35. Physics

B.Sc. Physics-I Appendix 'A' (Outlines of Tests)

Paper-A:	(Written)	75 Marks
Section-I:	Mechanics (4 Q)	
Section II:	Waves, Oscillations and Optics (3 Q)	
Section III:	Thermodynamics and Kinetic theory of gases (3 Q)	
Paper-B:	Mechanics, Thermodynamics, Sound and Optics (Practical)	25 Marks
NT-4		

Note:

"Out of the Whole Syllabus (for a paper) there will be 10 questions as usual and the candidate will have to attempt 5 out of 10 questions. However;

There will be three Sections. Section I will be of four questions while remaining two sections will have three questions each. The candidate will have to attempt five (5) questions selecting not more than two (2) questions from each section. Furthermore there will be 2 to 3 parts of question in each Section. One of the parts will be either numerical or a question related to the Physical significance of the topic (conceptual question)."

Appendix 'B'

(Syllabi and Courses of Reading)

Paper-A: Written (Time: 3 Hours)

Note: Attempt five (5) questions selecting not more than two (2) questions from each section.

Sr. No.	Section	Subject
1	Section-I	Mechanics
2	Section-II	Waves, Oscillations and Optics
3	Section-III	Thermodynamics and Kinetic theory of gases

Section-I: Mechanics:

V Ector Operations:

Торіс	Scope
Vector in 3 dimensions	Introduction: Direction cosines Spherical polarco-
	ordinates: applications
Vector derivatives and operation	Divergence and curl of a vector, and gradient of a scalar
vector derivatives and operation	point functions.
	Physical application of each type; Divergence, curl of a
Gradient Divergence and Curl of a vector point function	vector field, surface & line integrals and their mutual
	relationships.
Divergence Theorem	Derivation, physical importance and application to specific
	cases. Converting from differential to integral forms
Stokes' Theorem	Derivations, physical significance and applications to

75 Marks

Total Mark:

100

	specific cases.	
PARTICLE DYNAMICS		
TOPIC	SCOPE	
Advanced application of Newton's laws. Dynamics of	Frictional forces : microscopic basis of this force Conical	
uniform motion	pendulum: The rotor circular and the banked curve.	
E-mating of mating	Deriving kinetic equations x(t). v(t) using integrations.	
	Constant and non-constant forces and special examples	
Time-dependent forces	Obtain x(t). v(t) for this case using integration method.	
Tiffe at all days formers an motion	Apply Newton's Laws to obtain v(t) for the case of motion	
Effect of drag forces on motion	with time dependent drag (viscous	
	Qualitative discussion to develop understanding.	
No. 1 destable and Des al. Conservation	Calculation of pseudo forces for simple cases (linearly	
Non-intertial frames and Pseudo forces	accelerated reference-frames). Centrifugal forces as an	
	example of pseudo force: carioles force.	
Limitations of Newton's Laws	Discussion	
Suggested Level	Ch: 6 R.H.K.	
Work and Energy		
Торіс	Scope	
	Essentially a review of grade-XII concepts, use of	
Work done by a constant force. Work done by a variable	integration technique to calculate work done (e.g. in	
force (1- dimension).	vibration of a spring obeying Hookes Law	
Work done by a variable force (2-dimensional	Obtaining general expression for force and applying to	
case)	simple cases e.g., pulling a mass at the end of a fixed string	
Work-energy theorem. General proof of work energy	Qualitative review of work energy theorem. Derivation	
theorem.	using integral calculus. Basic formula: and applications.	
Power		
	Energy changes with respect to observers in diferent	
Reference Frames	inertial frames	
Suggested level.	Ch. 7 of R.H.K	
Conservatio	on of Energy	
Topic	Scope	
Topic	Definition of either type of force & examples: work done	
	in a closed path	
Conservative and non-conservative	1 D conservative system: force as the gradient of potential	
Forces	1- D conservative system: force as the gradient of potential	
	energy: appreations to the case of a spring and force of	
One dimensional conservative system	Obtaining velocity in terms of U and E: stable unstable and	
	neutral equilibrium. Analytic solution for x(t).	
2 and 3-dimensional conservative systems	Change in P.E. for motion n 3-d. forces as the gradient of	
-	the potentials. Work done in 2 and 3-dimensional motion.	
Conservation of energy in a system of particles	Law of conservation of total energy of an isolated system.	

Suggested level	Ch: 8 of H.RK	
Systems of Particles		
Торіс	Scope	
Two particle systems and generalization to many- particle system	Center of mass: Its position, velocity and equation of motion.	
C enter of mass of solid objects	Calculation of center of mass of solid objects using integral calculus. Calculating the CM. of:	
	Uniform Rod Cylinder Sphere	
Momentum changes in a system of variable mass	Derivation of basic equation application to motion of a rocket (determination of its mass as a function of time)	
Suggested level	Ch. 9 of R.H.K.	

Collisions		
Торіс		
Angular momentum; angular velocity	Definition, conservation of angular momentum, effects of Torque.	
Overview of rotational Dynamics.	Relationships between linear & angular variables; scalar and vector form. Kinetic energy of rotation; Moment of Inertia.	
Parallel axis theorem.	Prove and illustrate; apply to simple cases	
Determination of moment of inertia of various shapes	Equations of rotational motion and effects of applications of torques.	
Rotational dynamics of rigid bodies		
Combined rotational and transnational motion	Rolling without slipping	
Stability of spinning objects	Discussion with examples Effects of torque on the angular momentum	
The spinning Top	Precessional motion.	
Suggested level	Ch. 12 & 13 H.R.K	

Торіс	Scope
Review of basic concepts of gravitation. Gravitational effect of a spherical mass distribution	Mathematical treatment.
Gravitational Potential Energy	Develop using integration techniques, calculation of escape velocity
Gravitational field & Potential	Develop the idea of field of force.
Universal Gravitational Law	Motion of planets and Kepler's Laws, (Derivation & explanation). Motion of satellites. Energy considerations in planetary and satellite motion. Qualitative discussion on application of gravitational laws to the Galaxy
Suggested level	Ch: 16 H.R.K

Gravitation

Bulk Properties of Matters	
Торіс	Scope
Review of basic concepts of gravitation Gravitational effect of a spherical mass distribution.	Mathematical Treatment
Gravitational Potential Energy	Develop using integration techniques, calculation of escape velocity

Gravitational field & Potential	Develop the idea of field of force.
Universal Gravitational Law	
	Motion of plants and Keplers Law, (Derivation & explanation)
	Motion of Satellites. Energy considerations in planetary and
	satellite motion Qualitative discussion on application of
	gravitational law to the Galaxy
Suggested levels	Ch: 14 H.R.K.
Fluid Statistics	Variation of pressure in fluid at rest and with height in the
	atmosphere.
Surface tension.	Physical basis: role, information of drops and bubbles.
Suggested levels:	Ch: 17 H.R.K.

Fluid Dynamics	General concepts of fluid flow: streamline and the equation of continuity.
Bernoulli's Equation	Derivation and some applications such as dynamic lift, thrust on a rocket
Viscosity	Physical basis: obtaining the coefficient of viscosity.
	practical examples of viscosity: fluid flow (Poiseuille's law)
Suggested level	Ch. 18. H.R.K.

Special Theory of Relativity

Торіс	Scope
Trouble with Classical Mechanics	Qualitative discussion of the inadequacy of paradoxes in classical ideas of time, length and velocity.
Postulates of Relativity	
The Lorentz Transformation, Inverse Transformation	Statements and discussion. Derivation. Assumption on which derived, application of the same transformation of velocities
Consequences of Lorentz transformation	Relativity of time; Relativity of length
Relativstic momentum	Derivation
Relativstic energy	Derivation of $E = mc2$
Suggested level	Partially covered by Ch: 21 of H.R.K

<u>Section-II</u> Waves, Oscillations and Optics: Waves

Торіс	Scope	
Mechanical waves, Traveling waves	Phase velocity of traveling waves: sinusoidal	
	waves: Group speed and dispersion.	
Waves Speed	Mechanical analysis	
Waves equation	Discussion of solution	
Power and intensity in wave motion	Derivation & discussion	
Principle of superposition, (basic ideas).		
	Interference of waves, standing waves, Phase changes on	
	reflection, natural frequency and resonance.	
Suggested level	Ch: 19 of H.R. K	

Osc	illations
Торіс	Scope
Simple harmonic oscillation (SHM)	
	Obtaining and solving the basic equation of motion x(t). v(t). Energy consideration in SHM (viscous) forces, terminal velocity. Projectile motion/air resistance.
Application of SHM	Torsional Oscillator. Physical pendulum, simple pendulum.
SUM and uniform circular motion combinations of harmonic motions	Lissajous patters
Damped Harmonic Motion	
	Equation of damped harmonic motion discussion of its solution.
Suggested level	Chapter 15 of RHK
s	Sound
Торіс	Scope
Beats phenomenon	Analytical treatment
Doppler Effect	Moving source, moving observer, both object and source moving.
OPTICS	
Interference	Coherent sources. Double slit interference (analytical treatment).
Adding of electromagnetic waves (Phasor method)	
Interference from thin films	Newton's rings (analytical treatment)
Michelson Interferometer	Discussion to include the use of a compensating plate. Michelson interferometer and its use in determining the velocity of light.
Fresnel Biprism	Basic ideas and usage.
Suggested level	Ch: 45 of H.R.K.
Diffraction	Diffraction at single slit. Intensity in single slit, diffraction using Phasor treatment, analytical treatment using addition of waves. Slit interference & diffraction combined. Diffraction at a circular aperture
Diffraction from multiple slits	Discussion including width of the maxima
Diffraction grating	Discussion, use in spectrographs. Dispersion and resolving power of gratings.
Suggested level	Ch: 46. 47 of H.R.K.
Holography	Qualitative discussion
Polarization	Basic definition production of polarization by polarizing sheets by reflection, by double refraction and double scattering.
Description of polarization states	Linear, Circular and elliptic polarization.
Rotation of plane of polarization	Use of polarimeter.
Suggested level	Ch. 48 of H.R.K

Section-III

Thermodynamics and Kinetic Theory of Cases: Temperature:

Торіс	Scope
Concept of temperature and Zeroth law of thermodynamics	
Kinetic theory of the ideal gas. work done on/by an ideal gas	
	Review of previous concepts
Internal energy of an ideal gas	To include the equipartition of energy
Intermolecular forces	Van der Waals equation of state
Quantitative discussion.	
Suggested level	Ch. 21.22 of H.R.K (Vol-1)

Statistical Mechanics

Торіс	Scope
Statistical distribution and mean values	Mean free path and microscopic calculations of mean free path.
Distribution of molecular speeds	Maxwell distribution; Maxwell-Boltzmann energy distribution, internal energy of an ideal gas.
Brownian motion	Qualitative description, Diffusion, Conduction and Viscosity.
Suggested level	Ch:22 of H.R.K. Vol-I
	Heat
Торіс	Scope
Review of previous concepts. First law of thermodynamics, transfer of heat	First law of thermodynamics & its applications, cyclic and free expansion.
Suggested level	Ch:23 of H.R.K Vol.I

Entropy and Second Law of Thermodynamics

Торіс	Scope
Reversible and irreversible process	Definition and discussion
Second Law	Definition, Heat engine, Refrigerators and Second Law.
Cycle: Carnot engines	Calculation of efficiency of heat engines.
Thermodynamic temperature scale	Absolute zero, negative temperature (discussion)
Entropy	Entropy in reversible process.
	Entropy in irreversible process.
	Entropy and second law of thermodynamics.
	Entropy & probability.
Suggested level	Ch:24 of H.R.K

Sr. No.	Subject
1	Mechanics
2	Waves, Oscillations and Optics
3	Thermodynamics and Kinetic Theory of Gases

Paper-B: Mechanics, Thermodynamics, Sound and Optics (Practical)

25 Marks

List of Experiments for Practical Paper "B"

1. Mechanics:

- 1. To determine surface tension by capillary rise.
- 2. To study the compound pendulum and estimate of value of "g
- 3. To determine Elastic constant by spiral spring.
- 4. To determine modulus of rigidity by dynamic method and static method of Maxwell's Needle.

2. Waves, Oscillations and Optics:

- 5. To study the Lissajous figures by using C.R.O.
- 6. To determine the frequency of an A.C. supply.
- 7. To determine velocity of sound by Kundt's tube
- 8. To study the principle of sextent and measure the altitude of a given point by using it.
- 9. To determine wavelengths of sodium D lines by Newton's rings.
- 10. To determine wavelength of light by Fresrel's biprism.
- 11. To determine wavelength of light by diffraction grating.
- 12. To measure the rotation of the plane of polarization.
- 13. To determine the resolving power of a diffraction grating

3. Thermodynamics and Kinetic Theory of Gases:

- 14. To study the principle of thermocouple, thermal e.m.f. and temperature diagram.
- 15. To determine the mechanical equivalent of heat, "J" by Electrical Method (Calendar and Barnes Method).
- 16. To determine the temperature coefficient of a resistor