Subje	ect: Sta	UNIVERSITY OF THE PUNJAB M.A./M.Sc. Part – II Annual Exam – 2019MissionRoll No.tisticsPaper: I (Statistical Inference)Time: 3 Hrs.Man	rks: 100
		NOTE: Attempt any FOUR questions. All questions carry equal marks.	
Q.1	a)	Define unbiasedness, write four types of unbiasedness, and compare them.	(13)
	b)	Let $Y_1 < Y_2 < Y_3$ be the order statistics of random sample of size 3 from uniform distribution over the interval $[0, \theta]$. Show that $4Y_1$, $2Y_2$ and $(4/3)Y_3$ are all unbiased estimators for θ with respective variances	(12)
	1. 2 A 5	$3\theta^{-}/5, \theta^{-}/5$ and $\theta^{-}/15$.	
Q.2	a)	State and prove Cramer-Rao's inequality for minimum variance, under which condition(s) it fails to give minimum variance bound; state the condition(s) concerned.	(12)
	b)	Find the MVB estimators of the parameters of Normal distribution, also find their variances and co-variances.	(13)
Q.3	a)	Find the Maximum likelihood estimator and moment estimators of the parameters of log-normal probability distribution.	(12)
	b)	If $X \sim N(\mu, \sigma^2)$ for a random sample of size n then find MLE of a point A,	(13)
		such that $\int_{A}^{\infty} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{\frac{-(x-\mu)^{2}}{2\sigma^{2}}} dx = 0.05$ also find the minimum variance unbiased	
Q.4	a)	Let x_1, x_2, \dots, x_n be a random sample from beta distribution of the form $f(x;\theta) = \theta(1+\theta)(1-x)x^{\theta-1}, 0 < x < 1$ for some $\theta > 0$, estimate θ by method of moments. Also find the variance of θ .	(10)
	b)	Let there are 3n observations x ₁ , x ₂ ,x _n , y ₁ ,y ₂ ,y _n and z ₁ ,z ₂ ,z _n with same unknown variance σ^2 . The mean values of the observations are given by $E(x_i) = \theta_1 + 2\theta_2 + 3\theta_3$, $E(y_i) = 2\theta_1 + 3\theta_2 + \theta_3$, $E(z_i) = 3\theta_1 + \theta_2 + 2\theta_3$ i=1,2,3n. where $\theta_1, \theta_2, \theta_3$ are unknown parameters. Apply the least square method to derive estimates of contrasts $(\theta_1 - \theta_2), (\theta_2 - \theta_3), (\theta_3 - \theta_1)$ by using $\theta_1 + \theta_2 + \theta_3 = 0$ and obtain the unbiased estimate of σ^2 . Also prove that $V(\hat{\theta}_i) = 14\sigma^2/9n$. Find the variance of each contrast, what do you conclude?	(15)
Q.5	a)	Compare χ^2 (chi-square), minimum chi-square and modified chi-square methods in statistical inference; Under which situations they are applied?	(07)
	b)	Based on a random sample of size 'n' from the density $f(x/\theta) = 1/\theta$ with prior distribution as $g(\theta) = 1$, $0 < \theta < 1$ obtain the Baye's estimator for θ with respect to the squared loss function $\ell(\theta, t) = (t - \theta)^2 / \theta^2$.	(10)
	c)	What is the difference between Bayesian and Classical inference? Explain. What is Bayes' estimator? Differentiate between prior and posterior density.	(08)
Q.6	a)	Prove that the approximate values of k_0 and k_1 in SPRT (Sequential probability ratio test) are $\alpha_a/(1-\beta_a)$ and $(1-\alpha_a)/\beta_a$.	(08)
	b)	State and prove the Neyman-Pearson Lemma.	(12)
	(C)	What do you mean by 95% confidence interval? Define confidence region?	(05)
2.7	a)-	What do you mean by Pivotal Quantity? Explain with the help of any suitable example.	(08)
	b).	Construct large sample confidence interval for unknown parameter of Poisson distribution.	(08)
	c)	Write the short notes on	(09)
		i) Most power test ii) confidence belt iii) shortest confidence interval	

Subject: Statistics

UNIVERSITY OF THE PUNJAB

<u>M.A./M.Sc. Part – II Annual Exam – 2019</u> tistics Paper: II (Regression Analysis and Econometrics)

NOTE: Attempt any FOUR questions. All questions carry equal marks.

- Q.1. What is Econometrics? Discuss its types, methodology and functions.
- Q.2.a) Consider the model $\underline{Y} = X \underline{\beta} + \underline{\in}$ Such that $E \underline{\in} = 0$, $E \underline{\in} \underline{\in}' = \sigma^2 V$. Derive best linear unbiased estimator of β .
 - b) Observations Y_i are related to fixed quantities X_i and U_i by the relation $Y_i = \alpha + \beta X_i + U_i$ where U_i are independent quantities from the same population with

same variance. An estimate of β is $\frac{1}{25}(Y_1 - Y_2 - Y_3 - Y_4 + Y_5 + Y_6)$. If the values of X_i

are 11, 21, 32, 44, 50 and 61, find sampling variance of this estimate and compare with it the sampling variance of the OLS estimator of β .

- Q.3.a) What do you know about instrumental variable? Show that the instrumental variable estimate is consistent and find estimated asymptotic variance of instrumental variable estimate.
 - b) Using recursive formula for equally speed orthogonal polynomials or otherwise, devrive upto 3rd degree orthogonal polynomials.
- Q.4.a) Discuss two stage least squares method and its features in simultaneous equations models.
 - b) Consider the model $Y_{1t} = \alpha_1 + \alpha_2 Y_{2t} + \alpha_3 X_{1t} + u_{1t}$; $Y_{2t} = \beta_1 + \beta_2 Y_{1t} + \beta_3 X_{2t} + u_{2t}$
 - (i) Identify the structural equations of the model.
 - (ii) Estimated reduced form equations are:
 - $\hat{Y}_{1t} = 4 + 3X_{1t} + 8X_{2t}$; $\hat{Y}_{2t} = 2 + 6X_{1t} + 10X_{2t}$

Obtain consistent Estimates of structural parameters.

- Q.5.a) Define Autocorrelation. Discuss assumptions and procedure of Durbin-Watson test for autocorrelation.
 - b) What measures should be taken to avoid multicollinearity.
- Q.6.a) What is Heteroskedasticity? Discuss (i) some reasons which causes heteroskedasticity, and (ii) various procedures / assumptions to remove heteroskedasticity.
 - b) Discuss Wald's, Bartlett's and Durbin's instrumental variables.
- Q.7. Explain the following:
 - (i) Specification errors
 - (ii) Sampling distribution of error sum of squares
 - (iii) Stepwise regression
 - (iv) Simultanous equations bias
 - (v) The Almon approach to distributed-Lag models

UNIVERSITY OF THE PUNJAB

M.A./M.Sc. Part – II Annual Exam – 2019

Roll No. Time: 3 Hrs. Marks: 75

Subject: Statistics Paper: III (Part-A) [Data Processing and Computer Programming]

NOTE: Attempt any FOUR questions.

- Q.1 (a) Differentiate between source program and object program. What are the uses of following DOS commands, explain the following commands by giving (b) examples
 - (i) dir (ii) md (iii) chkdsk (iv) format
 - (c) Write an algorithm and flowchart to print out the odd numbers between 1 to 300 and their squares.

- (6+8+5)(a) In FORTRAN (FTN) language, what IF, THEN and DO WHILE statements? Give examples. (b) Write a FTN program that generates and finds the solution of following series.
 - (i) $1 \frac{1}{2} + \frac{1}{3} \dots + \frac{1}{50}$

02

(ii) $\frac{2}{1} * \frac{4}{3} * \frac{6}{5} * \dots * \frac{50}{49}$, where "*" represents multiplication sign.

(c) Write the following statements in FORTRAN

(i)
$$Sin(x) + tan(x)$$

(ii) $\sqrt{cd + |ab - 4|}$
(iii) $\frac{1}{\sigma 2\Pi} e^{\frac{-(x-\mu)^2}{2\sigma}} + 3.0\sqrt{(x/y)}$
(iv) $5 + \frac{at}{bt + \frac{1}{2\sigma}}$

(6+8+5)

- Write a program in FORTRAN to calculate and prints the mean, variances, simple linear Q3 **(a)** regression line and the correlation coefficient between two sets of data. (b)
 - Write a program in FORTRAN to read in an integer N > 4 and n > 1, and to determine i. its Permutation. ii.
 - With reference to FORTRAN, explain BLOCK IF statement with example. iii.
 - Write a subroutine that sort the data in descending order.
- (10+9)Write Subroutine subprograms which read all elements of two matrices A and B of any order; 04 (a) find the product of these two matrices and prints their product. Use these subroutines in a main program unit.
 - Determine the output of the following programs: (b)

С	First program	С	Second program
	1=4	C	
	K =6		A=0.4
	K-0		B=600.2
	L=K+2*1		W=21.3
	I = 2*L + I/2		Z=A+B*W
	K=K/4		WRITE(* *) A B 7
	L=I+K+L	10	$FORMAT(T) = C_2 / (T) + C_2 $
	WRITE(* *) IK I	C	1000000000000000000000000000000000000
	STOP	C	
	STOP		STOP
	END		END

There are N students in a class. The name and his/her scores in a semester examination (c) consisting of four papers are given. Write a Fortran program to print the names of a student with respect to their GPA in descending order.

(6+6+7)

With particular reference to C-Language, 05 (a)

Write the role of header files and pre-processor directives. i.

Differentiate between Structure and Union, give examples. ii. iii.

Differentiate between actual and formal arguments of a function.

- Differentiate between global and static variable. iv. v.
- What is the objective of header files before main() in C-language?

- (c) Write a program in C to draw a checker's board on the screen.
- (7+6+6)Q.7 **(a)** Write a recursive function to find binary equivalent of a number. Write a program in C which stores N values and then calls a function named Array() to (b)calculate the average, variance, minimum value and maximum value. Write a loop that will calculate the sum of every forth integer, beginning with i=3 (i.e. (c) calculate the sum 3+7+11+...) for all values of i that are less than 500, using

- i. while statement
- do-while statement ü.
- iii. for statement

(b)

06

With reference to the C- language, What are pointers? Write the logic that how they are used. (15+4)Distinguish between a switch statement and an if-else statement in C language. (a) Write a C- Program to find out the four raw moments of an array. (b)

UNIVERSITI OF THE LUNGAD	UNIV	ERSITY	OF THE	PUNJAB
--------------------------	------	---------------	---------------	--------

M.A./M.Sc. Part – II Annual Exam – 2019

Subject: Statistics

Paper: VI (iv) [Part-A-Survey and Report Writing]

Roll No	
Time: 3 Hrs.	Marks: 50

NOTE: Attempt any FOUR questions. All questions carry equal marks.

- Q.1. What is meant by sample survey? What are the advantages and limitations of survey? What steps should be taken into consideration for a successful survey?Q.2. What do you understand by the term error? Explain different types of
- errors that affect the accuracy of the survey.
- Q.3. Discuss various methods of random sampling and situations in which they are used.
- Q.4. What are qualities of "Good Data"? Explain its types and sources to collect data.
- Q.5. Explain the principles of wording, stating how these are important in questionnaire designing?
- Q.6.a) Differentiate between open ended and close-ended questions. Also, explain their advantage and disadvantages.
 b) Explain others of conducting survey.
 - b) Explain ethics of conducting survey.
- Q.7. Define the term 'Reliability'. Also explain its various types.

<u>M.A./M.Sc. Part – II Annual Exam – 2019</u> s Paper: VI (i) [Statistical Quality Control]

NOTE: Attempt any FOUR questions. All questions carry equal marks.

0#1(a		
Q#1 (a	1 One of the following:	10
	1. Operating Characteristic (OC) Curve	
	2. Specification Limits	
()) What is process capability ratio? How do we interpret the value of PCR?	15
Q#2	Control charts for \overline{x} and R are to be established to control the tensile strength of a	25
	metal part. Assume that tensile strength is normally distributed. Thirty samples of size	
	n = 6 parts are collected over a period of time with the following results:	
1	$\frac{30}{5}$ = (0.00)	
	$\sum_{i=1}^{n} x_i = 6000 \text{ and } \sum_{i=1}^{n} R_i = 150$	
	i. Calculate control limits for \overline{x} and R control charts.	
	ii. Both charts exhibit control. The specifications on tensile strongth and 200+5	
	what fraction non-conforming would result?	
	iii. For the above \bar{x} chart, find the β -risk when the true process mean is 100	
	iv. Assuming that if an item exceeds the unper specification limit it can be	
	reworked, and if it is below the lower specification limit it must be scranged	
	what percent scrap and rework is the process now producing?	
	v. What are your conclusions regarding process capability?	
Q#3 (a)	What to do if we want to deal with low defect levels?	10
(b)	As a part of an overall quality improvement program a textile manufacturer desides to	10
	initiate a chart to monitor the number of imperfections found in each talk of the	15
	inspected. The data from last 25 inspections of the holts of sloth are recorded as 14.5	
	10, 19, 0, 6, 2, 9, 8, 7, 3, 12, 1, 22, 1, 6, 14, 8, 6, 0, 7, 1, 5, 12, 4	
	i. From these data compute 3 sigma trial control $\lim_{n \to \infty} 12, 12, 13$	
	ii Make control chart for number of immediate	
	iii What do you suggest about the process?	
	iv If manufacturer wiches to market the till the little in a state	
	the basis of our rent data and 1.1.	
$\Omega \# 4(a)$	State the still be the limits for the next period.	
$\sqrt{\pi}$	Environmental Management System under IGO 14000	10
(h)	A single sampling plan uses a sample size of 15 in the side	
	Using Hypergeometric distribution draw the OC array for the latter in th	15
)#5 (a)	Take a sampling plan with $n_c = 50$ c $= 2$ m $= 100$ s $= 4$	
	If the incoming lots have fraction noncomfare $2.00, C_2 = 4$	15
	of acceptance on the first second 2 Will with the probability $p = 0.05$ then what is the probability	
	or acceptance on the first sample? What is the probability of final acceptance?	

P.T.O.

(b)	Discuss	the important	consideration	s while formin	ng lots for ins	pection in ac	ceptance	10
	sampling	g procedures.			ter an			
O#6(a)	In a pla	n, 10 items w	vere tested fo	r 500 hours w	ith replaceme	nt and an ac	ceptance	10
	number	of 1 Construct	an OC-curve	showing proba	bility of acce	ptance as a fu	nction of	÷
	mann life							
	mean m		1		Daharta maina	the DNOM a	nnraach	15
(b)	Use the	tollowing data	to set up sn	ort run <i>x ana i</i>	(charts using	the DINOW a	pproach.	15
	The nom	inal dimension	ns for each pa	rt are	~ -			
	ſ		N _A	$= 50, N_B =$	25	3.4	1	
		Sample No.	Part No.	M ₁	M ₂	IVI3		
		1	<u> </u>	50	51	51	· .	
		2	<u> </u>	49	50	57		
		3	<u>A</u>	48	52	51		
		4	A	49		26		an an Statute
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	i na in indiana Na	5	<u> </u>	24	27	20	1	
			B	23	26	23		
		8	B	25	24	23	n en sere	
		9	B	24	25	25		
		10	В	26	24	25		
0#7	Write a s	short note on a	ny Five of the	following:				5 each
	i. F	Reliability and	Life Testing	Ų			la de la sector Contra de la sector	•
	ii. A	Average Outgo	ing Ouality					1
	iii. E	Bath-tub Curve		an a				
	iv. F	Producer's and	Consumer's l	Risk			1997 - 1997 -	
1. 	v . A	Average Run L	engths					
	vi V	Varning Limit	2					

A	UNIVERSITY OF THE PUNJAB	• • • • • • • • • • • • • • • • • • •
9	<u>M.A./M.Sc. Part – II Annual Exam – 2019</u>	Roll No.
Subject: S	Statistics Paper: VI (iii) [Operations Research]	Time: 3 Hrs. Marks: 100

NOTE: Attempt any FOUR questions. All questions carry equal marks.

- Q.1. a) What are the situations where operations research techniques will be applicable?
 - b) Discuss the various phases in solving an O.R problem. (12+13)
- Q.2. What do you mean by an optimal basic feasible solution to a Linear programming problem? Is the solution $x_1 = 1$, $x_2 = 1/2$, $x_3 = x_4 = x_5 = 0$, a basic solution of the equation $x_1 + 2x_2 + x_3 + x_4 = 2$ and $x_1 + 2x_2 + 1/2x_3 + x_5 = 2$ (25)
- Q.3. Explain the transportation model and solve the transportation problem by using north-west corner rule and least cost method for which the cost, origin, availabilities and destination requirements are given below:

	D ₁	D ₂	D3	D ₄	D 5	\mathbf{D}_{6}	ai
O 1	1	2	1	4	5	2	30
O ₂	3	3.	2	1	4	3	50
O ₃	4	2	5	9	6	2	75
O ₄	3	1	7	3	4	6	20
bj	20	40	30	10	50	25	20

(25)Q.4. What do you know about Network (Arrow Diagram) logic? Discuss it in detail with examples. (25)

Q.5. An aircraft company users rivets at an approximate customer rate of 2500 kg per year. The rivets cost Rs. 30 per kg and the company personnel estimate that it costs Rs.130 to place an order and the inventory carrying cost is 10% per year. How frequently should orders for rivets be placed and what quantities should be ordered? (25)

- Q.6. a) Explain the following:
 - (i) Objective of games, (ii) Saddle point, (iii) Mixed strategy, (iv) Rectangular game.
 - b) Find the solution of the following game:

(12+13)

њ. 1

- Q.7. a) A new television set arrives for inspection every 5 min and is taken by a quality control engineer on a first come first served basis. There is only one engineer on duty and it takes exactly 6 min to inspect each new set. Determine the average number of sets waiting to inspected over the first 45 min of a shift, if there are no sets awaiting inspection at the beginning of the shift.
 - b) Explain the deterministic models of queuing theory.

(13+12)

NOTE: Attempt any FOUR questions.Q.1 (a) Define the following:i. Stochastic Processii. Stationarityiii. Invertibilityiy. Portmanteau test(b) Consider the following time series of 10 observations: $\frac{t}{Y_1}$ 10 17 23 4 5 6 7 8 9 Y_1 10 17 23 27 29 30 35 33 39 i. Plot the given time series.ii. Calculate the mean and variance of Y_1 and Y_{t-1} and discuss the station mean and variance.iii. Calculate the autocorrelation at lag 1.Q.2 (a) Define the following stochastic processes:i. Moving average processii. Seasonal ARIMA model(b) Find the mean, variance and autocorrelation function of the MA(2) process gi $Y_t = Z_t + 0.7 Z_{t-1} - 0.2 Z_{t-2}$ where $\{Z_t\}$ is a purely random process having zero mean and finite variance(c) Show that for the ARMA(1,1) process $Y_t = \phi Y_{t-1} + Z_t + \theta Z_{t-1}$ $([1 + \phi A](\phi + \theta))/(1)$	(10)
Q.1 (a) Define the following: i. Stochastic Process ii. Stationarity iii. Invertibility iy. Portmanteau test (b) Consider the following time series of 10 observations: $\frac{t}{Y_t} = \frac{1}{10} \frac{2}{17} \frac{3}{23} \frac{4}{27} \frac{5}{29} \frac{6}{30} \frac{7}{35} \frac{8}{33} \frac{9}{39}$ i. Plot the given time series. ii. Calculate the mean and variance of Y _t and Y _{t-1} and discuss the station mean and variance. iii. Calculate the autocorrelation at lag 1. Q.2 (a) Define the following stochastic processes: i. Moving average process ii. Seasonal ARIMA model (b) Find the mean, variance and autocorrelation function of the MA(2) process gi $Y_t = Z_t + 0.7 Z_{t-1} - 0.2 Z_{t-2}$ where $\{Z_t\}$ is a purely random process having zero mean and finite variance. (c) Show that for the ARMA(1,1) process $Y_t = \phi Y_{t-1} + Z_t + \theta Z_{t-1}$	(10)
 i. Stochastic Process ii. Stationarity iii. Invertibility iy. Portmanteau test (b) Consider the following time series of 10 observations: t 1 2 3 4 5 6 7 8 9 i. Plot the given time series. ii. Calculate the mean and variance of Yt and Yt-1 and discuss the station mean and variance. iii. Calculate the autocorrelation at lag 1. Q.2 (a) Define the following stochastic processes: i. Moving average process ii. Seasonal ARIMA model (b) Find the mean, variance and autocorrelation function of the MA(2) process ging Yt = Zt + 0.7 Zt-1 - 0.2 Zt-2 where {Zt} is a purely random process having zero mean and finite variance. (c) Show that for the ARMA(1,1) process Yt = φYt-1 + Zt + θZt-1 ([1 + φθ)(φ + θ) ζ)	(10)
 i. Stationarity ii. Invertibility iv. Portmanteau test (b) Consider the following time series of 10 observations: t 1 2 3 4 5 6 7 8 9 i. Plot the given time series. ii. Calculate the mean and variance of Y_t and Y_{t-1} and discuss the station mean and variance. iii. Calculate the autocorrelation at lag 1. Q.2 (a) Define the following stochastic processes: i. Moving average process ii. Seasonal ARIMA model (b) Find the mean, variance and autocorrelation function of the MA(2) process girls for the following zero mean and finite variance. (c) Show that for the ARMA(1,1) process Y_t = φY_{t-1} + Z_t + θZ_{t-1} ((1 + dθ)(φ + θ) / (1 + dθ)(φ + d) / (1 + d\theta)(φ + d\theta) / (1 + d\theta)(φ + d\theta)(φ + d\theta) / (1 + d\theta)(φ + d\theta)(φ + d\theta)(φ + d\theta) / (1 + d\theta)(φ + d\theta)(φ + d\theta)(φ + d\theta)(φ + d\theta) / (1 + d\theta)(φ + d\theta)(φ + d\theta)(φ + d\theta)(φ + d\theta) / (1 + d\theta)(φ + d\theta)(φ	(10)
iv. Portmanteau test iv. Portmanteau test (b) Consider the following time series of 10 observations: $\frac{t}{Y_t} = \frac{1}{10} = \frac{2}{17} = \frac{3}{27} = \frac{4}{29} = \frac{5}{29} = \frac{6}{30} = \frac{7}{35} = \frac{8}{33} = \frac{9}{39}$ i. Plot the given time series. ii. Calculate the mean and variance of Y _t and Y _{t-1} and discuss the station mean and variance. iii. Calculate the autocorrelation at lag 1. Q.2 (a) Define the following stochastic processes: i. Moving average process ii. Seasonal ARIMA model (b) Find the mean, variance and autocorrelation function of the MA(2) process gi $Y_t = Z_t + 0.7 Z_{t-1} - 0.2 Z_{t-2}$ where $\{Z_t\}$ is a purely random process having zero mean and finite variance. (c) Show that for the ARMA(1,1) process $Y_t = \phi Y_{t-1} + Z_t + \theta Z_{t-1}$	(10)
 (b) Consider the following time series of 10 observations: t 1 2 3 4 5 6 7 8 9 Y_i 10 17 23 27 29 30 35 33 39 i. Plot the given time series. ii. Calculate the mean and variance of Y_t and Y_{t-1} and discuss the station mean and variance. iii. Calculate the autocorrelation at lag 1. Q.2 (a) Define the following stochastic processes: i. Moving average process ii. Seasonal ARIMA model (b) Find the mean, variance and autocorrelation function of the MA(2) process girst Y_t = Z_t + 0.7 Z_{t-1} - 0.2 Z_{t-2} where {Z_t} is a purely random process having zero mean and finite variance. (c) Show that for the ARMA(1,1) process Y_t = φY_{t-1} + Z_t + θZ_{t-1} 	
 t 1 2 3 4 5 6 7 8 9 Y_t 10 17 23 27 29 30 35 33 39 i. Plot the given time series. ii. Calculate the mean and variance of Y_t and Y_{t-1} and discuss the station mean and variance. iii. Calculate the autocorrelation at lag 1. Q.2 (a) Define the following stochastic processes: i. Moving average process ii. Seasonal ARIMA model (b) Find the mean, variance and autocorrelation function of the MA(2) process girls Y_t = Z_t + 0.7 Z_{t-1} - 0.2 Z_{t-2} where {Z_t} is a purely random process having zero mean and finite variance. (c) Show that for the ARMA(1,1) process Y_t = φY_{t-1} + Z_t + θZ_{t-1} 	
 Y_t 10 17 23 27 29 30 35 33 39 i. Plot the given time series. ii. Calculate the mean and variance of Y_t and Y_{t-1} and discuss the station mean and variance. iii. Calculate the autocorrelation at lag 1. Q.2 (a) Define the following stochastic processes: i. Moving average process ii. Seasonal ARIMA model (b) Find the mean, variance and autocorrelation function of the MA(2) process gives Y_t = Z_t + 0.7 Z_{t-1} - 0.2 Z_{t-2} where {Z_t} is a purely random process having zero mean and finite variance (c) Show that for the ARMA(1,1) process Y_t = φY_{t-1} + Z_t + θZ_{t-1} 	10
 i. Plot the given time series. ii. Calculate the mean and variance of Y_t and Y_{t-1} and discuss the station mean and variance. iii. Calculate the autocorrelation at lag 1. Q.2 (a) Define the following stochastic processes: i. Moving average process ii. Seasonal ARIMA model (b) Find the mean, variance and autocorrelation function of the MA(2) process gives Y_t = Z_t + 0.7 Z_{t-1} - 0.2 Z_{t-2} where {Z_t} is a purely random process having zero mean and finite variance (c) Show that for the ARMA(1,1) process Y_t = φY_{t-1} + Z_t + θZ_{t-1} 	42
 ii. Calculate the mean and variance of Y_t and Y_{t-1} and discuss the station mean and variance. iii. Calculate the autocorrelation at lag 1. Q.2 (a) Define the following stochastic processes: i. Moving average process ii. Seasonal ARIMA model (b) Find the mean, variance and autocorrelation function of the MA(2) process girls a purely random process having zero mean and finite variance (c) Show that for the ARMA(1,1) process Y_t = φY_{t-1} + Z_t + θZ_{t-1} 	
mean and variance. iii. Calculate the autocorrelation at lag 1. Q.2 (a) Define the following stochastic processes: i. Moving average process ii. Seasonal ARIMA model (b) Find the mean, variance and autocorrelation function of the MA(2) process gi $Y_t = Z_t + 0.7 Z_{t-1} - 0.2 Z_{t-2}$ where $\{Z_t\}$ is a purely random process having zero mean and finite variance (c) Show that for the ARMA(1,1) process $Y_t = \phi Y_{t-1} + Z_t + \theta Z_{t-1}$ $((1 + \phi \theta))(\phi + \theta))(f(t))$	arity of
 Q.2 (a) Define the following stochastic processes: Moving average process Seasonal ARIMA model (b) Find the mean, variance and autocorrelation function of the MA(2) process gives the state of the term of the mean, variance and autocorrelation function of the MA(2) process gives the term of term of the term of term of the term of term o	
 Q.2 (a) Define the following stochastic processes: Moving average process Seasonal ARIMA model (b) Find the mean, variance and autocorrelation function of the MA(2) process ging Y_t = Z_t + 0.7 Z_{t-1} - 0.2 Z_{t-2} where {Z_t} is a purely random process having zero mean and finite variance (c) Show that for the ARMA(1,1) process Y_t = φY_{t-1} + Z_t + θZ_{t-1} 	(15)
(b) Find the mean, variance and autocorrelation function of the MA(2) process given $Y_t = Z_t + 0.7 Z_{t-1} - 0.2 Z_{t-2}$ where $\{Z_t\}$ is a purely random process having zero mean and finite variance (c) Show that for the ARMA(1,1) process $Y_t = \phi Y_{t-1} + Z_t + \theta Z_{t-1}$	
 (b) Find the mean, variance and autocorrelation function of the MA(2) process gins Y_t = Z_t + 0.7 Z_{t-1} - 0.2 Z_{t-2} where {Z_t} is a purely random process having zero mean and finite variance (c) Show that for the ARMA(1,1) process Y_t = φY_{t-1} + Z_t + θZ_{t-1} 	(4)
$Y_t = Z_t + 0.7 Z_{t-1} - 0.2 Z_{t-2}$ where {Z _t } is a purely random process having zero mean and finite variance (c) Show that for the ARMA(1,1) process $Y_t = \phi Y_{t-1} + Z_t + \theta Z_{t-1}$ $((1 + \phi \theta))/(t)$	ven by
(c) Show that for the ARMA(1,1) process $Y_t = \phi Y_{t-1} + Z_t + \theta Z_{t-1}$ $(1 + \phi \theta) \phi + \theta) f(t) = 0$	(12)
$\left[\left(1+d\theta\right)/d+\theta\right)/d\theta$	(12)
$\rho_k = \begin{cases} c & r & r & r & r & r & r & r & r & r &$	
$\phi \rho_{k-1} \qquad \qquad k=2,3,\cdots$	(9)
0.3 (a) Define the autoregressive process. Find the mean variance autocorrelation for	
and partial autocorrelation function of an AR(1) process. Discuss the behavior	of
(b) Derive the stationarity conditions on the normal (c) (c)	(12)
(c) Show that for an AR(p) process $Y_r = \sum_{i=1}^{p} O_i Y_{r-i} + Z_r$	(8)
$\gamma_1 \gamma_1 \gamma_2 \gamma_1 \gamma_1 \gamma_1 \gamma_1 \gamma_2 \gamma_1 \gamma_1 \gamma_2 \gamma_1 \gamma_1 \gamma_1 \gamma_1 \gamma_1 \gamma_1 \gamma_1 \gamma_1 \gamma_1 \gamma_1$	
$\sigma_{\bar{Y}} = \frac{1}{1 - \sum_{i=1}^{p} \varphi_i \rho_i}$	
Where ρ_k is the autocorrelation at lag k.	(5)
Q.4 (a) Describe the principle of parsimony. Mixed ARMA models are generally	
parsimonious then AR and MA models, discuss.	(5)
(b) Consider the AR(2) process given by	
$Y_t = Y_{t-1} - \frac{1}{2}Y_{t-2} + Z_t$	
where Z_i is a purely random process with zero mean and finite variance. She	w that
(πk)	w mat
$ \rho_k = (\sqrt{2}) \left(\cos \frac{\pi n}{4} + \frac{\pi}{3} \sin \frac{\pi n}{4} \right); k = 0, 1, 2, \dots $	(12)
	(12)
(c) For each of the following model, determine whether the model is stationary an invertible ⁴	l/or
i. $Y_{i} = 0.3Y_{i} + Z_{i}$	194
ii. $Y_{t} = 0.5Y_{t} + Z_{t} - 1.3Z_{t} + 0.4Z_{t}$	
	(8) P.T.O.

Describe how autocorrelation function and partial autocorrelation function of a Q.5 (a) sample time series are helpful in identifying the process which possibly has generated (6) the observed time series. Describe the iterative procedure of obtaining the least squares estimates of an MA(1) (b) process with non-zero mean. Suggest some method for selection of appropriate (12) starting values of least square estimate. Derive the Yule-Walker estimates of an AR(2) process; $Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + Z_t$. (7) (c) Given the following AR(2) process Q.6 (a) $Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + Z_t$ Derive the loss function for the Maximum likelihood estimation of AR parameters. (15) Also obtain the MLEs (approximate) of ϕ_1, ϕ_2 and σ_z^2 . An AR(1) model is fitted to an observed sample time series $\{Y_t\}_{t=1}^{50}$ of 50 observations (b) and the following residuals autocorrelations are calculated. 10 8 9 0.05 0.02 -0.04 0.01 Test the goodness of fit for AR(1) model using Ljung-Box portmanteau (Q_m^*) test (10) with maximum lags in test m = 5. A. Show that for an AR(1) process $Y_t = \phi Y_{t-1} + z_t$, for an observed time series $\{Y_t\}_{t=1}^n$ the Q.7 (a) minimum mean squared error forecast of Y_{n+l} with origin at n and lead time l is given by $Y_n(l) = \phi^l Y_n \, .$ Also show that i. $Y_n(l)$ is an unbiased estimate of Y_{n+l} . $Var(e_n(l)) = \sigma_z^2 \left(\frac{1-\phi^{2l}}{1-\phi^2}\right)$, where $e_n(l)$ is the forecast error. (15) ii. (b) An AR(1) model is fitted to an observed time series $\{Y_t\}_{t=1}^{100}$. Given the following model $Y_{t} = \mu (1 - \phi) + \phi Y_{t-1} + z_{t},$ where $\hat{\mu}=65$, $\hat{\phi}=0.7$. Find the forecasts of Y_{100+l} : l=1,2 and the 95% forecast limits when $\sigma_z^2 = 5$, $Y_{100} = 62.6$. (10)

UNIVERSITY OF THE PUNJAB

M.A./M.Sc. Part – II Annual Exam – 2019

Subject: Statistics

Paper: VII (ii) [Multivariate Analysis]

Roll No. Time: 3 Hrs. Marks: 100

NOTE: Attempt any FOUR questions.

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1	For the data matrix	
Qr.Calculate the sample mean, variances and covariances of the linear complications $b^T X$ and $c^T X$ where(25) $b^T X = [2 \ 2 \ -1][X_1 \ X_2 \ X_3]^T$, $c^T X = [1 \ -1 \ 3][X_1 \ X_2 \ X_3]^T$.(25)Q2. $c^T X = [1 \ -1 \ 3][X_1 \ X_2 \ X_3]^T$.(25)Q3.If a random sample of size n is taken from a multivariate normal population of random vector x of order $(p \times 1)$ with mean μ and covariance matrix Σ . Find the maximum likelihood estimators of μ and Σ .(25)The sample mean and covariance matrix of a sample of 42 observations drawn from a multivariate normal distribution are, $\bar{X} = \begin{bmatrix} 0.564 \\ 0.603 \end{bmatrix}$, $S = \begin{bmatrix} 0.0144 \ 0.0117 \\ 0.0117 \ 0.0146 \end{bmatrix}$ (10+6+9)Q3.(i) Obtain 95% confidence ellipsoid for μ and use this to test the hypothesis $\mu_{\alpha}^{-1} = [9, 5]$.(ii) Calculate 95% simultaneous T^2 confidence intervals for μ_1 and μ_2 .Q4. $\Sigma = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ (25)Carryout principal component analysis for Σ . Calculate percentage of explained variation by each principal component.(25)Q5. $\lambda_2 = [X, X_2,, X_2]$ have covariance matrix Σ with eigen value and eigen vectors pairs (λ_1, e_1) for $i = 1, 2,, p$. Let $Y_i = e^T_i$ be the if principal component. Show that $\sum_{i=1}^{r} Var(X_i) = \sum_{i=1}^{r} Var(Y_i)$.(3+17)Q5. $\lambda_2 = 0.36$, -0.32 , -0.36 , -0.34 , -0.33 , -0.35 , -0.35]?(3+17) $\lambda_3 = 0.66$, $c_1 = [-0.52, -0.06, 0.03, -0.43, -0.33, -0.45]?(3+17)\lambda_5 = 0.67, c_5 = [-0.52, -0.06, 0.03, -0.06]?\lambda_5 = 0.67, c_5 = (-0.57, -0.47, -0.37, 0.33, -0.56]?Q6.\tilde{X}_1 = \begin{bmatrix} 0.213 \\ 333 \end{bmatrix}, S_2 = \begin{bmatrix} 1.313 \\ 0.221 \\ 0.321 \\ 0.321 \\ 0.337 \end{bmatrix}(25)$		$\mathbf{X} = \begin{bmatrix} 1 & 2 & 5 \\ 4 & 1 & 6 \\ 4 & 0 & 4 \end{bmatrix}$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	QF.	Calculate the sample mean, variances and covariances of the linear combinations $b^T X$ and $c^T X$ where	(25)
$ \begin{array}{c} c^{T}X = [1 \ -1 \ 3][X_{1} \ X_{2} \ X_{3}]^{2}. \end{array} \\ \hline \\$		$b^T X = [2 \ 2 \ -1] [X_1 \ X_2 \ X_3]^T,$	
Q2.If a random sample of size n is taken from a multivariate normal population of random vector x of order $(p \times 1)$ with mean μ and covariance matrix Σ . Find the maximum likelihood estimators of μ and Σ .(25)The sample mean and covariance matrix of a sample of 42 observations drawn from a multivariate normal distribution are, $\bar{X} = \begin{bmatrix} 0.564 \\ 0.603 \end{bmatrix}$, $S = \begin{bmatrix} 0.0144 & 0.0117 \\ 0.0117 & 0.0146 \end{bmatrix}$ (10+6+9)Q3.(i) Obtain 95% confidence ellipsoid for μ and use this to test the hypothesis $\mu_{\nu}^{T} = [9, 5]$.(10+6+9)(ii) Calculate 95% simultaneous T^{2} confidence intervals for μ_{1} and μ_{2} .(10+6+9)(iii) Calculate 95% observations gradent from the results obtained in (ii). $\Sigma = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ (25)Q4. $\Sigma = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ (25)(iii) Calculate 95% bonferroni simultaneous confidence intervals for μ_{1} and μ_{2} and compare them with the results obtained in (ii).(26)Q4. $\Sigma = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ (25)(iii) Let $X = [X_{1}, X_{2},, X_{p}]$ have covariance matrix Σ with eigen value and eigen vector pairs (λ_{1}, e_{i}) for $i = 1, 2,, p$. Let $Y_{i} = e^{T} k$ be the ith principal component. Show that $\sum_{i=1}^{p-1} Var(X_{i}) = \sum_{i=1}^{p-1} Var(Y_{i})$.(8+17)(jii) The eigen values and eigen vectors of a correlation matrix are $\lambda_{1} = 1.73$, $e_{1} = [-0.51, -0.32, -0.34, -0.37, -0.38]^{T}$ (8+17) $\lambda_{3} = 0.96$, $e_{3} = [0.52, -0.36, 0.08, 0.02, -0.77, 0.01]^{T}$ $\lambda_{2} = 0.67, -0.67, -0.68, -0.40 = 0.26, 0.73, -0.60]^{T}$ $\lambda_{3} = 0.67, e_{3} = [-0.57, -0.11, -0.32, -0.33, -0.32]^{T}$ $\lambda_{2} = 0.54$, $e_{3} = [-0.57, -0.14, -0.37, 0.33, -0.60, -0.01]^{T}$ <		$c^T X = [1 \ -1 \ 3] [X_1 \ X_2 \ X_3]^T.$	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Q2.	If a random sample of size n is taken from a multivariate normal population of random vector \mathbf{x} of order $(p \times 1)$ with mean $\boldsymbol{\mu}$ and covariance matrix Σ . Find the maximum likelihood estimators of $\boldsymbol{\mu}$ and Σ .	(25)
$\begin{split} \bar{\mathbf{X}} &= \begin{bmatrix} 0.564\\ 0.603 \end{bmatrix}, \mathbf{S} &= \begin{bmatrix} 0.0144 & 0.0117\\ 0.0117 & 0.0146 \end{bmatrix} \\ \text{(i) Obtain 95\% confidence ellipsoid for μ and use this to test the hypothesis $\mu_0^T &= [9, 5]$. \\ \text{(ii) Calculate 95\% simultaneous T^2 confidence intervals for μ_1 and μ_2 and compare them with the results obtained in (ii). \\ \text{(iii) Calculate 95\% Bonferroni simultaneous confidence intervals for μ_1 and μ_2 and compare them with the results obtained in (ii). \\ \text{Q4.} \qquad \qquad \mathbf{\Sigma} = \begin{bmatrix} 1 & -2 & 0\\ -2 & 5 & 0\\ 0 & 0 & 2 \end{bmatrix} \\ \text{Carryout principal component manalysis for Σ. Calculate percentage of explained variation by each principal component. Show that \sum_{i=1}^{p} Var(X_i) = \sum_{i=1}^{r} 0.65, 0.23, -0.47, -0.33, -0.52]^T \\ \lambda_2 = 1.34, e_2 = [0.52, -0.7, -0.68, -0.46, 0.23, -0.06]^T \\ \lambda_3 = 0.96, e_3 = [-0.36, -0.47, -0.37, 0.13, -0.48]^T \\ \lambda_5 = 0.67, e_5 = [-0.36, -0.47, -0.37, 0.13, -0.48]^T \\ \lambda_5 = 0.67, e_5 = [-0.36, -0.47, -0.37, 0.13, -0.48]^T \\ \lambda_5 = 0.67, e_5 = [-0.36, -0.47, -0.37, 0.13, -0.48]^T \\ \lambda_5 = 0.67, e_5 = [-0.36, -0.47, -0.37, 0.13, -0.48]^T \\ \lambda_5 = 0.67, e_5 = [-0.36, -0.47, -0.37, 0.13, -0.48]^T \\ \lambda_5 = 0.67, e_5 = [-0.36, -0.47, -0.37, 0.13, -0.48]^T \\ \lambda_5 = 0.67, e_5 = [-0.36, -0.47, -0.37, 0.13, -0.48]^T \\ \lambda_5 = 0.67, e_5 = [-0.36, -0.47, -0.37, 0.13, -0.48]^T \\ \lambda_5 = 0.67, e_5 = [-0.36, -0.47, -0.37, 0.13, -0.48]^T \\ \lambda_5 = 0.67, e_5 = [-0.36, -0.47, -0.37, 0.13, -0.48]^T \\ \lambda_5 = 0.67, e_5 = [-0.36, -0.47, -0.37, 0.13, -0.48]^T \\ \lambda_5 = 0.67, e_5 = [-0.36, -0.47, -0.37, 0.13, -0.48]^T \\ \lambda_5 = 0.67, e_5 = [-0.36, -0.47, -0.37, 0.13, -0.48]^T \\ \lambda_5 = 0.67, e_5 = [-0.36, -0.47, -0.37, 0.13, -0.48]^T \\ \lambda_5 = 0.67, e_5 = [-0.36, -0.47, -0.37, 0.13, -0.48]^T \\ \lambda_5 = 0.67, e_5 = [-0.36, -0.47, -0.37, 0.13, -0.48]^T \\ \lambda_5 = 0.67, e_5 = [-0.36, -0.47, -0.37, 0.13, -0.48]^T \\ \lambda_5 = 0.67, e_5 = [-0.36, -0.47,$		The sample mean and covariance matrix of a sample of 42 observations drawn from a multivariate normal distribution are,	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		$ar{oldsymbol{X}} = egin{bmatrix} 0.564 \ 0.603 \end{bmatrix}$, $oldsymbol{S} = egin{bmatrix} 0.0144 & 0.0117 \ 0.0117 & 0.0146 \end{bmatrix}$	
(ii) Calculate 95% simultaneous T^2 confidence intervals for μ_1 and μ_2 . (iii) Calculate 95% Bonferroni simultaneous confidence intervals for μ_1 and μ_2 and compare them with the results obtained in (ii). $\Sigma = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ (25) Carryout principal component analysis for Σ . Calculate percentage of explained variation by each principal component. (i) Let $\mathbf{X} = [X_1, X_2,, X_p]$ have covariance matrix Σ with eigen value and eigen vector pairs (λ_i, e_i) for $i = 1, 2,, p$. Let $Y_i =$ $e_i^T \mathbf{x}$ be the ith principal component. Show that $\sum_{i=1}^r Var(X_i) =$ $\sum_{i=1}^r Var(Y_i)$. (ii) The eigen values and eigen vectors of a correlation matrix are $\lambda_1 = 1.73$, $e_1 = [-0.11, 0.58, 0.23, -0.47, -0.33, -0.52]^T$ $\lambda_2 = 1.34$, $e_2 = [0.52, 0.07, -0.68, -0.46, 0.23, -0.06]^T$ $\lambda_3 = 0.96$, $e_3 = [0.52, -0.36, 0.08, 0.02, -0.77, 0.01]^T$ $\lambda_5 = 0.67$, $e_3 = [-0.57, -0.11, -0.32, -0.43, -0.37, 0.48]^T$ $\lambda_5 = 0.67$, $e_5 = [-0.04, -0.55, 0.49, -0.60, 0.31, -0.05]^T$ $\lambda_6 = 0.44$, $e_5 = [0.04, -0.55, 0.49, -0.60, 0.31, -0.05]^T$ $\lambda_5 = 0.67$, $e_5 = [-0.4, -0.55, 0.49, -0.60, 0.31, -0.05]^T$ Assuming two-factor model, calculate loadings and specific vari- ances using the principal component solution method. What pro- portion of total variation is explained by the first two common factors? Q6. $\overline{X}_1 = \begin{bmatrix} 6.213\\ 3.133 \end{bmatrix}$, $S_1 = \begin{bmatrix} 1.813 & 0.321\\ 0.321 & 0.937 \end{bmatrix}$ $\overline{X}_2 = \begin{bmatrix} 7.412\\ 5.321 \end{bmatrix}$, $S_2 = \begin{bmatrix} 2.193 & 1.654\\ 1.654 & 3.789 \end{bmatrix}$ Allocate the new observation $x_0^T = [7.2, 3.1]$ to one of these popula- tions. Q7. Derive the canonical correlations and canonical variables. (25)	Q3.	(i) Obtain 95% confidence ellipsoid for μ and use this to test the hypothesis $\mu_o^T = [9, 5]$.	(10+6+9)
(iii) Calculate 95% Bonferroni simultaneous confidence intervals for μ_1 and μ_2 and compare them with the results obtained in (ii). $\Sigma = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ (25) Carryout principal component analysis for Σ . Calculate percentage of explained variation by each principal component. (i) Let $X = [X_1, X_2,, X_p]$ have covariance matrix Σ with eigen value and eigen vector pairs (λ_i, e_i) for $i = 1, 2,, p$. Let $Y_i = e_i^T x$ be the ith principal component. Show that $\sum_{i=1}^{p} Var(X_i) = \sum_{i=1}^{p} Var(Y_i)$. (ii) The eigen values and eigen vectors of a correlation matrix are $\lambda_1 = 1.73$, $e_1 = [-0.11, 0.58, 0.23, -0.47, -0.33, -0.52]^T$ $\lambda_2 = 1.34$, $e_2 = [0.52, 0.07, -0.68, -0.46, 0.23, -0.06]^T$ $\lambda_3 = 0.96$, $e_3 = [0.52, -0.36, 0.08, 0.02, -0.77, 0.01]^T$ $\lambda_5 = 0.67$, $e_5 = [-0.36, -0.47, -0.37, 0.13, -0.06]^T$ $\lambda_5 = 0.67$, $e_5 = [0.04, -0.55, 0.49, -0.60, 0.31, -0.05]^T$ Assuming two-factor model, calculate loadings and specific vari- ances using the principal component solution method. What pro- portion of total variation is explained by the first two common factors? The following mean vector and covariance matrices are based on $n_1 = n_2 = 100$ observations drawn from multivariate normal populations with equal covariance matrices. $\overline{X}_1 = \begin{bmatrix} 6.213\\ 3.133 \end{bmatrix}$, $S_1 = \begin{bmatrix} 1.813 & 0.321\\ 0.321 & 0.937 \end{bmatrix}$ (25) $\overline{X}_2 = \begin{bmatrix} 7.412\\ 5.321 \end{bmatrix}$, $S_2 = \begin{bmatrix} 2.193 & 1.654\\ 1.654 & 3.789 \end{bmatrix}$ Allocate the new observation $x_0^T = [7, 2, 3.1]$ to one of these popula- tions. (27) Derive the canonical correlations and canonical variables. (25)		(ii) Calculate 95% simultaneous T^2 confidence intervals for μ_1 and μ_2 .	
Q4. $\Sigma = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ (25)Carryout principal component analysis for Σ . Calculate percentage of explained variation by each principal component.(i) Let $X = [X_1, X_2,, X_p]$ have covariance matrix Σ with eigen value and eigen vector pairs (λ_i, e_i) for $i = 1, 2,, p$. Let $Y_i = e_i^T x$ be the ith principal component. Show that $\sum_{i=1}^p Var(X_i) = \sum_{i=1}^p Var(Y_i)$.(ii) The eigen values and eigen vectors of a correlation matrix are $\lambda_1 = 1.73$, $e_1 = [-0.11, 0.58, 0.23, -0.47, -0.33, -0.52]^T$ $\lambda_2 = 1.34$, $e_2 = [0.52, 0.07, -0.68, -0.46, 0.23, -0.06]^T$ $\lambda_3 = 0.96$, $e_3 = [0.52, -0.36, 0.08, 0.02, -0.77, 0.01]^T$ $\lambda_4 = 0.86$, $e_4 = [-0.57, -0.11, -0.32, -0.43, -0.37, 0.48]^T$ $\lambda_5 = 0.67$, $e_5 = [-0.36, -0.47, -0.37, 0.13, -0.06, -0.70]^T$ $\lambda_6 = 0.44$, $e_5 = [0.04, -0.55, 0.49, -0.60, 0.31, -0.05]^T$ Assuming two-factor model, calculate loadings and specific variances using the principal component solution method. What proportion of total variation is explained by the first two common factors?Q6. $\overline{X}_1 = \begin{bmatrix} 6.213\\ 3.133 \end{bmatrix}$, $S_1 = \begin{bmatrix} 1.813 & 0.321\\ 0.321 & 0.937 \end{bmatrix}$ Q6. $\overline{X}_2 = \begin{bmatrix} 7.412\\ 5.321 \end{bmatrix}$; $S_2 = \begin{bmatrix} 2.193 & 1.654\\ 1.654 & 3.789 \end{bmatrix}$ Allocate the new observation $x_0^T = [7.2, 3.1]$ to one of these populations.Q7.Q7.Derive the canonical correlations and canonical variables.		(iii) Calculate 95% Bonferroni simultaneous confidence intervals for μ_1 and μ_2 and compare them with the results obtained in (ii).	
Carryout principal component analysis for Σ . Calculate percentage of explained variation by each principal component. (i) Let $X = [X_1, X_2,, X_p]$ have covariance matrix Σ with eigen value and eigen vector pairs (λ_i, e_i) for $i = 1, 2,, p$. Let $Y_i = e_i^T x$ be the ith principal component. Show that $\sum_{i=1}^p Var(X_i) = \sum_{i=1}^p Var(Y_i)$. (ii) The eigen values and eigen vectors of a correlation matrix are $\lambda_1 = 1.73$, $e_1 = [-0.11, 0.58, 0.23, -0.47, -0.33, -0.52]^T$ $\lambda_2 = 1.34$, $e_2 = [0.52, 0.07, -0.68, -0.46, 0.23, -0.06]^T$ $\lambda_3 = 0.96$, $e_3 = [0.52, -0.36, 0.08, 0.02, -0.77, 0.01]^T$ $\lambda_4 = 0.86$, $e_4 = [-0.57, -0.11, -0.32, -0.43, -0.37, 0.48]^T$ $\lambda_5 = 0.67$, $e_5 = [-0.36, -0.47, -0.37, 0.13, -0.06, -0.70]^T$ $\lambda_6 = 0.44$, $e_5 = [0.04, -0.55, 0.49, -0.60, 0.31, -0.05]^T$ Assuming two-factor model, calculate loadings and specific vari- ances using the principal component solution method. What pro- portion of total variation is explained by the first two common factors? The following mean vector and covariance matrices are based on $n_1 = n_2 = 100$ observations drawn from multivariate normal populations with equal covariance matrices. Q6. $\vec{X}_1 = \begin{bmatrix} 6.213\\ 3.133 \end{bmatrix}$, $S_1 = \begin{bmatrix} 1.813 & 0.321\\ 0.321 & 0.937 \end{bmatrix}$ (25) $\vec{X}_2 = \begin{bmatrix} 7.412\\ 5.321 \end{bmatrix}$, $S_2 = \begin{bmatrix} 2.193 & 1.654\\ 1.654 & 3.789 \end{bmatrix}$ Allocate the new observation $x_0^T = [7.2, 3.1]$ to one of these popula- tions. Q7. Derive the canonical correlations and canonical variables. (25)	Q4.	$\Sigma = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$	(25)
(i) Let $X = [X_1, X_2,, X_p]$ have covariance matrix Σ with eigen value and eigen vector pairs (λ_i, e_i) for $i = 1, 2,, p$. Let $Y_i = e_i^T x$ be the ith principal component. Show that $\sum_{i=1}^{p} Var(X_i) = \sum_{i=1}^{p} Var(Y_i)$. (ii) The eigen values and eigen vectors of a correlation matrix are $\lambda_1 = 1.73$, $e_1 = [-0.11, 0.58, 0.23, -0.47, -0.33, -0.52]^T$ $\lambda_2 = 1.34$, $e_2 = [0.52, 0.07, -0.68, -0.46, 0.23, -0.06]^T$ $\lambda_3 = 0.96$, $e_3 = [0.52, -0.36, 0.08, 0.02, -0.77, 0.01]^T$ $\lambda_4 = 0.86$, $e_4 = [-0.57, -0.11, -0.32, -0.43, -0.37, 0.48]^T$ $\lambda_5 = 0.67$, $e_5 = [-0.36, -0.47, -0.37, 0.13, -0.06, -0.70]^T$ $\lambda_5 = 0.44$, $e_5 = [0.04, -0.55, 0.49, -0.60, 0.31, -0.05]^T$ Assuming two-factor model, calculate loadings and specific variances using the principal component solution method. What proportion of total variation is explained by the first two common factors? The following mean vector and covariance matrices are based on $n_1 = n_2 = -100$ observations drawn from multivariate normal populations with equal covariance matrices. Q6. $\overline{X}_1 = \begin{bmatrix} 6.213\\ 3.133 \end{bmatrix}$, $S_1 = \begin{bmatrix} 1.813 & 0.321\\ 0.321 & 0.937 \end{bmatrix}$ (25) $\overline{X}_2 = \begin{bmatrix} 7.412\\ 5.321 \end{bmatrix}$, $S_2 = \begin{bmatrix} 2.193 & 1.654\\ 1.654 & 3.789 \end{bmatrix}$ Allocate the new observation $x_0^T = [7.2, 3.1]$ to one of these populations. Q7. Derive the canonical correlations and canonical variables. (25)		explained variation by each principal component.	· · · · · · · · · · · · · · · · · · ·
$ \begin{array}{c} (ii) \mbox{ The eigen values and eigen vectors of a correlation matrix are} \\ \lambda_1 = 1.73 , e_1 = [-0.11, 0.58, 0.23, -0.47, -0.33, -0.52]^T \\ \lambda_2 = 1.34 , e_2 = [0.52, 0.07, -0.68, -0.46, 0.23, -0.06]^T \\ \lambda_3 = 0.96 , e_3 = [0.52, -0.36, 0.08, 0.02, -0.77, 0.01]^T \\ \lambda_4 = 0.86 , e_4 = [-0.57, -0.11, -0.32, -0.43, -0.37, 0.48]^T \\ \lambda_5 = 0.67 , e_5 = [-0.36, -0.47, -0.37, 0.13, -0.06, -0.70]^T \\ \lambda_6 = 0.44 , e_5 = [0.04, -0.55, 0.49, -0.60, 0.31, -0.05]^T \\ Assuming two-factor model, calculate loadings and specific variances using the principal component solution method. What proportion of total variation is explained by the first two common factors? \\ \hline The following mean vector and covariance matrices are based on n_1 = n_2 = 100 observations drawn from multivariate normal populations with equal covariance matrices.\bar{X}_1 = \begin{bmatrix} 6.213 \\ 3.133 \end{bmatrix}, S_1 = \begin{bmatrix} 1.813 & 0.321 \\ 0.321 & 0.937 \end{bmatrix} (25)\bar{X}_2 = \begin{bmatrix} 7.412 \\ 5.321 \end{bmatrix}, S_2 = \begin{bmatrix} 2.193 & 1.654 \\ 1.654 & 3.789 \end{bmatrix} Allocate the new observation x_0^T = [7.2, 3.1] to one of these populations.Q7. Derive the canonical correlations and canonical variables. (25)$		(i) Let $\boldsymbol{X} = [X_1, X_2,, X_p]$ have covariance matrix $\boldsymbol{\Sigma}$ with eigen value and eigen vector pairs $(\lambda_i, \boldsymbol{e}_i)$ for $i = 1, 2,, p$. Let $Y_i = \boldsymbol{e}_i^T \boldsymbol{x}$ be the ith principal component. Show that $\sum_{i=1}^p Var(X_i) = \sum_{i=1}^p Var(Y_i)$.	
The following mean vector and covariance matrices are based on $n_1 = n_2 = 100$ observations drawn from multivariate normal populations with equal covariance matrices. $\bar{X}_1 = \begin{bmatrix} 6.213 \\ 3.133 \end{bmatrix}$, $S_1 = \begin{bmatrix} 1.813 & 0.321 \\ 0.321 & 0.937 \end{bmatrix}$ (25)Q6. $\bar{X}_2 = \begin{bmatrix} 7.412 \\ 5.321 \end{bmatrix}$, $S_2 = \begin{bmatrix} 2.193 & 1.654 \\ 1.654 & 3.789 \end{bmatrix}$ (25)Allocate the new observation $x_0^T = [7.2, 3.1]$ to one of these populations.(25)Q7.Derive the canonical correlations and canonical variables.(25)	Q5.	(ii) The eigen values and eigen vectors of a correlation matrix are $\lambda_1 = 1.73$, $e_1 = [-0.11, 0.58, 0.23, -0.47, -0.33, -0.52]^T$ $\lambda_2 = 1.34$, $e_2 = [0.52, 0.07, -0.68, -0.46, 0.23, -0.06]^T$ $\lambda_3 = 0.96$, $e_3 = [0.52, -0.36, 0.08, 0.02, -0.77, 0.01]^T$ $\lambda_4 = 0.86$, $e_4 = [-0.57, -0.11, -0.32, -0.43, -0.37, 0.48]^T$ $\lambda_5 = 0.67$, $e_5 = [-0.36, -0.47, -0.37, 0.13, -0.06, -0.70]^T$ $\lambda_6 = 0.44$, $e_6 = [0.04, -0.55, 0.49, -0.60, 0.31, -0.05]^T$ Assuming two-factor model, calculate loadings and specific variances using the principal component solution method. What proportion of total variation is explained by the first two common factors?	(8+17)
Q6. $ \bar{X}_{1} = \begin{bmatrix} 6.213\\ 3.133 \end{bmatrix}, S_{1} = \begin{bmatrix} 1.813 & 0.321\\ 0.321 & 0.937 \end{bmatrix} $ (25) $ \bar{X}_{2} = \begin{bmatrix} 7.412\\ 5.321 \end{bmatrix}, S_{2} = \begin{bmatrix} 2.193 & 1.654\\ 1.654 & 3.789 \end{bmatrix} $ Allocate the new observation $x_{0}^{T} = [7.2, 3.1]$ to one of these populations. Q7. Derive the canonical correlations and canonical variables. (25)		The following mean vector and covariance matrices are based on $n_1 = n_2 = 100$ observations drawn from multivariate normal populations with equal covariance matrices.	
$\bar{\boldsymbol{X}}_{2} = \begin{bmatrix} 7.412 \\ 5.321 \end{bmatrix}, \boldsymbol{S}_{2} = \begin{bmatrix} 2.193 & 1.654 \\ 1.654 & 3.789 \end{bmatrix}$ Allocate the new observation $\boldsymbol{x}_{0}^{T} = [7.2, 3.1]$ to one of these populations. Q7. Derive the canonical correlations and canonical variables. (25)	Q6.	$ar{m{X}}_1 = egin{bmatrix} 6.213 \ 3.133 \end{bmatrix}, \ \ m{S}_1 = egin{bmatrix} 1.813 & 0.321 \ 0.321 & 0.937 \end{bmatrix}$	(25)
Allocate the new observation $x_0^T = [7.2, 3.1]$ to one of these populations.Q7. Derive the canonical correlations and canonical variables.(25)		$\bar{X}_2 = \begin{bmatrix} 7.412 \\ 5.321 \end{bmatrix}, S_2 = \begin{bmatrix} 2.193 & 1.654 \\ 1.654 & 3.789 \end{bmatrix}$	
Q7. Derive the canonical correlations and canonical variables. (25)		Allocate the new observation $x_0^T = [7.2, 3.1]$ to one of these populations.	
	Q7.	Derive the canonical correlations and canonical variables.	(25)