UNIVERSITY OF THE I Seventh Semester – 2019 Examination: B.S. 4 Years Pr	PUNJAB 9 Cogram
PAPER: Numerical Analysis-I Course Code: MATH-403 Part–I (Compulsory)	MAX. TIME: 30 Min. MAX. MARKS: 10 Signature of Supdt.:
<u>Attempt this Paper on this Qu</u> <u>Please encircle the correct option. Division of man</u> <u>This Paper will be collected back after expir</u>	uestion Sheet only. rks is given in front of each question. y of time limit mentioned above.
Q.1. Encircle the right answer, cutting and over	erwriting is not allowed. (1x10=10)
 Lagrange interpolation formula is used whe (a) Equi-spaced (b) Constant (c) Non equi-spaced (d) Both a & b 	n the nodes are
2. $1 + \Delta = E$ is equivalent to (a) e^{2hD} (b) e^{hD} (c) e^{-hD} (d) e^{-2hD}	
 a) Inherent (b) Round off (c) Truncation (d) Natural 	ate formula in computation.
 4. The number 0.023590 × 10³ has (a) 3 (b) 4 (c) 5 	significant digits.

(d) 6

5. The power method for approximating dominant eigenvalue is a (an) _____ method.

(a) Direct

(b) Point-wise

(c) Iterative

(d) Continuous

P.T.O.

6. The regula falsi method has resemblance with

- (a) Bisection method
- (b) Newton-Raphon method
- (c) Iterative method
- (d) None of these
- 7. Newton's forward difference interpolation formula is used when the nodes are

.

- (a) Equi-spaced
- (b) Non equi-spaced
- (c) Constant
- (d) Both a & b

8. The equation $x^3 + \ln(x+1) + e^x + \cos(x) = 0$ is:

- (a) An algebraic
- (b) Transcendental
- (c) Hyperbolic
- (d) Exponential
- 9. The Operator $E^{-1}f(x) = f(x h)$ is called
 - (a) Shifting
 - (b) Inverse Shifting
 - (c) Central difference
 - (d) Mean Operator
- 10. A matrix is said to be positive definite if
 - (a) It is symmetric
 - (b) $x^{T} A x > 0$ for x = 0
 - (c) $x^T Ax > 0$ for $x \neq 0$
 - (d) Both (a) and (c)

UNIVERSITY OF THE PUNJAB

Seventh Semester – 2019 Examination: B.S. 4 Years Program

								•													~e
	D	0	11	N	In																
	T.	0	11	1,	0	0															
		0					۲		۹								0	0	0	0	
M	A	X		T	TI	M	TF	2.	. 1	2	F	T	r	2	1	21		N	1	ir	1
TAT	1.4.3		P.0	ж	<u></u> _	×.,				(num	-		# b	38		~	,	τ,			
M	T A	Y	~	N	T A	1	P	k	7	2	. /	5	n								
TAT	123	-		TÅ1	8.4	N .	L.		21	3	•	9	U								

PAPER: Numerical Analysis-I Course Code: MATH-403 Part – II

ATTEMPT THIS (SUBJECTIVE) ON THE SEPARATE ANSWER SHEET PROVIDED

Q2: Answer the following short questions.

 $4 \times 5 = 20$

- (i). Define Truncation Error, Relative Error and Order of Convergence
- (ii). Suppose that $\underline{\tilde{x}}$ is an approximate solution of the system $A \underline{x} = \underline{b}$, A is a non-singular matrix and \underline{r} is the residual vector for $\underline{\tilde{x}}$ then show that for any natural norm

 $\begin{aligned} \left\| \underline{x} - \underline{\tilde{x}} \right\| &\leq \left\| \underline{r} \right\| \| ||A^{-1}|| \text{ and} \\ \\ \frac{\left\| \underline{x} - \underline{\tilde{x}} \right\|}{\left\| \underline{x} \right\|} &\leq \left\| A \right\| \| ||A^{-1}|| \frac{\left\| \underline{r} \right\|}{\left\| \underline{p} \right\|} \text{ provided } \underline{x} \neq 0, \underline{b} \neq 0. \end{aligned}$ (iii). For matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$, compute $\| A \|_{1}$ and $\| A \|_{2}$.

(iv). Prove that

$$1 + \mu^2 \delta^2 = \left(1 + \frac{\delta^2}{2}\right)$$

•
$$\nabla + \Delta = \Delta / \nabla - \nabla / \Delta$$

Long Questions

 $6 \times 5 = 30$

Q3: Find an iterative formula to find $(N)^{1/3}$, where N is a positive number and hence, find

 $(7)^{1/3}$ correct to four decimal places.

Q4: Find a real root of equation $x^3-3x-5=0$ by secant method correct to three decimal places.

- Q5: Derive the Gregory-Newton Backward Difference Interpolation formula.
- Q6: Solve the following system of equations using Gauss Seidel method correct to two decimal places

5x + 2y + z = 12x + 4y + 2z = 15x + 2y + 5z = 20

Q7: The following data gives the melting point of an alloy of lead and zinc, where t^0c is the temperature and P is the percentage of lead in the alloy. Using Gauss's forward interpolation formula, find the melting point of the alloy containing 65% of lead

Р	40	50	60	70	80
t ⁰ c	156	184	205	228	276

