UNIVERSITY OF THE PUNJAB B.S. 4 Years Program / Fourth Semester - 2019 | , KOII NO. I | ın Fig. | ******* | | |--------------|---------|---------|------| | `` | | | | | `. | | | | | `\ Roll | No. in | Words. |
 | Paper: Statistics-IV Course Code: STAT-203 / STT-22314 Part-I (Compulsory) Time: 30 Min. Marks: 10 ATTEMPT THIS PAPER ON THIS QUESTION SHEET ONLY. Division of marks is given in front of each question. This Paper will be collected back after expiry of time limit mentioned above. Signature of Supdt.: # Q.1. Encircle the right answer cutting and overwriting is not allowed. (10x1=10) | | Suppose in a populat | ion of size N, the class f | in a variage of true attrib | outes A and D are | |---|---|--|---|--| | | | Then we have the expe | | | | (i) | $(a)\frac{(A)(B)}{N^4}$ | | $(\mathbf{b})\frac{(A)}{N}\cdot\frac{(B)}{N}$ | | | | $(c)\frac{(A)}{N^2},\frac{(B)}{N^2}$ | | $(\mathbf{d})^{\frac{N}{(A)(B)}}$ | | | | In Duncan's multiple | range test the "least sig | nificant range" is defin | ed as | | (ii) | $(a)R_p =$ | (b) $R_p = \sum_{n=1}^{\infty} A_n R_n$ | (c) $R_p =$ | (d) $R_p =$ | | | $q_{\alpha}(p,\nu)\sqrt{s/r}$ | $q_{\alpha}(p,\nu)\sqrt{s^2/r^2}$ | $q_{\alpha}(p, \nu)\sqrt{s^2/r}$ | $q_a(p,\nu)\sqrt{s/r^2}$ | | | If the multiple correla | ation coefficient $R_{3.12} =$ | 1, then it implies a | | | (iii) | (a)Weak linear | (b)Perfect | | (d)High | | *************************************** | | relationship | | relationship | | <i>(</i> 1) | The second principle | of an experimental desi | gn is | | | (iv) | (a)Randomization | (b)Local control | (c)Replication | (d)None of these | | (v) | The hypothesis is rej | ected at the a level of si | gnificance, when | | | - (P) | (a) $F \leq F_{\alpha}$; (ν_1, ν_2) | (b) $F > F_{\alpha}; (\nu_1, \nu_2)$ | (c) $F < F_{\alpha}$; (ν_1, ν_2) | (d) $F \geq F_{\alpha}$; (ν_1, ν_2) | | | Which of the followi | ng relationship holds | | | | (vi) | $(a)r_{12.3} =$ | $(b)r_{12.3} =$ | (c) $r_{13.2} =$ | (d)mana of these | | ., | $\sqrt{b_{12.3} \times b_{12.3}}$ | $\begin{array}{c} (\mathbf{b})r_{12.3} = \\ \sqrt{b_{23.1} \times b_{32.1}} \end{array}$ | $\sqrt{b_{13.2}\times b_{13.2}}$ | (d)none of these | | | • | e correlation coefficient | | | | (vii) | (a) 0 to I | (b) 0 to $+\infty$ | (e) -1 to +1 | (d) none of these | | C.355) | If a chi-square test is
many degrees of free | performed on a conting | ency table with 5 rows | and 4 columns. How | | (viii) | | (b)14 | (c)12 | (d) 9 | | <i>(</i> ,) | | and $t_{0.025,(15)} = 2.13$, th | | | | (ix) | (a)1.98 | (b)1.97 | | (d)1.89 | | | The standard error of | estimate in multiple reg | | | | (x) | | | | | ### **UNIVERSITY OF THE PUNJAB** B.S. 4 Years Program / Fourth Semester - 2019 | • | |---| | • | | | | • | | | | • | | | Paper: Statistics-IV Course Code: STAT-203 / STT-22314 Part - II Time: 2 Hrs.30 Min. Marks: 50 ## ATTEMPT THIS (SUBJECTIVE) ON THE SEPARATE ANSWER SHEET PROVIDED ### SECTION - II | Q. 2 | SHORT QUESTIONS | | |-------|---|-----| | (i) | What is meant by a Two-way analysis of Variance and an interaction? | (4) | | (ii) | Three variable have in pairs simple correlation coefficients given by $r_{12} = 0.8$, $r_{13} = -0.7$ and $r_{23} = -0.9$. Find the multiple correlation coefficient $R_{1,23}$ of X_1 on X_2 and X_3 . | (4) | | (iii) | (a) Define a Contingency Table. How do you determine the number of degrees of freedom in an r×c contingency table.(b) Discuss the important properties of chi-square distribution. | (4) | | (iv) | What is a multiple regression? Explain the basic difference between simple regression and multiple regression. | (4) | | (v) | Define and discuss the use of randomization and replication in designing an experiment. | (4) | #### SECTION - III | | | | LO | NG (| QUES | TION | S | | | | | |----------|----------------------------|---------------|-----------|--------|--------|----------|----------|---------|---------|-------------|-----| | | Five pennie
given below | s were tosse | d 1000 ti | imes | and th | e num | ber of | heads | were | observed as | | | | | Number of | heads | 0 | 1 | 2 | 3 | 4 | 5 | | (6) | | Q.3 | | Frequencie | s | 38 | 144 | 342 | 287 | 164 | 25 | i | (*) | | | Test whethe | r a binomial | distribut | ion gi | ves a | satisfac | ctory fi | t to te | st data | by applying | | | | 1 | re goodness- | | | | | | | | | | | | Perform the | analysis of v | ariance o | on the | follov | ving da | ata and | analy: | se the | treatment | | | | | the "least si | | | | | | | | | | | | | | | | reatme | | · | | | | | | <u> </u> | | ı | 2 | T | 3 | T | 4 | | 5 | 6 | (6) | | Q.4 | | 1 | 3 | 1 | 6 | | 4 | | 3 | 2 | () | | | Blocks 2 | 1 | 4 | | 4 | | 8 | | 5 | 1 | | | | 3 | 3 | 6 | | 7 | | 8 | | 4 | 3 | | | | 4 | 2 | 3 | + | 2 | | 3 | | 2 | l l | | | Q.5 | The following to X ₃ . | table show | s the corres | ponding va | lues of three | variables X ₁ , | X ₂ and | (6) | | |-----|---|---------------------------|--|---|--|--|--------------------|-----|--| | | b) Estimat | te X3 when | $\begin{vmatrix} 3 & 5 \\ 16 & 10 \\ 90 & 72 \end{vmatrix}$ on equation $X_1 = 10$ and | 54 4
X ₃ on X ₁ at | 12 14
3 2
2 30 12
nd X ₂ . | | | | | | | c) Compu
Given the follo | te R _{3.12} and | | | | | | | | | | Y | 2 | 5 | 7 | 8 | 5 | | | | | 0. | X ₁ X ₂ | 8 | 8 | 6 | 5 | 3 | | | | | Q.6 | | | l
nated regre | l
ssion equat | 3
ion, (i.e Y=a | $\frac{4}{+b_1X_1+b_2X_2}$ | for the | (6) | | | | above d | | | | | | | | | | | (b) State th | | of the parti | al regression | on coefficien | ts b ₁ and b ₂ . | | | | | | (b) State th The following treatments A, E | e meaning | ned from a r | andomized | complete bl | ock design wit | ch 3
sented by | | | | 0.7 | The following treatments A, E | e meaning | ned from a r
d 3 blocks o | andomized
ontain one | complete bl
missing obs | ock design wit
ervation repres | sented by | | | | Q.7 | The following treatments A, E x. Blocks | e meaning | ned from a r
d 3 blocks o | andomized
ontain one | complete bl
missing obs
reatments | ock design wit
ervation repres | sented by | (6) | | | Q.7 | The following of treatments A, E | e meaning | ned from a r
d 3 blocks o | andomized
ontain one | complete bl
missing obs
reatments
B
12 | ock design witervation repres | sented by | (6) | | | Q.7 | The following treatments A, E x. Blocks | data obtair
3 and C an | A
5
7 | andomized
contain one | complete bl
missing obs
reatments
B
12
10 | ock design witervation repres | sented by | (6) | |