	Seventh Semester – 2019 <u>Examination: B.S. 4 Years Program</u>
	Set Theory ode: MATH-401 Part-I (Compulsory) MAX. TIME: 30 Min. MAX. MARKS: 10 Signature of Su
	Attempt this Paper on this Question Sheet only. e encircle the correct option. Division of marks is given in front of each question. This Paper will be collected back after expiry of time limit mentioned above.
Q. 1	MCQs (1 Mark each)
(i)	An ordered set S is said to be well ordered if every subset of S contains element.
	(a) maximal (b) minimal (c) first (d) last
(ii)	Let $A = \{a, b\}, B = \{x, y, z\}$ then cardinality of A^B is
	(a) 6 (b) 8 (c) 9 (d) 5
(iii)	Let $I_k = \left(\frac{-1}{k}, \frac{1}{k}\right)$, then $\bigcap_{k=1}^{\infty} I_k =$
	(a) 0 (b) ϕ (c) $\{0\}$ (d) $(-\infty,\infty)$
(iv)	The bijective mapping $f:[0,1] \rightarrow [a,b]$ is defined by
	(c) $f(x) = (b-a)x + a$ (d) $f(x) = (a+b)x + b$
(v)	A set S is said to be if it has the same cardinality as a proper subset of itself.
	(a) finite (b) infinite (c) countable (d) uncountable
(vi)	Let S be a partially ordered set. An element $a \in S$ is called minimal element of S if
	(a) $x \le a \forall x \in S$ (b) $x \le a \text{ implies } x = a$
	(c) $x \ge a$ implies $x = a$ (d) $x \ge a \ \forall x \in S$
(vii)	Every element in a Well-ordered set has a unique immediate successor except the
	(a) first (b) last (c) minimal (d) maximal
(viii)	Let $Z = \{, -3, -2, -1, 0, 1, 2, 3,\}$ then the initial segment $s(0) =$
	(a) $\{1, 2, 3,, 10\}$ (b) $\{, -3, -2, -1\}$ (c) $\{, -3, -2, -1, 0\}$ (d) None of these
(ix)	Let a and b are elements of partially ordered set S. We say a and b are
	if $a < b$ or $b > a$ (i.e. if one of them precedes other).
	(a) Non comparable (b) Comparable (c) minimal (d) Maximal
(\times)	Let $N = \{1, 2, 3,\}$ and $M(a) = \{x : x \ge a\}$ then $M(9) =$
	(a) {1,2,3,,9} (b) {9,10,11,} (c) {10,11,12,} (d) None of these

UNIV	ERSITY	OF 7	NHD	PUNJAB
	Seventh S	emeste	r = 20	10

Examination: B.S. 4 Years Program

	•		•					•			0	•					•	•	٠				•
	1		^	11	7	V	0																
• • •		0		•		•	•	•													•		
M	L	L	X	-0	1		I	VI	L	5		L	ł	1	r	5.	-	51)	N	1	11	1.
M	[/	1	X		N	1	A	J	R	k		S		5	0								

PAPER:	Set Theory	
Course C	code: MATH-401	Part – II

ATTEMPT THIS (SUBJECTIVE) ON THE SEPARATE ANSWER SHEET PROVIDED

Q. 2	SHORT QUESTIONS	
(i)	Prove that a well-ordered set cannot be similar to one of its initial segments.	(4)
(ii)	Suppose A and B are ordered sets. Show that the product order on $A imes B$, defined by	(4)
	$(a, b) \leq (c, d)$, if $a \leq c$ and $b \leq d$ is a partial ordering of $A \times B$.	
(iii)	Prove that $\mathbb{N} \times \mathbb{N}$ is denumerable and deduce that $\aleph_0 \cdot \aleph_0 = \aleph_0$.	(4)
(iv)	Let $A = \{1, 2, 3, 4, 6, 8, 9, 12, 18, 24\}$ with Order xRy defined by x divides y. Show that it is a Partial order relation, also find the Minimal and Maximal elements.	(4)
(∨)	Prove that $R^2 \approx R$ and, more generally, that $R^n \approx R$, where ' \approx 'mean equipotent. SECTION-III	(4)
	LONG QUESTIONS	
Q.3	State and Prove the Cantor's Theorem for cardinal numbers.	(6)
Q.4	Let A and B the two ordered sets and $f: A \to B$ be a similarty mapping then a belongs to A is first or (last) element of A if and only if $f(a)$ is first or (last) element of B.	(6)
	Let $X = \{a, b, c, d, e, f\}$ be ordered as shown in the figure and $A = \{b, c, d\}$ be a subset of X. Find minimal and maximal element of X. Also find $Sup(A)$ and $Inf(A)$ in X.	(6)
	a is the element of the second sec	
	Every element in a well ordered set A has a unique immediate successor except the last	(6)
	element,	