First Semester - Fall 2021

Paper: Statistics-I Course Code: STAT-101

Roll No.

Time: 3 Hrs. Marks: 60

Q.1. Answer the following short questions.

(15x2=30)

- (i) Define Descriptive and Inferential statistics
- (ii) Define a variable. Differentiate between discrete and a continuous variable.
- (iii) What is meant by frequency distribution and cumulative frequency distribution.
- (iv) Define the statistical term histogram and frequency polygon.
- (v) What is a measure of central tendency? What are its desirable qualities?
- (vi) Show that $\sum (x_i \overline{x}) = 0$
- (vii) What is coefficient of variation? What purpose does it serve?
- (viii) The first four moments of a distribution about x=2 are 1,2.5, 5.5 and 16 calculate the first four moments about mean and calculate β_1 and β_2
- (ix) Compare the simple aggregative and weighted aggregative index numbers.
- (x) Prove that fisher's ideal index satisfies the factor reversal test.
- (xi) Show that standard deviation of regression $sy.x = \sqrt{\frac{\sum y^2 a\sum y b\sum xy}{n-2}}$
- (xii) Define rank correlation, which quantity is added to $\sum d^2$ for tied ranks.
- (xiii) What is meant by coefficient of determination?
- (xiv) Distinguish between the secular and seasonal variation in time series analysis.
- (xv) Define detrending and deseasonlization.

Solve the following questions.

Q:2 (a) The following data relate to size of shoes sold at a store during a given week. Find the median and the model size of shoes also find D_9 and P_{70} . (6+4=10)

Size of Shoes	5	$5\frac{1}{2}$	6	$6\frac{1}{2}$	7	$7\frac{1}{2}$	8	$8\frac{1}{2}$	9	$9\frac{1}{2}$
No of Pairs	3	7	20	30	60	50	25	17	8	2

(b) Show that var(x+a) = var(x) where 'a' is some constant.

Q:3 (a) Show that correlation coefficient is independent of change of origin and scale i.e $r_{xy} = r_{uv}$ if

$$u = \frac{x-a}{h}, v = \frac{y-b}{k}$$
 (4+6=10)

(b) Construct fisher's ideal index number for 2011, taking 2010 as base

Items	Quantity		Value			
	2010	2011	2010	2011		
A	110	175	600	1000		
В	90	120	400	800		
С	70	85	200	350		

Q:4 (a) Compute the seasonal indices by ratio to trend method using least square line y=119.56+2.76x by taking origin in the centre and unit of x being half quarter.

(b) Deseasonlize the values of years 1999 and 2000

(7+3=10)

QUARTERS					
Year	I	п	Ш	IV	
1997	72	98	79	106	
1998	79	122	101	143	
1999	94	141	128	160	
2000	125	143	135	187	