ZOOLOGY II ANIMAL DIVERSITY-II (CLASSIFICATION, PHYLOGENY AND ORGANIZATION)

CREDIT HOURS: 3

Aims and Objectives:

The course aims to impart knowledge and understanding of:

- different animal groups, emphasizing their phylogenetic relationships.
- The structure and function of cell organelles and how common animal cell diversified in various tissues, organs and organ systems.
- Biochemical mechanisms eventually generating energy for animal work.

Echinoderms

Evolutionary perspective: relationships to other animals; echinoderm characteristics; classification up to class. Maintenance functions, regeneration, reproduction, and development in asteroidea, ophiuroidea, echinoidea, holothuroidea and crinoidea; further phylogenetic considerations; some lesser-known invertebrates: the lophophorates, entoprocts, cycliophores, and chaetognaths.

Hemichordates and Invertebrate Chordates

Evolutionary Perspective: Phylogenetic Relationships; Classification up to subphylum or class where applicable; Further Phylogenetic Considerations.

Fishes: Vertebrate Success in Water

Evolutionary perspective: phylogenetic relationships; survey of super class agnatha and gnathostomata; evolutionary pressures: adaptations in locomotion, nutrition and the digestive system, circulation, gas exchange, nervous and sensory functions, excretion and osmoregulation, reproduction and development; further phylogenetic considerations.

Amphibians: The First Terrestrial Vertebrates

Evolutionary perspective: phylogenetic relationships; survey of order caudata, gymnophiona, and anura. Evolutionary pressures: adaptations in external structure and locomotion, nutrition and the digestive system, circulation, gas exchange, temperature regulation, nervous and sensory functions, excretion and osmoregulation, reproduction, development, and metamorphosis; further phylogenetic considerations.

Reptiles: The First Amniotes

Evolutionary perspective: cladistic interpretation of the amniotic lineage; survey of order testudines or chelonia, rhynchocephalia, squamata, and crocodilia; evolutionary pressures: adaptations in external structure and locomotion, nutrition and the digestive system, circulation, gas exchange, and temperature regulation, nervous and sensory functions, excretion and osmoregulation, reproduction and development; further phylogenetic considerations.

Birds: Feathers, Flight, and Endothermy

Evolutionary perspective: phylogenetic relationships; ancient birds and the evolution of flight; diversity of modern birds; evolutionary pressures: adaptation in external structure and locomotion, nutrition and the digestive system, circulation, gas

exchange, and temperature regulation, nervous and sensory systems, excretion and osmoregulation, reproduction and development; migration and navigation.

Mammals: Specialized Teeth, Endothermy, Hair, and Viviparity

Evolutionary perspective: diversity of mammals; evolutionary pressures: adaptations in external structure and locomotion, nutrition and the digestive system, circulation, gas exchange, and temperature regulation, nervous and sensory functions, excretion and osmoregulation, behavior, reproduction and development.

Cells, Tissues, Organs, and Organ System of Animals

Structure and functions of cell membranes; various movements across membranes; cytoplasm, organelles, and cellular components: functional account of ribosomes, endoplasmic reticulum, golgi apparatus, lysosomes, mitochondria, cytoskeleton, cilia and flagella, centrioles and microtubules, and vacuoles based on their structural aspects. The nucleus: nuclear envelope, chromosomes and nucleolus. Tissues: diversity in epithelial tissue, connective tissue, muscle tissue and nervous tissue to perform various functions. Structural integrations for functions in organs and organ systems.

How Animals Harvest Energy Stored in Nutrients

Glycolysis: the first phase of nutrient metabolism; fermentation: "life without oxygen"; aerobic respiration: the major source of ATP; metabolism of fats and proteins; control of metabolism; the metabolic pool.

Books Recommended

- Campbell, N. A. (2002). *Biology* (6th ed). Menlo Park, California: Benjamin/Cummings Publishing Company, Inc.
- Hickman, C. P. & Kats, H. L. (2000). *Laboratory studies in integrated principles of zoology*. Singapore: McGraw Hill.
- Hickman, C.P., Roberts, L.S., & Larson, A. (2004). *Integrated principles of zoology* (12th ed) (International). Singapore: McGraw Hill.
- Kent, G. C. & Miller, S. (2001). *Comparative anatomy of vertebrates*. New York: McGraw Hill.
- Miller, S. A. (2002). *General zoology laboratory manual* (5th ed) (International). Singapore: McGraw Hill.
- Miller, S. A., & Harley, J. B. (2000). *Zoology* (6th ed) (International). Singapore: McGraw Hill.
- Pechenik, J. A. (2000). *Biology of invertebrates*, (5th ed) (International). Singapore: McGraw Hill.