	× 1	UNIVER S <u>Examin</u>	SITY OF 7 eventh Semesten nation: B.S. 4 Y	FHE PU er – 2019 Years Progra	NJAB ``	Roll No. i	n Fig Ϛ			
PAPER Course	: Ring Code:	Theory MATH-407	Part–I (Comp	oulsory)	MAX. TIN MAX. MA	ME: 30 Min. RKS: 10	Signature of Supdt.:			
Plea	ase enc This	<u>Attemp</u> ircle the correc Paper will be co	ot this Paper on et option. Divisio ollected back aft	this Question n of marks is er expiry of t	on Sheet on s given in fre ime limit m	<u>nly.</u> ont of each q entioned abo	uestion.			
Q.1.	Encir	cle the right a	nswer, cutting	and overwr	iting is not	allowed.	(1x10=10)			
	(i)	The Polynor	nial ring R[x] over	r R is						
		(a) PID	(b) UFD	(c) ED (d) AI	l of these					
	(ii)	i) The maximal ideal ring in the ring Z of integers is								
		(a) Z	(b) 11Z	÷.	(c) 4 <i>Z</i>	((d) 6Z			
1	(iii)	Which of the	e following is a pr	ime ideal of t	he ring Z of	integers.				
		(a) Z	(b) 3Z	(c) N		(d) <i>R</i>				
	(i∨)	Units of Z a	ire							
		(a) ±1	(b) ± <i>i</i>	(c) ±1	$,\pm i$	(d) None	of these			
	(v)	(v) Every can be imbedded into a Field.								
	1. 11	(a) Integral domain (b) Division Ring (c) subring (d) Ideal								
	(VI)) A ring which is commutative with identity element and having no zero divisor is								
		(a) Division R	ling	(b) Inte	egral domain	}				
	(vii)	If D & D'		(d) nilp	otent ring					
	(***)	II A & A De	arbitrary ring ϕ :	$R \to R'$ is ri	ng homomo	rphism such i	that			
		$\varphi(a) = 0 \forall a$	$a \in R$ then $Ker\phi$							
		(a) <i>R</i> ′	(b) {0}	(c) R		(d) None o	fthese			
	(viii)	7π is algebrai	cover							
		(a) Q	(b) <i>R</i>	(c) Z		(d) None o	f these			
	(ix)	(ix) If C is a finite extension of R, then $[R:R] =$								
		(a) 2	(b) 3	(c) 4		(d) 1				
	(x)	The set $Z_8 = \{0\}$),1,2,3,4,5,6,7} un	der addition a	nd multiplicat	ion modulo 8	forms			
	- - -	(a) Division Ring	(b) Integral doma	in (c) Comm	nutative Ring	(d) field	*			

VERSITY OF THE PUNJAB		
Seventh Semester – 2019	• • • • • • • • • • • • •	
Examination: B.S. 4 Years Program	Roll No.	

MAX. TIME: 2 Hrs. 30 Min. MAX. MARKS: 50

PAPER: Ring Theory Course Code: MATH-407 Part – II

UNIVERSIT

Answer these short questions.

ATTEMPT THIS (SUBJECTIVE) ON THE SEPARATE ANSWER SHEET PROVIDED

(i) Let R be a ring with identity. Then show that the relation of being associates is an (4)equivalence relation. (ii) Find all associates of $2 + x - 3x^2$ in Z(x). (4)(iii) (4)If R is integral domain then prove that R[x] the polynomial ring over R is integral domain. (iv) Define the following term: Euclidean Domain, divisor, units, associates, unique factorization (4)domain. (4)(v)Show that $x^3 - 5$ is irreducible polynomial of $Q(\sqrt{5})$.

Answer these long questions.

(5x6=30)

Q.3	be an integral domain and p be non zero element of R. Then prove that p is prime in R if and					
	only if $\frac{R}{pR}$ is integral domain.	(6)				
Q.4	Prove that in a unique factorization domain every irreducible element is prime.	(6)				
Q.5	Prove that every field is an integral domain. Prove or disprove the converse of this statement for					
	infinite integral domain.	(6)				
Q.6	Differentiate between algebraic and transcendental numbers. Explain with examples. Let F be a					
	subfield of K. Prove that an element $a \in K$ is algebraic over F if and only if $F(a)$ is a finit	te				
	extension of F.	(6)				
Q.7	Show that the Rings $Z_6{\rm and} Z_2 \oplus Z_3$ are isomorphic.	(6)				

Q.2.

(5x4=20)