SYLLABUS FOR 4 YEAR B.S. MATHEMATICS  
(SEMESTER SYSTEM PROGRAMME)

Combination I
MATHEMATICS-A, MATHEMATICS-B, PHYSICS

Duration of Programme: 4Years (Eight Semesters)
Requirement: F.Sc./ICS/General Science (with Maths and Stats.)
F.Sc./ICS (with Maths and Physics.)
Medium of instructions: English
Credit Hours: 76+66=142

<table>
<thead>
<tr>
<th>B.S. Mathematics Semester I</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ISE-111 Islamiat / Ethics</td>
<td>2 cr.</td>
</tr>
<tr>
<td>ENG-111 English-I (Language in Use)</td>
<td>3 cr.</td>
</tr>
<tr>
<td>COMP-111 Computer (Introduction and Applications)</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-101 Mathematics A-I [Calculus (I)]</td>
<td>4 cr.</td>
</tr>
<tr>
<td>MATH-102 Mathematics B-I [Vectors &amp; Mechanics (I)]</td>
<td>4 cr.</td>
</tr>
<tr>
<td>PHY-111 Physics-I</td>
<td>3 cr.</td>
</tr>
<tr>
<td>PHY -112 Physics Lab-I</td>
<td>1 cr.</td>
</tr>
<tr>
<td><strong>Total</strong>= 20 cr.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.S. Mathematics Semester II</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PST-111 Pakistan Studies</td>
<td>2 cr.</td>
</tr>
<tr>
<td>ENG-112 English-II (Academic Reading and Writing)</td>
<td>3 cr.</td>
</tr>
<tr>
<td>PHY -113 Physics -II</td>
<td>3 cr.</td>
</tr>
<tr>
<td>PHY -114 Physics Lab-II</td>
<td>1 cr.</td>
</tr>
<tr>
<td>MATH-104 Mathematics B-II [Mechanics (II)]</td>
<td>4 cr.</td>
</tr>
<tr>
<td>MATH-105 Discrete Mathematics</td>
<td>2 cr.</td>
</tr>
<tr>
<td><strong>Total</strong>= 19 cr.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.S. Mathematics Semester III</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG-211 English-III (Communication Skills)</td>
<td>3 cr.</td>
</tr>
<tr>
<td>PHY -211 Physics -III</td>
<td>3 cr.</td>
</tr>
<tr>
<td>PHY -212 Physics Lab-III</td>
<td>1 cr.</td>
</tr>
<tr>
<td>MATH-202 Mathematics B-III [Calculus (II)]</td>
<td>4 cr.</td>
</tr>
<tr>
<td>MATH-205 Graph Theory</td>
<td>2 cr.</td>
</tr>
<tr>
<td><strong>Total</strong>= 17 cr.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.S. Mathematics Semester IV</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG-212 English-IV (English for Practical Aims)</td>
<td>3 cr.</td>
</tr>
<tr>
<td>PHY -213 Physics -IV</td>
<td>3 cr.</td>
</tr>
<tr>
<td>PHY -214 Physics Lab-IV</td>
<td>1 cr.</td>
</tr>
<tr>
<td>MATH-204 Mathematics B-IV [Metric Spaces &amp; Group Theory]</td>
<td>4 cr.</td>
</tr>
<tr>
<td>SOC-211 Introduction to Sociology</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-206 Elementary Number Theory</td>
<td>2 cr.</td>
</tr>
<tr>
<td><strong>Total</strong>= 20 cr.</td>
<td></td>
</tr>
</tbody>
</table>
Combination II  
MATHEMATICS-A, MATHEMATICS-B, STATISTICS

Duration of Programme: 4 Years (Eight Semesters)  
Requirement: F.Sc./ICS/General Science (with Maths and Stats.)  
F.Sc./ICS (with Maths and Physics.)  
Medium of instructions: English  
Credit Hours: 76+66=142

**B.S. Mathematics Semester I**

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISE-111</td>
<td>Islamiat / Ethics</td>
<td>2 cr.</td>
</tr>
<tr>
<td>ENG-111</td>
<td>English-I (Language in Use)</td>
<td>3 cr.</td>
</tr>
<tr>
<td>COMP-111</td>
<td>Computer (Introduction and Applications)</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-101</td>
<td>Mathematics A-I [ Calculus (I) ]</td>
<td>4 cr.</td>
</tr>
<tr>
<td>MATH-102</td>
<td>Mathematics B-I [ Vectors &amp; Mechanics (I) ]</td>
<td>4 cr.</td>
</tr>
<tr>
<td>STAT-101</td>
<td>Statistics-I</td>
<td>3 cr.</td>
</tr>
<tr>
<td>STAT-102</td>
<td>Statistics Lab-I</td>
<td>1 cr.</td>
</tr>
<tr>
<td></td>
<td>Total= 20 cr.</td>
<td></td>
</tr>
</tbody>
</table>

**B.S. Mathematics Semester II**

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PST-111</td>
<td>Pakistan Studies</td>
<td>2 cr.</td>
</tr>
<tr>
<td>ENG-112</td>
<td>English-II (Academic Reading and Writing)</td>
<td>3 cr.</td>
</tr>
<tr>
<td>STAT-103</td>
<td>Statistics-II</td>
<td>3 cr.</td>
</tr>
<tr>
<td>STAT-104</td>
<td>Statistics Lab-II</td>
<td>1 cr.</td>
</tr>
<tr>
<td>MATH-104</td>
<td>Mathematics B-II [ Mechanics (II) ]</td>
<td>4 cr.</td>
</tr>
<tr>
<td>MATH-105</td>
<td>Discrete Mathematics</td>
<td>2 cr.</td>
</tr>
<tr>
<td></td>
<td>Total= 19 cr.</td>
<td></td>
</tr>
</tbody>
</table>

**B.S. Mathematics Semester III**

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG-211</td>
<td>English-III (Communication Skills)</td>
<td>3 cr.</td>
</tr>
<tr>
<td>STAT-201</td>
<td>Statistics-III</td>
<td>3 cr.</td>
</tr>
<tr>
<td>STAT-202</td>
<td>Statistics Lab-III</td>
<td>1 cr.</td>
</tr>
<tr>
<td>MATH-202</td>
<td>Mathematics B-III [ Calculus (II) ]</td>
<td>4 cr.</td>
</tr>
<tr>
<td>MATH-205</td>
<td>Graph Theory</td>
<td>2 cr.</td>
</tr>
<tr>
<td></td>
<td>Total= 17 cr.</td>
<td></td>
</tr>
</tbody>
</table>

**B.S. Mathematics Semester IV**

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG-212</td>
<td>English-IV (English for Practical Aims)</td>
<td>3 cr.</td>
</tr>
<tr>
<td>STAT-203</td>
<td>Statistics-IV</td>
<td>3 cr.</td>
</tr>
<tr>
<td>STAT-204</td>
<td>Statistics Lab-IV</td>
<td>1 cr.</td>
</tr>
<tr>
<td>MATH-204</td>
<td>Mathematics B-IV [ Metric Spaces &amp; Group Theory ]</td>
<td>4 cr.</td>
</tr>
<tr>
<td>SOC-211</td>
<td>Introduction to Sociology</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-206</td>
<td>Elementary Number Theory</td>
<td>2 cr.</td>
</tr>
<tr>
<td></td>
<td>Total= 20 cr.</td>
<td></td>
</tr>
</tbody>
</table>
### B.S. Mathematics Semester V

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH-301</td>
<td>Real Analysis –I</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-302</td>
<td>Group Theory-I</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-303</td>
<td>Complex Analysis-I</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-304</td>
<td>Vector and Tensor Analysis</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-305</td>
<td>Topology</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-306</td>
<td>Differential Geometry</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td><strong>Total = 18 cr.</strong></td>
<td></td>
</tr>
</tbody>
</table>

### B.S. Mathematics Semester VI

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH-307</td>
<td>Real Analysis –II</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-308</td>
<td>Rings and Vector Spaces</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-309</td>
<td>Complex Analysis – II</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-310</td>
<td>Mechanics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-311</td>
<td>Functional Analysis-I</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-312</td>
<td>Ordinary Differential Equations</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td><strong>Total = 18 cr.</strong></td>
<td></td>
</tr>
</tbody>
</table>

### B.S. Mathematics Semester VII

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH-401</td>
<td>Set Theory</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-402</td>
<td>Partial Differential Equations</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-403</td>
<td>Numerical Analysis-I</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td><strong>Any Two of the following:</strong></td>
<td></td>
</tr>
<tr>
<td>MATH-404</td>
<td>Mathematical Statistics-I</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-405</td>
<td>Fortran Programming</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-406</td>
<td>Group Theory-II</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-407</td>
<td>Ring Theory</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-408</td>
<td>Number Theory-I</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-409</td>
<td>Quantum Mechanics-I</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-410</td>
<td>Analytical Dynamics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-411</td>
<td>Electromagnetic Theory-I</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-412</td>
<td>Operations Research-I</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-413</td>
<td>Theory of Approximation and Splines-I</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-414</td>
<td>Functional Analysis- II</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-415</td>
<td>Fluid Mechanics-I</td>
<td>3 cr.</td>
</tr>
<tr>
<td></td>
<td><strong>Total = 15 cr.</strong></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>MATH-416</td>
<td>Measure Theory and Lebesgue Integration</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-417</td>
<td>Methods of Mathematical Physics</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-418</td>
<td>Numerical Analysis-II</td>
<td>3 cr.</td>
</tr>
</tbody>
</table>

**Any Two of the following:**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH-419</td>
<td>Mathematical Statistics-II</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-420</td>
<td>Computer Applications</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-421</td>
<td>Group Theory-III</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-422</td>
<td>Theory of Modules</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-423</td>
<td>Number Theory-II</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-424</td>
<td>Quantum Mechanics-II</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-425</td>
<td>Special Theory of Relativity</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-426</td>
<td>Electromagnetic Theory-II</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-427</td>
<td>Operations Research-II</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-428</td>
<td>Theory of Approximation and Splines-II</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-429</td>
<td>Functional Analysis-III</td>
<td>3 cr.</td>
</tr>
<tr>
<td>MATH-430</td>
<td>Fluid Mechanics-II</td>
<td>3 cr.</td>
</tr>
</tbody>
</table>

Total = 15 cr.
Semester I

Module Code: MATH-101
Module Title: Mathematics A-I [Calculus (I)]
Module Rating: 4 Cr. Hours

Preliminaries
- Real numbers and the real line
- Functions and their graphs
- Shifting and scaling graphs
- Solution of equations involving absolute values
- Inequalities
- Complex numbers system. Polar form of complex numbers, De Moivr’s theorem
- Circular function, hyperbolic functions, logarithmic

Limit and Continuity
- Limit of a function, left hand and right hand limits, Theorems of limits
- Continuity, Continuous functions

Derivatives and its Applications
- Differentiable functions
- Differentiation of polynomial, rational and transcendental functions
- Mean value theorems and applications
- Higher derivatives, Leibniz’s theorem
- L’Hospital’s Rule
- Intermediate value theorem, Rolle’s theorem
- Taylor’s and Maclaurin’s theorem with their remainders

Integration and Definite Integrals
- Techniques of evaluating indefinite integrals
- Integration by substitutions, Integration by parts
- Change of variable in indefinite integrals
- Definite integrals, Fundamental theorem of calculus
- Reduction formulas for algebraic and trigonometric integrands
- Improper integrals, Gamma functions

Recommended Books
Module Code: MATH-102
Module Title: Mathematics B-I [Vectors & Mechanics (I)]
Module Rating: 4 Cr. Hours

Vector Algebra
- Introduction to vector algebra
- Scalar and vector product
- Scalar triple product and vector triple product
- Applications to geometry

Vector Calculus
- Limit, continuity and differentiability of vector point functions
- Partial derivatives of vector point functions
- Scalar and vector fields
- The gradient, divergence and curl
- Expansion formulas.

Forces
- Fundamental concepts and principles
- Inertial-non-inertial frames, Newton’s laws
- Resultant of several concurrent forces
- The parallelogram law of forces
- Resolution of a forces, triangle of forces
- Lamy’s theorem, polygon of forces
- Conditions of equilibrium for a particle
- External and internal forces, principle of transmissibility
- Resultant of like and unlike parallel forces
- Moment of forces about a point, Varigon’s theorem
- Moment of a couple, equivalent couples, composition of couples
- Reduction of coplanar forces to a force or a couple

Friction
- Dry friction and fluid friction
- Laws of dry friction, coefficients of friction, angle of friction
- Equilibrium of a particle on a rough inclined plane
- Particle on a rough inclined plane acted on by an external force
- Conditions for sliding or titling

Virtual Work
- Principle of virtual work
- Problems involving tensions and thrust

Recommended Books
Semester II

Module Code: MATH-103
Module Title: Mathematics A-II [Plane Curves & Analytic Geometry]
Module Rating: 4 Cr. Hours

Plane Analytics Geometry
- Conic section and quadratic equations
- Classifying conic section by eccentricity
- Translation and rotation of axis
- Properties of circle, parabola, ellipse, hyperbola
- Polar coordinates, conic sections in polar coordinates
- Graphing in polar coordinates
- Tangents and normal, pedal equations, parametric representations of curves

Applications of Integration
- Asymptotes.
- Relative extrema, points of inflection and concavity
- Singular, points, tangents at the origin
- Graphing of Cartesian and polar curves
- Area under the curve, area between two curves
- Arc length and intrinsic equations
- Curvature, radius and centre of curvature
- Involute and evolute, envelope

Analytic Geometry of Three Dimensions
- Rectangular coordinates system in a space
- Cylindrical and spherical coordinate system
- Direction ratios and direction cosines of a line
- Equation of straight lines and planes in three dimensions
- Shortest distance between skew lines
- Equation of sphere, cylinder, cone, ellipsoids, paraboloids, hyperboloids
- Quadric and ruled surfaces
- Spherical trigonometry. Direction of Qibla

Recommended Books
Module Code: MATH-104  
Module Title: Mathematics B-II [Mechanics (II)]  
Module Rating: 4 Cr. Hours

### Kinematics
- Rectilinear motion of particles  
- Uniform rectilinear motion, uniformly accelerated rectilinear motion  
- Curvilinear motion of particle, rectangular components of velocity and acceleration  
- Tangential and normal components  
- Radial and transverse components  
- Projectile motion

### Kinetics
- Work, power, kinetic energy, conservative force fields  
- Conservation of energy, impulse, torque  
- Conservation of linear and angular momentum  
- Non-conservative forces

### Simple Harmonic Motion
- The simple harmonic oscillator, amplitude, period, frequency,  
- Resonance and energy  
- The damped harmonic oscillator, over damped, critically damped and under damped  
- Motion, forces vibrations

### Central Forces and Planetary Motion
- Central force fields, equations of motion, potential energy, orbits  
- Kepler’s laws of planetary motion  
- Apsides and apsidal angles for nearly circular orbits  
- Motion in an inverse square field

### Centre of Mass and Gravity
- Discrete and continuous systems, density of rigid and elastic bodies  
- Centroid: Discrete and continuous systems, solid region, region bounded by planes  
- Semi circular regions, sphere, hemisphere, cylinder and cone

### Recommended Books
   Brook Cole, 2005  
Module Code: MATH-105
Module Title: Discrete Mathematics
Module Rating: 2 Cr. Hours

Function and Sequences
- Introduction to sets
- Functions
- Inverses of function
- Sequences
- Big-Oh notation

Elementary Logic
- Introduction to elementary logic
- Propositional calculus
- Methods of proof

Induction and Recursion
- Loop invariance
- Mathematical induction
- Recursive definition
- Recurrence relations

Relations
- Introduction of relation
- Equivalence relations and partitions of sets
- Partially ordered sets
- Special orderings
- Properties of general relations

Principles of Counting
- Pigeon rule the sum rule
- Inclusion exclusion principle
- The product rule and binomial methods

Recommended Books
Lesson Plan for Translation of Holy Qur'an

<table>
<thead>
<tr>
<th>آیت</th>
<th>کلاس کل</th>
<th>کلاس بستگی</th>
<th>تمرین</th>
<th>بحث</th>
<th>جریخ</th>
</tr>
</thead>
<tbody>
<tr>
<td>بایاَبیْنَا النّاسَ انّفوا رَّفِیۖمَمَ</td>
<td>آیت نمبر ۵۱</td>
<td>کلاس ۱</td>
<td>درس</td>
<td>پیشرفت</td>
<td>بیان</td>
</tr>
<tr>
<td>آیت نمبر ۱۰</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>آیت نمبر ۱۰</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>بوصقَمِ اللّهِ ﴿عَلیم‌الْعَبْدِ</td>
<td>آیت نمبر ۱۱</td>
<td>کلاس ۲</td>
<td>درس</td>
<td>پیشرفت</td>
<td>بیان</td>
</tr>
<tr>
<td>آیت نمبر ۱۴</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>آیت نمبر ۲۳</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>واللّاهِ تَبَالِی اَیغَارَةَ اَنۡسَبَعَکُم</td>
<td>آیت نمبر ۱۵</td>
<td>کلاس ۳</td>
<td>درس</td>
<td>پیشرفت</td>
<td>بیان</td>
</tr>
<tr>
<td>آیت نمبر ۴۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>آیت نمبر ۵۴</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>وَلْکَفِیلَتُ الْلّهِ ﴿عَلیم‌الْعَبْدِ</td>
<td>آیت نمبر ۵۵</td>
<td>کلاس ۴</td>
<td>درس</td>
<td>پیشرفت</td>
<td>بیان</td>
</tr>
<tr>
<td>آیت نمبر ۷۰</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>آیت نمبر ۷۰</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>فِهْمٍ مَنْ آَمَنَ بِهِ وَمِنْهُمْ</td>
<td>آیت نمبر ۱۱۰</td>
<td>کلاس ۵</td>
<td>درس</td>
<td>پیشرفت</td>
<td>بیان</td>
</tr>
<tr>
<td>آیت نمبر ۱۱۰</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>آیت نمبر ۱۱۰</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>آیت نمبر ۱۱۰</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>آیت نمبر ۱۱۰</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>آیت نمبر ۱۱۰</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>آیت نمبر ۱۱۰</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| آية نمبر | سورة المائدة | کاٰس | مدیر عام | تیم منسوخ‌ات کی عبادت
|---|---|---|---|---|
| 127 | 13 | 35 | 24 | کی نمبر
| 134 | 14 | 36 | 24 | میں کہن جو آپ لیے ہوئے فرجت اللہ
| 135 | 15 | 37 | 24 | فگل اللہ یاذبکم ان شکرتم وآمنتم
| 148 | 16 | 38 | 24 | لا یہیت جنتہ بلسوء
| 160 | 17 | 39 | 24 | فیغل من الہینی هادا خرما
| 161 | 18 | 40 | 24 | واجدین الیا وقعد عاوا
| 171 | 19 | 41 | 24 | یا اہل الکتاب لعلیوا دریکم
| 172 | 20 | 42 | 24 | لن یستفکف الہیسیح یا یکون غداء
| 176 | 21 | 43 | 24 | یستفکفون الیا للہ یالفیکم کی کلائلا
| 178 | 22 | 44 | 24 | یا الہینی آئندیا اوفری بال Giớiود
| 181 | 23 | 45 | 24 | الیوم أجل لکم الیینبیات
| 185 | 24 | 46 | 24 | یا الہینی آئندیا ایا فمت
| 185 | 25 | 47 | 24 | یا اہل الکتاب فجاءنکم
| 186 | 26 | 48 | 24 | یہدی به اللہ من انج
| 194 | 27 | 49 | 24 | قأل قفو ای مغرد فیلتہ
| 202 | 28 | 50 | 24 | واهل غلیاا نیا ابی آقیم
| 206 | 29 | 51 | 24 | الیم تعلم ان اللہ نیلا فیلم الیمنات والارض
| 213 | 30 | 52 | 24 | یا الہینی ایوسر
| 215 | 31 | 53 | 24 | یا الہینی پیسران
| 221 | 32 | 54 | 24 | یا الہینی جامہ
| 224 | 33 | 55 | 24 | یا الہینی آئندیا لا تفخذوا الیهودا والتمصار
| 230 | 34 | 56 | 24 | ونی الہینی آئندیا تفخذوا الیہودا والتمصار
| 235 | 35 | 57 | 24 | کل نمبر 35
<table>
<thead>
<tr>
<th>آيات</th>
<th>آيات نمبر</th>
<th>سورة</th>
<th>کاس</th>
<th>بحث</th>
</tr>
</thead>
<tbody>
<tr>
<td>يا آئیها الفرسان بَنِّعَ ما أَنزَلْنَا إِلَيْكُمْ مِن رَزْقٍ ..</td>
<td>آیت نمبر 67</td>
<td>سورة المائدة</td>
<td>کاس 25</td>
<td>بقية</td>
</tr>
<tr>
<td>لِتَجَدَنَّ أَنْذَرَ النَّاسَ غَدَآءٍ ..</td>
<td>آیت نمبر 82</td>
<td>سورة المائدة</td>
<td>کاس 25</td>
<td>بقية</td>
</tr>
<tr>
<td>وَإِذَا سَيَبَعُوا مَا أَنزَلْنَهُ ، لَيْسَ عَلَى الْمُلْبِسِينَ ..</td>
<td>آیت نمبر 83</td>
<td>سورة المائدة</td>
<td>کاس 26</td>
<td>بقیة</td>
</tr>
<tr>
<td>بِآیاتِ الْحَلَّى الَّذِى أَنْزَلْنَهُمْ لِيَلْبِسُوا ..</td>
<td>آیت نمبر 93</td>
<td>سورة المائدة</td>
<td>کاس 26</td>
<td>بقیة</td>
</tr>
<tr>
<td>.. فَذَلِكَ أَدْنَى مَنْ نَاوِيٌّ بالْشِهَادَةِ ..</td>
<td>آیت نمبر 108</td>
<td>سورة المائدة</td>
<td>کاس 27</td>
<td>بقیة</td>
</tr>
<tr>
<td>.. مَجْمَعُ اللَّهِ الرَّسُولِ ..</td>
<td>آیت نمبر 109</td>
<td>سورة البقرة</td>
<td>کاس 28</td>
<td>بقیه</td>
</tr>
<tr>
<td>.. بِيَدِ اللَّهِ مِلَّةِ الشَّمَائِلِ ..</td>
<td>آیت نمبر 120</td>
<td>سورة البقرة</td>
<td>کاس 28</td>
<td>بقیه</td>
</tr>
<tr>
<td>.. الْاَلسَّحَّالُ الَّذِى خَلَقَ الشَّمَائِلِ ..</td>
<td>آیت نمبر 51</td>
<td>سورة البقرة</td>
<td>کاس 29</td>
<td>بقیه</td>
</tr>
<tr>
<td>.. الْدِّينِ آتِاهُمْ الكِتَابَ ..</td>
<td>آیت نمبر 59</td>
<td>سورة البقرة</td>
<td>کاس 29</td>
<td>بقیه</td>
</tr>
<tr>
<td>.. وَمَنْ أَعْلَمَُ مُنَّاَ اِلَّذِينَ رَحِمْنَا ..</td>
<td>آیت نمبر 21</td>
<td>سورة البقرة</td>
<td>کاس 30</td>
<td>بقیه</td>
</tr>
<tr>
<td>.. اِلَّذِينَ يَسَّخِبُونَ ..</td>
<td>آیت نمبر 36</td>
<td>سورة البقرة</td>
<td>کاس 30</td>
<td>بقیه</td>
</tr>
<tr>
<td>.. وَقَالَا لَوْلَا نَزُّلْ عَلَيْهِ آیةً مِن رَبِّي ..</td>
<td>آیت نمبر 537</td>
<td>سورة البقرة</td>
<td>کاس 31</td>
<td>بقیه</td>
</tr>
<tr>
<td>.. فَلَقَ أَقْتُلُ نَكُمَ عُبْدِي خَرَانِي اللَّهُ ..</td>
<td>آیت نمبر 547</td>
<td>سورة البقرة</td>
<td>کاس 31</td>
<td>بقیه</td>
</tr>
<tr>
<td>.. وَأَنْفُشَ بِهِ الْمِلَّةِ نَفَاهُونَ ..</td>
<td>آیت نمبر 551</td>
<td>سورة البقرة</td>
<td>کاس 32</td>
<td>بقیه</td>
</tr>
<tr>
<td>.. وَهُوَ الَّذِي يَتَّقُونَ بِالْيَلِى ..</td>
<td>آیت نمبر 557</td>
<td>سورة البقرة</td>
<td>کاس 32</td>
<td>بقیه</td>
</tr>
<tr>
<td>.. وَهُوَ الَّذِي لَقِدْ خَلَقَ الشَّمَائِلِ ..</td>
<td>آیت نمبر 61</td>
<td>سورة البقرة</td>
<td>کاس 33</td>
<td>بقیه</td>
</tr>
<tr>
<td>.. وَهُوَ الَّذِي خَلَقَ الشَّمَائِلِ ..</td>
<td>آیت نمبر 73</td>
<td>سورة البقرة</td>
<td>کاس 33</td>
<td>بقیه</td>
</tr>
<tr>
<td>.. وَإِذْ قَالَ إِبْرَاهِيمَ لِأَبِيِّهِ أَبْنِي أَتَتَخَذْ صَانِعًا آنفًا ..</td>
<td>آیت نمبر 574</td>
<td>سورة البقرة</td>
<td>کاس 34</td>
<td>بقیه</td>
</tr>
<tr>
<td>.. أَوْلَيْكَ الْمَلَّٰلُ الَّذِي يَدْعُونَ ..</td>
<td>آیت نمبر 90</td>
<td>سورة البقرة</td>
<td>کاس 34</td>
<td>بقیه</td>
</tr>
<tr>
<td>.. وَمَا فَتَرَوْا اللَّهُ حَقَّ قَدْرِهِ ..</td>
<td>آیت نمبر 891</td>
<td>سورة البقرة</td>
<td>کاس 35</td>
<td>بقیه</td>
</tr>
<tr>
<td>.. وَجَعَلَوْا اللَّهَ شَرَكاءَ الجَنِّ وَخَلَفَهُمْ ..</td>
<td>آیت نمبر 100</td>
<td>سورة البقرة</td>
<td>کاس 35</td>
<td>بقیه</td>
</tr>
<tr>
<td>.. بَنِيَشَمَائِلِ .. أَوْ بِضْعَاتِهِمْ ..</td>
<td>آیت نمبر 5101</td>
<td>سورة البقرة</td>
<td>کاس 36</td>
<td>بقیه</td>
</tr>
<tr>
<td>.. وَقَلِلَتِ أَفْضَلِهِمْ ..</td>
<td>آیت نمبر 110</td>
<td>سورة البقرة</td>
<td>کاس 36</td>
<td>بقیه</td>
</tr>
<tr>
<td>Reference Number</td>
<td>Course Code</td>
<td>Subject Code</td>
<td>Text</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>1111</td>
<td>37</td>
<td>آيت نمبر</td>
<td>CENTRE FOR QURAN AND SUNNAH</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>37</td>
<td>رہمہ</td>
<td>University of the Punjab, Quaid-e-Azam Campus, Lahore</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>38</td>
<td>آيت نمبر</td>
<td><a href="mailto:director.cqs@pu.edu.pk">director.cqs@pu.edu.pk</a></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>38</td>
<td>وکذبک</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>39</td>
<td>آيت نمبر</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>39</td>
<td>قل با قوم اعلموا غل مکان منكم إبه عامار</td>
<td></td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>40</td>
<td>آيت نمبر</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>40</td>
<td>قل خسیر الہدن قلوا</td>
<td></td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>41</td>
<td>وھو الہذ اندان خاتم نوروش</td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>41</td>
<td>ومن الإبل الذين وهم النفر الذين</td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>42</td>
<td>قل لا أجد في ما وجین</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>42</td>
<td>قل هلم شهداءكم الہدن يشهدون</td>
<td></td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>43</td>
<td>قل تعالوا أتلا ما خيرات رجلكم عليكم</td>
<td></td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>43</td>
<td>وهم آتينا موسی الكتاب ثاما</td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>44</td>
<td>وھذا كتاب أنزله مبارک</td>
<td></td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>44</td>
<td>إن الہدن قولوا دینتمو وكبآنو شیعا</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>45</td>
<td>من جاء بالحسنۃ فلله عشر أماها</td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>45</td>
<td>وھو الہذ جلفكم خلافۃ الأرض ورفع</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>Revision</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>کل نمبر 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>کل نمبر 20+5=25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>کل نمبر +Viva</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**Semester III**

**Module Code:**  MATH-201  
**Module Title:**  Mathematics A-III [Linear Algebra]  
**Module Rating:**  4 Cr. Hours

**Matrices, Determinants and System of Linear Equations**
- Definition of matrix, various types of matrices
- Algebra of matrices
- Determinant of square matrix, cofactors and minors
- Laplace expansion of determinants
- Elementary matrices, adjoint and inverses of matrices
- Rank of a matrix
- Introduction to systems of linear equations
- Cramer’s rule, Gaussian elimination and Gauss Jordan method
- Solution of homogenous and non-homogenous linear equations
- Network flow problems

**Vector Spaces**
- Real vector spaces, subspaces
- Linear combination and spanning set.
- Linear independence and linear dependence, basis and dimension, row space, column space and null space

**Linear Transformations**
- Introduction to linear transformation
- Matrices of linear transformations
- Rank and nullity
- Eigen values and Eigen vectors
- Diagonalization
- Orthogonal diagonalization
- Orthogonal matrices, similar matrices

**Recommended Books**

Module Code: MATH-202
Module Title: Mathematics B-III [Calculus (II)]
Module Rating: 4 Cr. Hours

Sequence and Series
- Sequences, Infinite series, Convergence of sequence and series
- The integral test, Comparison tests, Ratio test, Root test
- Alternative series, Absolute and conditional convergence
- Power series, Interval and radius of convergence

Functions of Several Variables
- Functions of two variables, Graphs of functions of two variables
- Contour diagrams, Linear functions, Functions of three variables
- Limit and continuity of a function of two variables
- The partial derivative, Computing partial derivatives algebraically
- The second-order partial derivative, Local linearity and the differential
- Tangent planes and normal lines
- Optimization, Maxima and minima of a function of two variables
- Lagrange multipliers
- Various methods for finding area and volume surface of revolution

Multiple Integrals
- Double integral in rectangular and polar form
- Triple integral in rectangular, Cylindrical and spherical coordinates
- Substitutions in multiple integrals
- Moments and centre of mass

Recommended Books
Module Code: MATH-205
Module Title: Graph Theory
Module Rating: 2 Cr. Hours

Course Outline

- Definition and examples of a graph
- Sub graph
- Types of graphs
- Paths, cycles, wheels and walks
- Connected and disconnected graph
- Isomorphism
- Handshaking lemma
- Matrix representation of a graph
- Three puzzles
- Connectivity
- Eulerian graphs
- Hamiltonian graphs
- Shortest path algorithms
- Trees

Recommended Books

3. V.K.Balakrishnan, Graph Theory, Schaum’s Outline 1997
5. Bela Bollobas, Graph Theory, Springer Verlag, New York, 1979
Semester IV

Module Code: MATH-203
Module Title: Mathematics A-IV [Ordinary Differential Equations]
Module Rating: 4 Cr. Hours

Introduction to Differential Equations
- Historical background and motivation
- Basic mathematical models: Directional fields
- Classification of differential equations

First Order Differential Equations
- Separable equations
- Modeling with first order equations
- Differences between linear and nonlinear equations
- Exact equations and integrating factors

Second Order Differential Equations
- Homogeneous equations
- Homogeneous equations with constant coefficients
- Fundamental solutions of linear homogeneous equations
- Linear independence and the Wronskian
- Method of undetermined coefficients, Variation of parameters

Higher Order Linear Equations
- General theory of nth order linear equations
- Homogeneous equations with constant coefficients
- The methods of undermined coefficients
- The method of variation of parameters

Series Solution of Second Order Linear Equations and Special Functions
- Series solution near an ordinary point, Legendre’s equation
- Regular singular points, Series solution near a regular singular point

Recommended Books

5. Ross, S.L, Differential Equations, John Wiley & Sons, 2004
Module Code: MATH-204
Module Title: Mathematics B-IV [Metric Spaces & Group Theory]
Module Rating: 4 Cr. Hours

Metric Spaces
- Definition and various examples of metric spaces
- Holder’s inequality, Cauchy-schwarz and minkowski’s inequality
- Open and closed balls
- Neighborhoods
- Open and closed sets
- Interior, Exterior and boundary points
- Limit points, Closure of a set
- Convergence in metric spaces, Cauchy sequences
- Continuity in metric spaces
- Inner product and norm
- Orthonormal sets and basis
- The Gram-Schmidt process

Group Theory
- Binary operations
- Definition, Examples and formation of groups
- Subgroups
- Order of group, Order of an element
- Abelian groups
- Cyclic groups, Cosets, Lagrange’s theorem
- Permutation, Even and odd permutations
- Symmetric groups
- Introduction to rings and fields

Recommended Books
Module Code: MATH-206
Module Title: **Elementary Number Theory**
Module Rating: 2 Cr. Hours

**Prime Numbers**
- The sieve of eratostheness
- Perfect numbers, Mersenne primes, Fermat numbers
- Theorems related to prime numbers

**Divisibility**
- Divisibility of primes
- Divisibility of primes
- The Euclidean algorithm, The equation \( ax + by = c \)

**Congruences**
- Divisibility tests
- Linear congruences, Techniques for solving \( ax \equiv b \pmod{m} \)
- The Chinese remainder theorem
- Finding the day of the week

**Recommended Books**
Semester V

Module Code: MATH-301
Module Title: Real Analysis - I
Module Rating: 3 Cr. Hours

Real Number System
- Ordered sets, fields, the field of real numbers
- Completeness property of R
- The extended real number system
- Euclidean spaces
- Finite, countable and uncountable sets

Sequences and Series
- Sequences, subsequences, convergent sequences, Cauchy sequences
- Monotone and bounded sequences, Bolzano Weierstrass theorem
- Series, series of non-negative terms
- Partial sums, the root and ratio tests, integral test, comparison test
- Absolute and conditional convergence

Limit and Continuity
- The limit of a function
- Continuous functions
- Types of discontinuity
- Uniform continuity
- Monotone functions

Differentiation
- The derivative of a function
- Mean value theorems, the continuity of derivatives
- Taylor’s theorem

Functions of Several Variables
- Partial derivatives and differentiability, derivatives and differentials of composite functions
- Change in the order of partial derivative, implicit functions, inverse functions, Jacobians
- Maxima and minima

Recommended Books
6. H. S. Gaskill and P. P. Narayanaswami, Elements of Real Analysis, (Printice Hall, 1988)
Module Code: MATH-302
Module Title: Group Theory -I
Module Rating: 3 Cr. Hours

Groups
- Definition and examples of groups
- Abelian group
- Subgroups lattice, Lagrange’s theorem
- Relation between groups
- Cyclic groups
- Groups and symmetries, Cayley’s theorem

Complexes in Groups
- Complexes and coset decomposition of groups
- Centre of a group
- Normalizer in a group
- Centralizer in a group
- Conjugacy classes and congruence relation in a group
- Double cosets

Normal Subgroups
- Normal subgroups
- Proper and improper normal subgroups
- Factor groups
- Fundamental theorem of homomorphism
- Automorphism group of a group
- Commutator subgroups of a group

Sylow Theorems
- Cauchy’s theorem for Abelian and non-Abelian group
- Sylow theorems

Recommended Books
2. I. N. Herstein, Topics in Algebra, (Xerox Publishing Company, 1964)
Module Code: MATH-303
Module Title: Complex Analysis - I
Module Rating: 3 Cr. Hours

The Concept of Analytic Functions

- Complex numbers, complex planes, complex functions
- Analytic functions
- Entire functions
- Harmonic functions
- Elementary functions: complex exponential, logarithmic and hyperbolic functions

Infinite Series

- Power series, derived series, radius of convergence
- Taylor series and Laurent series

Conformal Representation

- Transformation, conformal transformation
- Linear transformation
- Möbius transformations

Complex Integration

- Complex integrals
- Cauchy-Goursat theorem
- Cauchy’s integral formula and their consequences
- Liouville’s theorem
- Morera’s theorem
- Derivative of an analytic function

Recommended Books
Module Code: MATH-304  
Module Title: Vector and Tensor Analysis  
Module Rating: 3 Cr. Hours

**Vector Integration**
- Line integrals
- Surface area and surface integrals
- Volume integrals

**Integral Theorems**
- Green’s theorem
- Gauss divergence theorem
- Stoke’s theorem

**Curvilinear Coordinates**
- Orthogonal coordinates
- Unit vectors in curvilinear systems
- Arc length and volume elements
- The gradient, divergence and curl
- Special orthogonal coordinate systems

**Tensor Analysis**
- Coordinate transformations
- Einstein summation convention
- Tensors of different ranks
- Contravariant, covariant and mixed tensors
- Symmetric and skew symmetric tensors
- Addition, subtraction, inner and outer products of tensors
- Contraction theorem, quotient law
- The line element and metric tensor
- Christoffel symbols

**Recommended Books**
1. F. Chorlton, *Vector and Tensor Methods*, (Ellis Horwood Publisher, Chichester, U.K., 1977)
Module Code: MATH-305
Module Title: Topology
Module Rating: 3 Cr. Hours

Topology
- Definition and examples
- Open and closed sets
- Subspaces
- Neighborhoods
- Limit points, closure of a set
- Interior, exterior and boundary of a set

Bases and Sub-bases
- Base and sub bases
- Neighborhood bases
- First and second axioms of countability
- Separable spaces, Lindelöf spaces
- Continuous functions and homeomorphism
- Weak topologies, finite product spaces

Separation Axioms
- Separation axioms
- Regular spaces
- Completely regular spaces
- Normal spaces

Compact Spaces
- Compact topological spaces
- Countably compact spaces
- Sequentially compact spaces

Connectedness
- Connected spaces, disconnected spaces
- Totally disconnected spaces
- Components of topological spaces

Recommended Books
Module Code: MATH-306
Module Title: Differential Geometry
Module Rating: 3 Cr. Hours

Theory of Space Curves

- Introduction, index notation and summation convention
- Space curves, arc length, tangent, normal and binormal
- Osculating, normal and rectifying planes
- Curvature and torsion
- The Frenet-Serret theorem
- Natural equation of a curve
- Involutes and evolutes, helices
- Fundamental existence theorem of space curves

Theory of Surfaces

- Coordinate transformation
- Tangent plane and surface normal
- The first fundamental form and the metric tensor
- Christoffel symbols of first and second kinds
- The second fundamental form
- Principal, Gaussian, mean, geodesic and normal curvatures
- Gauss and Weingarten equations
- Gauss and Codazzi equations

Recommended Books

Semester VI

Module Code: MATH-307
Module Title: Real Analysis - II
Module Rating: 3 Cr. Hours

The Riemann-Stieltjes Integrals
- Definition and existence of integrals
- Properties of integrals
- Fundamental theorem of calculus and its applications
- Change of variable theorem
- Integration by parts

Functions of Bounded Variation
- Definition and examples
- Properties of functions of bounded variation

Improper Integrals
- Types of improper integrals
- Tests for convergence of improper integrals
- Beta and gamma functions
- Absolute and conditional convergence of improper integrals

Sequences and Series of Functions
- Power series
- Definition of point-wise and uniform convergence
- Uniform convergence and continuity
- Uniform convergence and integration
- Uniform convergence and differentiation
- Examples of uniform convergence

Recommended Books
6. H. S. Gaskill and P. P. Narayanaswami, Elements of Real Analysis, (Printice Hall, 1988)
Module Code: MATH-308
Module Title: **Rings and Vector Spaces**
Module Rating: 3 Cr. Hours

**Ring Theory**
- Definition and example of rings
- Special classes of rings
- Fields
- Ideals and quotient rings
- Ring homomorphisms
- Prime and maximal ideals
- Field of quotients

**Vector Spaces**
- Vector spaces, subspaces
- Linear combinations, linearly independent vectors
- Spanning set
- Bases and dimension of a vector space
- Homomorphism of vector spaces
- Quotient spaces

**Linear Mappings**
- Mappings, linear mappings
- Rank and nullity
- Linear mappings and system of linear equations
- Algebra of linear operators
- Space $L(X, Y)$ of all linear transformations

**Matrices and Linear Operators**
- Matrix representation of a linear operator
- Change of basis
- Similar matrices
- Matrix and linear transformations
- Orthogonal matrices and orthogonal transformations
- Orthonormal basis and Gram Schmidt process

**Eigen Values and Eigen Vectors**
- Polynomials of matrices and linear operators
- Characteristic polynomial
- Diagonalization of matrices

**Dual Spaces**
- Linear functionals
- Dual space
- Dual basis
- Annihilators

**Recommended Books**

Module Code: MATH-309
Module Title: Complex Analysis - II
Module Rating: 3 Cr. Hours

**Singularity and Poles**
- Review of Laurent series
- Zeros, singularities
- Poles and residues

**Contour Integration**
- Cauchy’s residue theorem
- Applications of Cauchy’s residue theorem

**Expansion of Functions and Analytic Continuation**
- Mittag-Leffler theorem
- Weierstrass’s factorization theorem
- Analytic continuation

**Elliptic Functions**
- Periodic functions
- Elliptic functions and its properties
- Weierstrass function \( \wp(z) \)
- Differential equation satisfied by \( \wp(z) \)
- Integral formula for \( \wp(z) \)
- Addition theorem for \( \wp(z) \)
- Duplication formula for \( \wp(z) \)
- Elliptic functions in terms of Weierstrass function with the same periods
- Quasi periodic functions: The zeta and sigma functions of Weierstrass
- Jacobian elliptic functions and its properties

**Recommended Books**
Module Code: MATH-310
Module Title: Mechanics
Module Rating: 3 Cr. Hours

Non Inertial Reference Systems
- Accelerated coordinate systems and inertial forces
- Rotating coordinate systems
- Velocity and acceleration in moving system: coriolis, centripetal and transverse acceleration
- Dynamics of a particle in a rotating coordinate system

Planar Motion of Rigid Bodies
- Introduction to rigid and elastic bodies, degrees of freedom, translations, rotations, instantaneous axis and center of rotation, motion of the center of mass
- Euler’s theorem and Chasle’s theorem
- Rotation of a rigid body about a fixed axis: moments and products of inertia, hoop or cylindrical shell, circular cylinder, spherical shell
- Parallel and perpendicular axis theorem
- Radius of gyration of various bodies

Motion of Rigid Bodies in Three Dimensions
- General motion of rigid bodies in space: Moments and products of inertia, inertia matrix
- The momental ellipsoid and equimoment systems
- Angular momentum vector and rotational kinetic energy
- Principal axes and principal moments of inertia
- Determination of principal axes by diagonalizing the inertia matrix

Euler Equations of Motion of a Rigid Body
- Force free motion
- Free rotation of a rigid body with an axis of symmetry
- Free rotation of a rigid body with three different principal moments
- The Eulerian angles, angular velocity and kinetic energy in terms of Euler angles, space cone
- Motion of a spinning top and gyroscopes- steady precession, sleeping top

Recommended Books
5. C. F. Chorlton, Text Book of Dynamics, (Ellis Horwood, 1983)
Module Code: MATH-311
Module Title: Functional Analysis - I
Module Rating: 3 Cr. Hours

**Metric Space**
- Review of metric spaces
- Convergence in metric spaces
- Complete metric spaces
- Completeness proofs
- Dense sets and separable spaces
- No-where dense sets
- Baire category theorem

**Normed Spaces**
- Normed linear spaces
- Banach spaces
- Convex sets
- Quotient spaces
- Equivalent norms
- Linear operators
- Linear functionals
- Finite dimensional normed spaces
- Continuous or bounded linear operators
- Dual spaces

**Inner Product Spaces**
- Definition and examples
- Orthonormal sets and bases
- Annihilators, projections
- Hilbert space
- Linear functionals on Hilbert spaces
- Reflexivity of Hilbert spaces

**Recommended Books**
Module Code: MATH-312
Module Title: Ordinary Differential Equations
Module Rating: 3 Cr. Hours

First and Second Order Differential Equations
- Review of ordinary differential equations
- Techniques of solving second and higher differential equations

Sturm Liouville Systems
- Some properties of Sturm-Liouville equations
- Regular, periodic and singular Sturm-Liouville systems and its applications

Series Solutions of Second Order Linear Differential Equations
- Review of power series
- Series solution near an ordinary point
- Series solution near regular singular points.

Series Solution of Some Special Differential Equations
- Hypergeometric function $F(a, b, c; x)$ and its evaluation
- Series solution of Bessel equation
- Expression for $J_n(x)$ when $n$ is half odd integer, Recurrence formulas for $J_n(x)$
- Series solution of Legendre equation
- Rodrigues formula for polynomial $P_n(x)$
- Generating function for $P_n(x)$
- Recurrence relations, orthogonal polynomials
- Orthogonality of Bessel functions
- Expansions of polynomials
- The three term recurrence relation

Recommended Books
1. E. D. Rainville, Special Functions (Macmillan and Company, 1971)
5. N. M. Temme, Special Functions, An Introduction to the Classical Functions of Mathematical Physics (John Wiley and Sons, 1996)
Semester VII

Module Code: MATH-401
Module Title: Set Theory
Module Rating: 3 Cr. Hours

Cardinality
- Equivalent sets, finite and infinite sets
- Denumerable sets
- Countable and uncountable sets
- Cardinal numbers, addition and multiplication of cardinals, Cartesian product as sets of functions
- Different types of infinity (Cantor’s contribution)

Ordinality
- Partially ordered sets, Hasse diagrams
- Totally ordered sets
- Maximal and minimal elements
- Upper and lower bound
- Well-ordered sets
- Transfinite induction
- Ordinal numbers
- Multiplication of ordinal numbers

Axiom of Choice
- Well ordering theorem
- Zorn’s lemma

Paradoxes in Set Theory
- Cantor’s paradox, Russell’s paradox and others.

Recommended Books
Module Code: MATH-402
Module Title: Partial Differential Equations
Module Rating: 3 Cr. Hours
Pre-Requisite: Ordinary Differential Equations

Introduction
- Review of ordinary differential equation in more than one variables
- Linear partial differential equations (PDEs) of the first order
- Cauchy’s problem for quasilinear first order PDEs

PDEs of Second Order
- PDEs of second order in two independent variables with variable coefficients
- Linear transformation from one equation to another equation
- Normal form
- Cauchy’s problem for second order PDEs in two independent variables

Adjoint Equation
- Adjoint operator
- Self adjoint equation and operator
- Linear PDEs in $n$ independent variables
- Lagrange’s identity
- Green’s theorem for self adjoint operator

Boundary Value Problems
- Laplace equation
- Dirichlet problem for a circle
- Poisson’s integral for a circle
- Solution of Laplace equation in Cartesian, cylindrical and spherical coordinates
- The wave equation in one dimension
- The wave equation in higher dimensions
- The heat equation
- Axially symmetric solutions

Recommended Books
Module Code: MATH-403
Module Title: Numerical Analysis - I
Module Rating: 3 Cr. Hours

**Number Systems and Errors**
- Round off errors and computer arithmetic
- Error estimation
- Floating point arithmetic

**Solution of Non-Linear Equations**
- Iterative methods and convergence: Bisection method, fixed point iterative method, Regula Falsi, Secant and Newton’s method

**Systems of Linear Equations**
- Direct methods: Gaussian elimination method, Gauss-Jordan method, matrix inversion method, factorization (Doolittle, Crout and Cholesky) method and its various forms
- Iterative methods and convergence: Gauss-Jacobi method and Gauss-Seidel method
- Ill-condition system and condition number
- Eigen values and eigenvectors
- Power and Rayleigh quotient method

**Interpolation and Polynomial Approximation**
- Difference operators
- Interpolation with unequal intervals: Lagrange’s interpolation formula, Newton’s divided difference formula, error in polynomial interpolation
- Interpolation with equal intervals: Gregory Newton forward/backward interpolation formula, error in polynomial interpolation
- Central difference interpolation formulae: Gauss’s forward/backward interpolation formula, Stirling’s formula, Laplace Everett’s formula, Bessel’s formula

**Recommended Books**
Module Code: MATH-404  
Module Title: Mathematical Statistics - I  
Module Rating: 3 Cr. Hours

Probability Distributions

- The postulates of probability
- Some elementary theorems
- Addition and multiplication rules
- Baye’s rule and future Baye’s theorem
- Random variables and probability functions.

Discrete Probability Distributions

- Uniform, Bernoulli and Binomial distribution
- Hypergeometric and geometric distribution
- Negative binomial and Poisson distribution

Continuous Probability Distributions

- Uniform and exponential distribution
- Gamma and beta distributions
- Normal distribution

Mathematical Expectations

- Moments and moment generating functions
- Moments of binomial, hypergeometric, Poisson, gamma, beta and normal distributions

Recommended Books

Module Code: MATH-405
Module Title: Fortran Programming
Module Rating: 3 Cr. Hours

Simple Fortran 90 Programs
- Writing a program
- Input statement
- Some FORTRAN 90 program examples

Numeric Constants and Variables
- Constants
- Scalar variables
- Declaring variable names
- Implicit declaration
- Named constants

Arithmetic Expressions
- Arithmetic operators and modes of expressions
- Integer expressions
- Real expressions
- Procedure of operations in expressions
- Assignment statements
- Defining variables
- Mixed mode expressions
- Intrinsic functions

Conditional Statements
- Relational operators
- The block if construct
- Example programs using if structures

Implementing Loops in Programs
- The block do loop
- Count controlled do loop

Logical Expressions and More Control Statements
- Logical constants, variables and expressions
- Precedence rules for logical operators
- The case statement

Functions and Subroutines
- Function subprograms
- Syntax rules for function subprograms
- Generic functions
- Subroutines
Defining and Manipulating Arrays
- Arrays variables
- Use of multiple subscripts
- Do type notation for input/output statements
- Initializing arrays
- Use of arrays in do loops
- Whole array operations

Elementary Format Specifications
- Format description for numerical data; read statement
- Format description for print statement
- Multi-record formats
- Printing character strings

Recommended Books
3. Larry Nyhoff and Sanford Leestma, *Fortran 90 for Engineers and Scientists*, (Prentice Hall, 1997).

Module Code: MATH-406
Module Title: Group Theory - II
Module Rating: 3 Cr. Hours
Pre-Requisite: Group Theory - I

Automorphisms and Products in Groups
- Characteristic and fully invariant subgroups
- Normal products of groups
- Holomorph of a group

Permutation Groups
- Symmetric or permutation group
- Permutability of permutations
- Transpositions
- Generators of the symmetric and alternating group
- Cyclic permutations and orbits, the alternating group
- Generators of the symmetric and alternating groups
- Simplicity of $A_n$, $n \geq 5$
- The stabiliser subgroups

Series in Groups
- Series in groups
- Zassenhaus lemma
- Normal series and their refinements
- Composition series
Recommended Books


Module Code: MATH-407
Module Title: **Ring Theory**
Module Rating: 3 Cr. Hours

**Ring Theory**
- Construction of new rings
- Direct sums, polynomial rings
- Matrix rings
- Divisors, units and associates
- Unique factorisation domains
- Principal ideal domains and Euclidean domains

**Field Extensions**
- Algebraic and transcendental elements
- Degree of extension
- Algebraic extensions
- Reducible and irreducible polynomials
- Roots of polynomials

Recommended Books

Module Code: MATH-408
Module Title: Number Theory-I
Module Rating: 3 Cr. Hours

Congruences
- Elementary properties of prime numbers
- Residue classes and Euler’s function
- Linear congruences and congruences of higher degree
- Congruences with prime moduli
- The theorems of Fermat, Euler and Wilson

Number-Theoretic Functions
- Möbius function
- The function \([x]\), the symbols \(O\) and their basic properties

Primitive roots and indices
- Integers belonging to a given exponent
- Composite moduli, primitive roots modulo a prime
- Determination of integers having primitive roots indices

Recommended Books

Module Code: MATH-409
Module Title: Quantum Mechanics-I
Module Rating: 3 Cr. Hours

Inadequacy of Classical Mechanics
- Black body radiation
- Photoelectric effect
- Compton effect
- Bohr’s theory of atomic structure
- Wave-particle duality
- The de Broglie postulate
- Heisenberg uncertainty principle
The Postulates of Quantum Mechanics: Operators, Eigenfunctions and Eigenvalues

- Observables and operators
- Measurement in quantum mechanics
- The state function and expectation values
- Time development of the state function (Schrödinger wave equation)
- Solution to the initial-value problem in quantum mechanics
- Parity operators

Preparatory Concepts: Function Spaces and Hermitian Operators

- Particle in a box
- Dirac notation
- Hilbert space
- Hermitian operators
- Properties of Hermitian operators

Additional One-Dimensional Problems: Bound and Unbound States

- General properties of the 1-dimensional Schrödinger equation
- Unbound states
- One-dimensional barrier problems
- The rectangular barrier: Tunneling

Recommended Books


Module Code: MATH-410
Module Title: Analytical Dynamics
Module Rating: 3 Cr. Hours

Lagrange’s Theory of Holonomic Systems

- Generalized coordinates
- Holonomic and non-holonomic systems
- D’Alembert’s principle, d-delta rule
- Lagrange equations
- Generalization of Lagrange equations
- Quasi-coordinates
- Lagrange equations in quasi-coordinates
- First integrals of Lagrange equations of motion
- Energy integral
Hamilton’s Theory

- Hamilton’s principle
- Generalized momenta and phase space
- Hamilton’s equations
- Ignorable coordinates, Routhian function
- Derivation of Hamilton’s equations from a variational principle
- The principle of least action

Lagrange’s Theory of Non-Holonomic Systems

- Lagrange equations for non-holonomic systems with and without Lagrange multipliers
- Hamilton’s Principle for non-holonomic systems

Canonical Transformations

- The equations of canonical transformations
- Examples of canonical transformations
- The Lagrange and Poisson brackets
- Equations of motion, infinitesimal canonical transformations and conservation theorems in the Poisson bracket formulation

Hamilton-Jacobi Theory

- The Hamilton-Jacobi equation for Hamilton’s principal function
- The harmonic oscillator problem as an example of the Hamilton-Jacobi method
- The Hamilton-Jacobi equation for Hamilton’s characteristic function
- Separation of variables in the Hamilton-Jacobi equation

Recommended Books


Module Code: MATH-411
Module Title: Electromagnetic Theory - I
Module Rating: 3 Cr. Hours

Electrostatic Fields

- Coulomb’s law, the electric field intensity and potential
- Gauss’s law and deductions, Poisson and Laplace equations
- Conductors and condensers
- Dipoles, the linear quadrupole
- Potential energy of a charge distribution, Dielectrics
• The polarization and the displacement vectors
• General solutions of Laplace’s equation
• Solutions of Laplace’s equation in spherical coordinates
• Legendre’s equation, Legendre’s polynomials

**Magnetostatic Fields**
• The Magnetostatic law of force
• The magnetic induction
• The Lorentz force on a point charge moving in a magnetic field
• The divergence of the magnetic field
• The vector potential
• The conservation of charge and the equation of continuity
• The Lorentz condition
• The curl of the magnetic field
• Ampere’s law and the scalar potential

**Steady and Slowly Varying Currents**
• Electric current, linear conductors
• Conductivity, resistance
• Kirchhoff’s laws
• Current density vector
• Magnetic field of straight and circular current
• Magnetic flux, vector potential
• Forces on a circuit in magnetic field

**Recommended Books**

Module Code: MATH-412
Module Title: Operations Research - I
Module Rating: 3 Cr. Hours

**Linear Programming**
• Linear programming, formulations and graphical solution
• Simplex method
• M-Technique and two-phase technique
• Special cases

**Duality and Sensitivity Analysis**
• The dual problem, primal-dual relationships
- Dual simplex method
- Sensitivity and postoptimal analysis

**Transportation Models**
- North-West corner
- Least-Cost and Vogel’s approximations methods
- The method of multipliers
- The assignment model
- The transhipment model
- Network minimization

**Recommended Books**

**Module Code:** MATH-413  
**Module Title:** Theory of Approximation and Splines - I  
**Module Rating:** 3 Cr. Hours  
**Pre-requisite:** Geometry

**Euclidean Geometry**
- Basic concepts of Euclidean geometry
- Scalar and vector functions
- Barycentric coordinates
- Convex hull, matrices of affine maps: translation, rotation, scaling, reflection and shear

**Approximation using Polynomials**
- **Curve Fitting:** Least squares line fitting, least squares power fit, data linearization method for exponential functions, nonlinear least-squares method for exponential functions, transformations for data linearization, linear least squares, polynomial fitting
- **Interpolation:** Basic concepts of interpolation, Lagrange’s method, error terms and error bounds of Lagrange’s method, divided differences method, Newton polynomials, error terms and error bounds of Newton polynomials, central difference interpolation formulae; Gauss’s forward interpolation formula, Gauss’s backward interpolation formula, Hermite’s methods.

**Recommended Books**

Module Code: MATH-414  
Module Title: **Functional Analysis - II**  
Module Rating: 3 Cr. Hours  
Pre-requisite: Functional Analysis-I

**Compact Normed Spaces**
- Completion of metric spaces  
- Completion of normed spaces  
- Compactification  
- Nowhere and everywhere dense sets and category  
- Generated subspaces and closed subspaces  
- Factor Spaces  
- Completeness in the factor spaces

**Complete Orthonormal set**
- Complete orthonormal sets  
- Total orthonormal sets  
- Parseval’s identity  
- Bessel’s inequality

**The Specific geometry of Hilbert Spaces**
- Hilbert spaces  
- Bases of Hilbert spaces  
- Cardinality of Hilbert spaces  
- Linear manifolds and subspaces  
- Orthogonal subspaces of Hilbert spaces  
- Polynomial bases in $L^2$ spaces

**Recommended Books**

Module Code: MATH-415  
Module Title: **Fluid Mechanics-I**  
Module Rating: 3 Cr. Hours

**Conservation of Matter**
- Introduction
- Fields and continuum concepts
- Lagrangian and Eulerian specifications
- Local, convective and total rates of change
- Conservation of mass
- Equation of continuity
- Boundary conditions

**Nature of Forces in a Fluid Field and their Effects**
- Surface and body forces
- Stress at a point
- Viscosity and Newton’s viscosity law
- Viscous and inviscid flows
- Laminar and turbulent flows
- Compressible and incompressible flows

**Irrotational Fluid Motion**
- Velocity potential from an irrotational velocity field
- Streamlines
- Vortex lines and vortex sheets
- Kelvin’s minimum energy theorem
- Conservation of linear momentum
- Bernoulli’s theorem and its applications
- Circulations, rate of change of circulation (Kelvin’s theorem)
- Axially symmetric motion
- Stokes’s stream function

**Two-dimensional Motion**
- Stream function
- Complex potential and complex velocity, Uniform flows
- Sources, sinks and vortex flows
- Flow in a sector
- Flow around a sharp edge, Flow due to a doublet

**Recommended Books**

Semester VIII

Module Code: MATH-416
Module Title: Measure Theory and Lebesgue Integration
Module Rating: 3 Cr. Hours

Measurable Sets
- Outer measure, Lebesgue measure
- Lebesgue measurable sets
- Borel sets
- Non measurable sets

Measurable Functions
- Lebesgue measurable functions
- Simple functions, characteristic functions
- Borel measurable function
- Littlewood three principle

The Lebesgue Integration
- Review of the Riemann integral
- Lebesgue integral
- Integral of a non negative function
- Integral of measurable functions
- Convergence in measure

Recommended Books
1. D. Smith, M. Eggen and R. St. Andre, A Transition to Advanced Mathematics, (Brooks, 2001)
3. H. L. Royden, Real Analysis, (Macmillam, 1968)
5. P.R. Halmos, Measure Theory, (Von Nostrand, New York, 1950)

Module Code: MATH-417
Module Title: Methods of Mathematical Physics
Module Rating: 3 Cr. Hours

Fourier Methods
- The Fourier transform
- Fourier analysis of generalized functions
- The Laplace transform
- Hankel transforms for the solution of PDE and their application to boundary value problems

Green’s Functions and Transform Methods
- Expansion for Green’s functions
- Transform methods
• Closed form Green’s functions

**Perturbation Techniques**
• Perturbation methods for algebraic equations
• Perturbation methods for differential equations

**Variational Methods**
• Euler-Lagrange equations
• Integrand involving one, two, three and n variables
• Special cases of Euler-Lagranges equations
• Necessary conditions for existence of an extremum of a functional
• Constrained maxima and minima

**Recommended Books**

Module Code: MATH-418
Module Title: Numerical Analysis - II
Module Rating: 3 Cr. Hours
Pre-Requisite: Numerical Analysis - I

**Numerical Differentiation**
• Derivatives using: Lagrange’s interpolation formula, Newton’s divided difference formula, Gregory Newton forward/backward interpolation formula, Gauss’s forward/backward interpolation formula, Stirling’s formula, Laplace Everett’s formula, Bessel’s formula

**Numerical Integration**
• Newton-Cotes formulae
• Trapezoidal rule, Simpson rule, Weddle’s rule, Boole’s rule
• Errors in quadrature formulae
• Gaussian quadrature formulae

**Formulation of Difference Equations**
• Analogy of difference equations
• Linear homogeneous difference equations with constant coefficients
• Linear non-homogeneous difference equations with constant coefficients

**Ordinary Differential Equations**
• Introduction to ODEs
• Taylor’s series method: Simultaneous first order differential equations, higher order differential equations
• Euler’s, improved Euler’s, modified Euler’s and Runge-Kutta methods with error analysis
• Predictor-corrector methods for solving initial value problems

Recommended Books

Module Code: MATH-419
Module Title: Mathematical Statistics - II
Module Rating: 3 Cr. Hours
Pre-Requisite: Mathematical Statistics - I

Functions of Random Variables
• Distribution function technique
• Transformation technique: One variable, several variables
• Moment-generating function technique

Sampling Distributions
• The distribution of the mean
• The distribution of the mean: Finite populations
• The Chi-Square distribution.
• The t distribution
• The F distribution

Regression and Correlation
• Linear regression
• The methods of least squares
• Normal regression analysis
• Normal correlation analysis
• Multiple linear regression
• Multiple linear regression (matrix notation)

Recommended Books

Module Code: MATH-420
Module Title: Computer Applications
Module Rating: 3 Cr. Hours

**Flow Chart, Algorithm and Programming of the following Numerical Methods**

- System of linear equations
  - Jacobi’s iterative method, Gauss-Seidel method
- Solutions of non-linear equations
  - Bisection method, Newton-Raphson method, Secant method, Regula Falsi method
- Interpolation
  - Langrage interpolation, Newton’s divided and forward difference interpolation
- Numerical integration:
  - Rectangular rule, Trapezoidal rule, Simpson’s rule, Booles rule, Weddles rule
- Differential equations:
  - Euler’s method, Runge-Kutta methods, predictor-corrector methods

**Mathematica**

- Introduction of mathematica, numerical calculations, algebraic calculations, symbolic and numerical mathematics, numbers, mathematical functions, algebraic manipulations, manipulating equations, series, limits and residues, linear algebra, graphs

**Recommended Books**

3. V. Rajaraman, *Computer Programming in Fortran 90 and 95*, (Prentice Hall of India, New Delhi, 1999)
Module Code: MATH-421
Module Title: Group Theory - III
Module Rating: 3 Cr. Hours

Solvable Groups
- Solvable groups, definition and examples
- Theorems on solvable groups
- Super-solvable groups

Nilpotent Groups
- Characterisation of finite nilpotent groups
- Upper and lower central series
- Frattini subgroups, free groups, basic theorems
- Definition and examples of free products of groups

Linear Groups
- Linear groups, types of linear groups
- Representation of linear groups
- Group algebras and representation modules

Recommended Books

Module Code: MATH-422
Module Title: Theory of Modules
Module Rating: 3 Cr. Hours

Modules
- Definition and examples
- Submodules
- Homomorphisms
- Quotient modules
- Direct sums of modules.
- Finitely generated modules
- Torsion modules
- Free modules
- Basis, rank and endomorphisms of free modules
- Matrices over rings and their connection with the basis of a free module
- A module as the direct sum of a free and a torsion module
Recommended Books


Module Code: MATH-423
Module Title: **Number Theory - II**
Module Rating: 3 Cr. Hours
Pre-Requisite: Number Theory - I

Quadratic Residues
- Composite moduli, Legendre symbol
- Law of quadratic reciprocity
- The Jacobi symbol

Diophantine Equations
- Equations and Fermat’s conjecture for $n = 2, n = 4$

Algebraic Number Theory
- Polynomials over a field
- Divisibility properties of polynomials
- Gauss’s lemma
- The Einstein irreducibility criterion
- Symmetric polynomials
- Extensions of a field
- Algebraic and transcendental numbers
- Bases and finite extensions, properties of finite extensions
- Conjugates and discriminants
- Algebraic integers in a quadratic field, integral bases
- Units and primes in a quadratic field
- Ideals, arithmetic of ideals in an algebraic number field
- The norm of an ideal, prime ideals, units of algebraic number field

Recommended Books


Module Code: MATH-424
Module Title: Quantum Mechanics - II
Module Rating: 3 Cr. Hours
Pre-Requisite: Quantum Mechanics - I

Harmonic Oscillator and Problems in Three-Dimensions

- The harmonic oscillator
- Eigenfunctions of the harmonic oscillator
- The harmonic oscillator in momentum space
- Motion in three dimensions
- Spherically symmetric potential and the hydrogen atom

Angular Momentum

- Basic properties
- Eigenvalues of the angular momentum operators
- Eigenfunctions of the orbital angular momentum operators $L^2$ and $L_z$
- Commutation relations between components of angular momentum and their representation in spherical polar coordinates

Scattering Theory

- The scattering cross-section
- Scattering amplitude
- Scattering equation
- Born approximation
- Partial wave analysis

Perturbation Theory

- Time independent perturbation of non-degenerate and degenerate cases
- Time-dependent perturbations

Recommended Books

Module Code:       MATH-425
Module Title:      Special Theory of Relativity
Module Rating:     3 Cr. Hours

Introduction
- Fundamental concepts

Derivation of Special Relativity
- Einstein’s formulation of special relativity
- The Lorentz transformation
- Length contraction, time dilation and simultaneity
- The velocity addition formulae
- Three dimensional Lorentz transformations

The Four-Vector Formulation of Special Relativity
- The four-vector formalism
- The Lorentz transformations in 4-vectors
- The Lorentz and Poincare groups
- The null cone structure
- Proper time

Applications of Special Relativity
- Relativistic kinematics
- The Doppler shift in relativity
- The Compton effect
- Particle scattering
- Binding energy, particle production and particle decay

Electromagnetism in Special Relativity
- Review of electromagnetism
- The electric and magnetic field intensities
- The electric current
- Maxwell’s equations and electromagnetic waves
- The four-vector formulation of Maxwell’s equations

Recommended Books
1. M. Saleem and M. Rafique, Special Relativity (Ellis Horwood, 1992)
2. W. G. V. Rosser, Introductory Special Relativity (Taylor & Francis, 1991)
Steady and Slowly Varying Currents

- The Faraday induction law
- Induced electromotance in a moving system
- Inductance and induced electromotance
- Energy stored in a magnetic field

The Equations of Electromagnetism

- Maxwell’s equations in free space and material media
- Solution of Maxwell’s equations

Electromagnetic Waves

- Plane electromagnetic waves in homogeneous and isotropic media
- The Poynting vector in free space
- Propagation plane electromagnetic waves in non-conductors
- Propagation plane electromagnetic waves in conducting media
- Reflection and refraction of plane waves
- Guided waves; coaxial line; hollow rectangular wave guide
- Radiation of electromagnetic waves
- Electromagnetic field of a moving charge

Recommended Books

• Decomposition algorithm
• Parametric linear programming
• Applications of integer programming
• Cutting-plane algorithms
• Branch-and-bound method
• Zero-one implicit enumeration
• Elements of dynamic programming
• Problem of dimensionality
• Programmes by dynamic programming

**Recommended Books**


**Module Code** MATH-428
**Module Title** Theory of Approximation and Splines - II
**Module Rating** 3 Cr. Hours
**Pre-requisites** Theory of Approximation and Splines - I

**Parametric Curves (Scalar and Vector Case)**

• Cubic algebraic form
• Cubic Hermite form
• Cubic control point form
• Bernstein Bezier cubic form
• Bernstein Bezier general form
• B-Spline cubic form
• Matrix forms of parametric curves
• Rational quadratic form
• Rational cubic form
• Tensor product surface, Bernstein Bezier cubic patch, quadratic by cubic Bernstein Bezier patch, Bernstein Bezier quartic patch
• Convex hull property
• Affine invariance property
• Variation diminishing property
• Algorithms to compute Bernstein Bezier form

**Spline Functions**

• Introduction to splines
• Cubic Hermite splines
• End conditions of cubic splines: clamped conditions, natural conditions, 2nd Derivative conditions, periodic conditions, not a knot conditions
• General Splines: natural splines, periodic splines
• Truncated power function, representation of spline in terms of truncated power functions, examples

**Recommended Books**


Module Code: MATH-429  
Module Title: **Functional Analysis - III**  
Module Rating: 3 Cr. Hours  
Pre-Requisite: Functional Analysis - I

**Semi-norms**

• Semi norms, locally convex Spaces  
• Quasi normed linear spaces  
• Bounded linear functionals  
• Hahn Banach theorem

**Conjugate spaces**

• Second conjugate space of $l_p$  
• The Riesz representation theorem for linear functionals on a Hilbert spaces  
• Conjugate space of $C[a,b]$  
• A representation theorem for bounded linear functionals on $C[a,b]$

**Uniform Boundedness**

• Weak convergence  
• The Principle of uniform boundedness  
• Consequences of the principle of uniform boundedness  
• Graph of a mapping and closed graph theorem

**Linear transformation and complete continuity**

• The closure of linear transformation  
• The class of linear transformations that admit a closure
Recommended Books


Module Code: MATH-430
Module Title: Fluid Mechanics-II
Module Rating: 3 Cr. Hours
Pre-Requisite: Fluid Mechanics-I

Two and Three-Dimensional Potential Flows

- Circular cylinder without circulation
- Circular cylinder with circulation
- Blasius theorem
- Kutta condition and the flat-plate airfoil
- Joukowski airfoil
- Vortex motion
- Karman’s vortex street
- Method of images
- Velocity potential
- Stoke’s stream function
- Solution of the Potential equation
- Uniform flow
- Source and sink
- Flow due to a doublet

Viscous Flows of Incompressible Fluids

- Constitutive equations
- Navier-Stokes’s equations, exact solutions of Navier-Stokes’s equations
- Steady unidirectional flow
- Poiseuille flow
- Couette flow
- Flow between rotating cylinders
- Stokes’ first problem
- Stokes’ second problem
Simplified Approach to Fluid Flow Problems

- Similarity from a differential equation
- Dimensional analysis
- One dimensional, steady compressible flow

Recommended Books