

UNIVERSITY OF THE PUNJAB

B.S. 4 Years Program : Third Semester – Fall 2021

Paper: Differential Equations

Course Code: MATH-2003

Time: 3 Hrs. Marks: 60

Q.1. Solve the following:

(6x5=30)

(i) Verify that the indicated function is a solution of the given differential equation on the interval $(-\infty, \infty)$.

(a) $y' = x y^{1/2}$; $y = \frac{1}{16} x^4$

(b)
$$y'' - 2y' + y = 0$$
; $y = xe^x$

Show that the first order linear nonhomogeneous equation, y' + P(x)y = f(x) has (ii) the solution in the following form

$$y_c = ce^{-\int P(x)dx} + e^{-\int P(x)dx} \int e^{\int P(x)dx} f(x)dx$$

where c is an arbitrary constant.

- Verify that the given differential operator annihilates the indicated functions. (iii) (a) $(D-2)^2$; $y = 4e^{2x} - 10xe^{2x}$ (b) D^4 ; $y = 1 - 5x^2 + 8x^3$
- Guess the form of particular solution yp for each of the given nonhomogeneous (iv) differential equations.

(a) $y'' - 6y' + 9y = 6x^2 + 2 - 12e^{3x}$ (b) $y''' + y'' = e^x \cos x$

$$(b)y''' + y'' = e^x \cos x$$

The homogeneous second-order Cauchy-Euler equation $ax^2y'' + bxy' + cy =$ (v) 0 has an auxiliary equation of the form $am^2 + (b-c)m + c = 0$, with two roots $m_1 = \frac{-(b-a) + \sqrt{(b-a)^2 - 4ac}}{2a}$ and $m_2 = \frac{-(b-a) - \sqrt{(b-a)^2 - 4ac}}{2a}$. Write the general solution when

(a) roots are real and distinct

- (b) roots are real and repeated
- Find the value of k so that the given differential equation is exact. (vi)

$$(6xy^3 + \cos y) dx + (2kx^2y^2 - x \sin y) dy$$

Q.2. Solve the following:

(5x6=30)

Solve the given first-order linear differential equation for the given initial (i) condition.

condition.
$$\frac{dy}{dx} + y = f(x), \quad y(0) = 0$$
where $f(x) = \begin{cases} 1, & 0 \le x \le 1, \\ 0, & x > 1. \end{cases}$

Solve the given Bernoulli's equation by an appropriate substitution. (ii)

$$x\frac{dy}{dx} + y = y^{-2}$$

Using an appropriate annihilator operator for the function $g(x) = 8e^{3x} + 4sinx$ in (iii) the given second order nonhomogeneous equation $y'' - 3y' = 8e^{3x} + 4sinx$, generate the particular solution in the following form

$$y_p = Axe^{3x} + B\cos x + C\sin x$$

Also find the values of arbitrary constants A, B, and C using method of undetermined coefficient.

The standard form of the homogeneous linear second-order differential equation is (iv) given as

$$y'' + P(x)y' + Q(x)y = 0$$

y'' + P(x)y' + Q(x)y = 0where P(x) and Q(x) are continuous on some interval I. Suppose that $y_1(x)$ is the known solution of the given equation on I and that $y_1(x) \neq 0$ for every x in the interval. Define $y_2(x) = u(x)y_1(x)$ and use method of reduction of order to show

$$y_2 = y_1(x) \int \frac{e^{-\int P(x)dx}}{y_1^2(x)} dx$$

(v) **Evaluate**

$$\mathcal{L}^{-1}\left\{\frac{s^2+6s+9}{(s-1)(s-2)(s+4)}\right\}$$