M.A./M.Sc. Part - I Annual Examination - 2020

Subject: Chemistry (New Course)

Paper: I (Physical Chemistry)

| •  | • | •  | •  | • |   | • | •  | •  | •   | •   |    | •   | • | • | •  | •  | • | •  | ٠, |   |
|----|---|----|----|---|---|---|----|----|-----|-----|----|-----|---|---|----|----|---|----|----|---|
|    | _ |    |    |   |   |   |    |    |     |     |    |     |   |   |    |    |   |    | 4  | • |
|    | K | C  | Ш  | Ļ | Ņ | Q | ٠. | •  | • • | - : | ٠. | - : | • | : |    |    |   | _  | •  |   |
| •  |   |    |    |   |   |   |    |    |     |     |    |     |   |   |    |    |   |    |    |   |
| Ţį | n | ne | 9: | - | 5 | Н | r  | 5. |     |     | 1  | V   | a | П | Κ: | Š. | 1 | lu | ľ  | , |

NOTE: Attempt any FIVE questions. All questions carry equal marks.

- Q1. a Explain Harmonic Oscillators obey Hook's Law. Calculate energy levels of a Quantum mechanical Harmonic Oscillator. 17
  - b. Discuss the significance of principle quantum number. 03
- Q2. a. What are concentration cells? Give its Classification. 05
  - b. Derive an expression for EMF of electrolyte concentration cells without transference. 15
- Q3. a. Derive rate equation for Chain reaction:

 $H_2 + Br_2 \stackrel{K}{\hookrightarrow} 2HBr$ 

10

- b. Briefly discuss the factors affecting rate of reaction in solutions.
- Q4. a. Using Max well's equation for velocities distribution derive an expression for most probable velocity. 10
  - b. How Barometric formula could be used to calculate the effect of altitude. 10
- Q5. a. Explain the Third Law of thermodynamics? Compare it with Nernst's heat theorem.
  - b. Discuss the determination of entropy by using Third Law of thermodynamics. 08
- Q6. a. What is Sterling's approximation? Explain briefly. 06
  - b. Derive a relationship between absolute entropy and partition function. 14
- Q7. a. Calculte energy of a particle moving in three dimensional box applying Schrodinger wave equation. 08
  - b. What is activity coefficient? Determine the activity coefficient for sparingly soluble salt by solubility method. 12
- Q8. a. Discuss the postulates of Quantum theory 06
  - b. What is normalized wave function? Give examples: 04
  - c. What is proposed mechanism for the disappearance of N<sub>2</sub>O<sub>5</sub>. Derive a rate expression for the rate of diappearance of it. 10
- Q9. Write notes on any two of the following: (10+10)
  - (i) Transition state theory.
  - (ii) Fuel cells
  - (iii) Adiabatic magenatization

M.A./M.Sc. Part - I Annual Examination - 2020

Paper: II (Inorganic Chemistry) Subject: Chemistry (New Course)

Roll No. .....

Time: 3 Hrs.

Marks: 100

| Q. No.1                  | a) What are labile and inert complexes? Discuss various factors which affect lability.      | 15           |
|--------------------------|---------------------------------------------------------------------------------------------|--------------|
|                          |                                                                                             | 10           |
|                          | b) What is meant by Cracking of ores? Describe the cracking of                              | 10           |
|                          | Monazite ore by Conc. H <sub>2</sub> SO <sub>4</sub> of lanthanides.                        |              |
| Q. No.2                  | a) Define Resonance and discuss the resonance contributing structures of following species: | 15           |
|                          | i) $CO_3^{2-}$ ii) $NH_3$ iii) $NO_3^-$ iv) $SO_4^{2-}$ v) $N_3^-$ .                        |              |
|                          | b) Discuss the chemistry of Fe <sub>3</sub> (CO) <sub>12</sub>                              | 10           |
|                          |                                                                                             |              |
| Q. No.3                  | a) Discuss the structure of followings on the basis of MOT.                                 | 10           |
|                          | i) $[Fe(CN)_6]^4$ ii) $[Fe(H_2O)_6]^{2+}$                                                   | 10           |
|                          | b) Explain the Bridge Bond by giving suitable examples.                                     | 15           |
|                          |                                                                                             | 7070         |
| Q. No.4                  | a) Explain the bonding in Metal carbonyls.                                                  | 15           |
|                          | b) Discuss the applications of coordination compounds in various fields                     | 10           |
|                          | of life.                                                                                    | 10           |
|                          |                                                                                             |              |
| D. No 5                  | a) Discuss geometrical isomerism in coordination compounds.                                 | 15           |
| <b>&amp;</b> 1 1 1 1 1 1 | b) What is meant by Lanthanide Contraction? Discuss its reasons and                         | 10           |
|                          | effects.                                                                                    | 10           |
|                          |                                                                                             |              |
| Q. No.6                  | a) Discuss the colour and magnetic properties of lanthanides and                            | 15           |
|                          | actinides.                                                                                  |              |
|                          | b) Describe the N(E) curves for metals, semi metals and non-metals                          | 10           |
| Th. 78.7                 |                                                                                             |              |
| Q. No.7                  | Write note on any TWO of the followings:                                                    | 2x12.5 $=25$ |
|                          | i. Trans Effect                                                                             | = <b>™</b> . |
|                          | ii. Fajan's rule and its applications.                                                      |              |
|                          | iii. Jahn Teller Distortion Theorem                                                         |              |



M.A./M.Sc. Part - I Annual Examination - 2020

Subject: Chemistry (Old & New Course)

Paper: III (Organic Chemistry)

Roll No. .....

NOTE: Attempt any FIVE questions. All questions carry equal marks.

### Q. No. 1.

A) Arrange the compounds of each of the following groups in order of increasing acidity, giving explanation for your order.  $[4 \times 2 = 8]$ 

ш) нсоон

- B) What is effect of ortho substituent on the acidity of benzoic acid? [2]
- C) Compare the basicity of compounds of following groups. Justify your answer.
  - I. Ethylamine and acetonitrile

 $[2.5 \times 4 = 10]$ 

- II. o-Nitroaniline and p-nitroaniline
- III. C<sub>2</sub>H<sub>5</sub>OK and C<sub>2</sub>H<sub>5</sub>SK
- IV. Aniline and ammonia

Q. NO. 2

A) Describe two different methods for the detection of free radicals.

[8]

B) Predict the major products of following reaction via free radical mechanism. Draw complete mechanism for all steps. [4 + 4]

(ii) 
$$\sim$$
  $\stackrel{\text{Cl}}{\sim}$   $\stackrel{\text{(i)}}{\sim}$   $\stackrel{\text{H}_2\text{SO}_4, \text{hv}}{\sim}$  ?

C) Explain Captodative effect for stability of free radicals with examples.

(ii) NaOH

[4]

Q. NO.3

Write a note on the following reactions (reaction, mechanisms and synthetic applications). [10+10]

- I. Knoevenagel condensation
- II. Darzen's glycosidic ester synthesis

### Q. NO. 4.

- A) Write complete reaction of cyclohexanone with the following reagents. Draw complete mechanisms for both. (10)
  - (i) Na in liq. NH3, EtOH
  - (ii) m-Chloroperbenzoic acid

- B) Draw complete mechanisms for the following reactions.
  - I. Swern's oxidation of primary alcohols

**[4]** 

II. Hydroxylation of alkene by using iodine and silver acetate (both wet and dry methods). [6] O. NO. 5

How would you bring about the following conversions? Write complete mechanisms for all steps involved.  $[5 \times 4 = 20]$ 

O. NO. 6

- A) Explain the following terms and give examples for each. [10]
  - I. Epimers
  - II. Geometrical isomers
  - III. Dihedral angle
  - IV. Meso isomer
  - V. Diastereomers
- B) Give two examples of organic compounds which show optical isomerism without a chiral carbon atom. Explain why these compounds are optically active. [4]
- C) Draw all the conformers and describe stability order with reason of the following compounds. [6]



Q. NO. 7

- A) Draw both the geometrical isomers for the following compounds and assign Z or E designation to each of them. [6]
  - I. 1-Iodo-1, 2- dichloroethylene
  - II. 3-Propyl-2-pentene
  - III. 3-methyl-3-octene
- B) Draw the perspective formulas of the enantiomers of following compounds and label each enantiomer as R or S. [9]
  - I. 2-butanol
  - II. 2-Methyl-1-butanol
- III. 2-hydroxypropanoic acid
- C) Draw the fisher projection of following compounds.

[5]

- I. (2R.3R)-2,3-dibromohexane
- II. (2R,3R)-3-Chloro-2-butanol

M.A./M.Sc. Part - I Annual Examination - 2020

Subject: Chemistry Paper: IV (i) [Biochemistry] (New Course)

Roll No. .....

Time: 3 Hrs. Marks: 100

| b)             | What do you mean by GAGS? Explain Proteoglycans in detail What are disaccharides? Discuss the chemistry, structure and functions of Maltose and Trehalose.  (10)                                                                 |                         |  |  |  |  |  |  |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|--|--|--|--|--|
|                | Write different methods for the measurement of energy expenditure.  Discuss the cell wall composition.                                                                                                                           | (15)<br>(10)            |  |  |  |  |  |  |  |
| b)             | Explain enzyme inhibition. Differentiate between competitive and non-compinhibition with examples.  Explain Regulatory enzymes, Allosteric enzymes and Multienzyme systems examples                                              | (13)                    |  |  |  |  |  |  |  |
| b)             | Write a note on secondary structure of proteins. What is the difference between fibrous proteins and globular proteins? Explain examples                                                                                         | (10)<br>n with<br>(15)  |  |  |  |  |  |  |  |
| 99             | Write in detailed the Chargaff's Rules, and Watson and Crick's about deoxyribonucleic acid. Briefly write what are basis of Chargaff rules which mit helpful in Watson and Crick's model.  Write a note on pH and buffer systems | at the ght be (15) (10) |  |  |  |  |  |  |  |
|                | What are sphingolipids? Give a brief account.  Explain the properties of lipid aggregates: Micelles and Bilayers.                                                                                                                | (13)<br>(12)            |  |  |  |  |  |  |  |
| a)<br>b)<br>c) | Write short notes on any two of the followings. Classification of enzymes Purines, Pyrimidines and nucleotides Glycolipids Isoezymes                                                                                             | (25)                    |  |  |  |  |  |  |  |



M.A./M.Sc. Part - I Annual Examination - 2020

Subject: Chemistry Paper: IV (ii) [Analytical Chemistry] (New Course)

Roll No. .....

- Q1. a) Distinguish between error and deviation. 3, 10, 12
  - b) Discuss different types of determinate errors. How they can be minimized?
  - c) The percentage of a constituent 'A' in a compound AX was found to be 58.41, 58.32, 58.36, 58.23, 58.11 and 53.38 percent. Calculate the standard deviation, variance and the relative deviation in parts per thousand.
- Q2. a) Explain the extraction of metals by solvent extraction. How does pH affect the efficiency of extraction? 8, 8, 9
  - b) Write about different forms of solvent extraction.
  - c) Write a detailed note on solid phase extraction.
- Q3. a) Define chromatography. Give the classification of chromatographic methods. 8, 12, 5
  - b) What is efficiency of the column? Explain the factors affecting efficiency of column.
  - c) What is gradient elution?
- Q4. a) How flame is used as atomizer? Explain its event 9, 9, 7
  - b) Explain the principle of hydride generation AAS with the help of a diagram. What are its specific advantages?
  - c) Draw the optical layout of flame photometer. Briefly discuss its components
- Q5. a) Define the term spectroscopy. Give brief description of radiation source, filter and detector in UV/Vis spectrophotometer. 10, 7, 8
  - b) What is the effect of conjugation on UV/Vis spectra?
  - c) Compare the single beam spectrophotometer with double beam spectrophotometer.
- Q6. a) What is the principle of ion-exchange chromatography? Write a note on cation and anion exchange resins.
  - b) What is the basis of separation in electrophoresis? Give different types of capillary electrophoresis
  - c) Differentiate between paper and thin layer chromatography.
- Q7. a) Briefly discuss sample injection system in flame photometry 10,15
  - b) What are the flameless techniques in AAS spectroscopy. Explain them in detail



M.A./M.Sc. Part - I Annual Examination - 2020

Subject: Chemistry Paper: IV (iii) [Applied Chemistry] (New Course)

Roll No. .....

| Q. No.1  | (a)        | Explain the design and working of heat regenerative furnaces in glass manufacturing.             | 12 |
|----------|------------|--------------------------------------------------------------------------------------------------|----|
|          | (b)        | What do you understand by tempered glass, discuss its manufacturing and applications?            | 13 |
| Q. No.2  | (a)        | Discuss production of oxalic acid from sodium formate, also describe its important applications. | 12 |
|          | (b)        | Explain ammonia Solvay process of soda ash manufacturing with the help of flow sheet diagram.    | 13 |
| Q. No.3  | (a)        | Discuss all the chemical reactions in rotary kiln during cement formation.                       | 12 |
|          | <b>(b)</b> | What are setting agents and why they are used, describe cement setting mechanism.                | 13 |
| Q. No.4  | (a)        | How fractional distillation is different from simple distillation, explain the importance        |    |
|          |            | of former method in different industrial purification processes.                                 | 12 |
|          | (b)        | What do you understand about chlorination process, write down some important chlorinating        |    |
|          |            | agents and their applications as well.                                                           | 13 |
| Q. No. 5 | (a)        | What is boiler scale and sludge, what are different chemical methods for their treatment?        | 12 |
|          | (b)        | Explain the principle of using ion exchange resins for water softening.                          | 13 |
| Q. No.6  | (a)        | Discuss continuous method of soap manufacturing and its advantages over batch process.           | 13 |
|          | (b)        | Differentiate between cationic and anionic detergents, give examples and applications            |    |
|          |            | of each type of detergent.                                                                       | 12 |
| Q. No.7  | Write sh   | ort notes on any three of the following                                                          | 25 |
|          | <b>(a)</b> | Multiple effect evaporators                                                                      |    |
|          | (b)        | Reverse Osmosis                                                                                  |    |
|          | (c)        | Phthalic anhydride                                                                               |    |
|          | (d)        | Soap builders                                                                                    |    |
|          | (e)        | Sodium hydroxide                                                                                 |    |