
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 58.198.96.192

This content was downloaded on 22/11/2013 at 00:11

Please note that terms and conditions apply.

Integrability properties of the differential-difference Kadomtsev–Petviashvili hierarchy and

continuum limits

View the table of contents for this issue, or go to the journal homepage for more

2013 Nonlinearity 26 3197

(http://iopscience.iop.org/0951-7715/26/12/3197)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/0951-7715/26/12
http://iopscience.iop.org/0951-7715
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING NONLINEARITY

Nonlinearity 26 (2013) 3197–3229 doi:10.1088/0951-7715/26/12/3197

Integrability properties of the differential-difference
Kadomtsev–Petviashvili hierarchy and
continuum limits

Wei Fu1, Lin Huang2, K M Tamizhmani3 and Da-jun Zhang1

1 Department of Mathematics, Shanghai University, Shanghai 200444,
People’s Republic of China
2 School of Mathematical Sciences, Fudan University, Shanghai 200433,
People’s Republic of China
3 Department of Mathematics, Pondicherry University, Puducherry 605014, India

E-mail: djzhang@staff.shu.edu.cn

Received 7 June 2013, in final form 21 October 2013
Published 20 November 2013
Online at stacks.iop.org/Non/26/3197

Recommended by C-Q Cheng

Abstract
The paper reveals clear links between the differential-difference Kadomtsev–
Petviashvili hierarchy and the (continuous) Kadomtsev–Petviashvili hierarchy.
Isospectral differential-difference Kadomtsev–Petviashvili flows {K̄s(ū)} and
non-isospectral differential-difference Kadomtsev–Petviashvili flows {σ̄s(ū)}
are derived through Lax triad approach. The Lax triads also provide simple
zero-curvature representations for the obtained flows. The non-isospectral
flow σ̄2(ū) acts as a master symmetry to provide recursive relations for the
obtained flows. These flows generate a Lie algebra, which is a starting
point for investigating more integrability properties. We derive symmetries,
Hamiltonians and conserved quantities for the isospectral differential-difference
Kadomtsev–Petviashvili hierarchy. The Lie algebras generated respectively
by the flows, symmetries, Hamiltonians and conserved quantities have same
structures. Finally, we provide a uniform continuum limit which is different
from Miwa’s transformation. By means of defining degrees of some elements
w.r.t. the continuum limit, we prove that in the uniform continuum limit the
differential-difference Kadomtsev–Petviashvili hierarchies together with their
Lax triads, zero-curvature representations and integrability characteristics go
to their continuous counterparts. Structure deformation of Lie algebras in the
continuum limit is also explained.
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1. Introduction

The Kadomtsev–Petviashvili (KP) equation

ut = 1
4uxxx + 3uux + 3

4∂−1
x uyy (1.1)

plays a typical role in (2+1)-dimensional integrable systems. It is also the elementary model
in the celebrated Sato theory [1, 2]. The KP equation itself and its integrability characteristics,
such as infinitely many symmetries and conserved quantities, can be derived from a pseudo-
differential operator [3–5],

L = ∂ + u2∂
−1 + u3∂

−2 + · · · . (1.2)

The operator also generates a KP hierarchy [1, 5], of which the recursive structure can be
expressed either through a recursion operator [6] or through a master symmetry together with
a certain commutator [7]. By means of the recursive structure, symmetries, Hamiltonian
structures and conserved quantities of the whole isospectral KP hierarchy were constructed
[7–11].

The differential-difference Kadomtsev–Petviashvili (D�KP) equation reads

ūt̄ = (1 + 2�−1)ūx̄x̄ − 2h−1ūx̄ + 2ūūx̄ , (1.3)

where ū = ū(n, x̄, t̄) with one discrete independent variable n and two continuous ones x̄

and t̄ , the operator � is defined as �f (n) = f (n + 1) − f (n) and h is a spacing parameter
of n. This equation was first derived through a discretization of Sato’s theory [12]. The
discretization is also known as Miwa’s transformation [13]. Based on the transformation it
is quite natural to obtain bilinear identities with discrete exponential functions, from which
one can derive bilinear equations with discrete variables [12, 14–17]. However, since Miwa’s
transformation breaks the original continuous dispersion relation, it is hard at the first glance
to find the correspondence of an integrable discrete equation and its continuous counterpart.
It was shown in [18] that the D�KP equation is related to the following pseudo-difference
operator

L̄ = � + ū0 + ū1�
−1 + ū2�

−2 + · · · , (1.4)

with ū0 = ū and t̄1 = x̄. By using the above pseudo-difference operator some integrability
properties of the D�KP equation, such as symmetries and conservation laws, have been
investigated [18–21].

In this paper we will investigate integrability characteristics for the whole D�KP hierarchy.
To do that we need to introduce a master symmetry (see [22]) so as to construct the recursive
structure of the D�KP hierarchy. Usually master symmetries are related to time-dependent
spectral parameters and can be derived as non-isospectral flows. Since isospectral and
non-isospectral D�KP flows are considered simultaneously and they are all related to the
same spectral problem, we can not take t̄1 = x̄ any longer and we have to consider x̄ as a new
independent variable. To solve this problem, we use a Lax triad instead of a Lax pair to derive
the D�KP hierarchies and it turns out that this works well. The main results obtained in the
paper are the following.

• Isospectral and non-isospectral D�KP hierarchies

ūt̄s = K̄s(ū), ūt̄s = σ̄s(ū), s = 1, 2, · · · .
• A Lie algebra for the flows {K̄l(ū)} and {σ̄r (ū)}.
• A Lie algebra of symmetries of the equation ūt̄s = K̄s(ū).
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• Hamiltonian structures

ūt̄s = K̄s(ū) = ∂x̄

δH̄s

δū
, ūt̄s = σ̄s(ū) = ∂x̄

δJ̄s

δū

and a Lie algebra generated by {H̄l} and {J̄r}.
• A Lie algebra of the conserved quantities of the equation ūt̄s = K̄s(ū).
• A uniform continuum limit under which the above results go to their continuous

counterparts.

Our plan is the following. After introducing some notions and notations in section 2, we
revisit the KP hierarchy in section 3. We derive isospectral and non-isospectral KP flows via Lax
triad approach. The approach provides simple zero-curvature representations for these flows,
by which we can easily obtain a Lie algebra of the flows. The basic structure of the algebra
indicates a recursive relation for both the isospectral and non-isospectral KP flows. Integrability
properties of the isospectral KP hierarchy, such as symmetries, Hamiltonian structures and
conserved quantities and Hamiltonian structures of the non-isospectral KP hierarchy, are also
listed out in this section as known results in literature. Next, in section 4, we focus on the
D�KP hierarchy. Through the Lax triad approach we derive isospectral and non-isospectral
D�KP flows and their basic algebraic structure. The structure is used to generate infinitely
many symmetries for the isospectral D�KP hierarchy and provides a recursive relation of
flows. Then we investigate Hamiltonian structures and conserved quantities for the isospectral
D�KP hierarchy and Hamiltonian structures for the non-isospectral D�KP hierarchy. Finally
in section 5, by means of continuum limit we discuss possible connections between the D�KP
hierarchies and KP hierarchies together with their Lax triads and integrability characteristics.

2. Basic notions

Here we mainly follow the notions and notations used in [23] (see also [24, 25]).
Consider a (2+1)-dimensional continuous evolution equation

ut = K(u), u ∈ M, (2.1)

where M is an infinite dimensional linear manifold of C∞ functions u(x, y) defined on R
2 and

vanishing rapidly at infinity. The solution u(x, y, t) is usually asked to depend in a C∞-way
on the time parameter t . Since M is linear, all fibers of the tangent bundle T M are copies of
the same vector space S; S can be canonically identified with M , but it is convenient to regard
them as different objects for a better geometrical understanding (i.e. M is the manifold under
examination, S is the tangent space at any point u ∈ M). Let S∗ be the dual space of S w.r.t.
the bilinear form 〈·, ·〉 : S∗ × S → R defined as

〈f, g〉 =
∫ +∞

−∞

∫ +∞

−∞
f (x, y)g(x, y) dx dy, f ∈ S∗, g ∈ S. (2.2)

The Gâteaux derivative of a function (or an operator or a functional) F(u) on M in the
direction g ∈ S is defined as

F ′(u)[g] = ∂

∂ε
F (u + εg)

∣∣∣
ε=0

, u ∈ M, g ∈ S, (2.3)

which is usually written as F ′[g] for short without confusion. Here we note that generically
F can also depend on a time parameter t . In that case both u and t are treated as independent
variables. F(u, t) is understood as (see [25]) a family depending in a C∞-way on the parameter
t and the Gâteaux derivative F ′ is taken by ignoring the parameter t , namely

F ′[g] = F ′(u, t)[g] = ∂

∂ε
F (u + εg, t)

∣∣∣
ε=0

, u ∈ M, g ∈ S. (2.4)
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For the sake of a more generic sense, in the following definitions are given for the time-
dependent cases. They are valid as well when we remove the independent time variable t .

Consider a covector field γ : M × R → S∗, (u, t) �→ γ (u, t). If there exists a scalar
field H : M × R → R, (u, t) �→ H(u, t) such that

H ′[g] = 〈γ, g〉, u ∈ M, ∀g ∈ S, (2.5)

then H is called a potential of γ and γ is called the gradient field of H , denoted by grad H or
δH/δu. The following proposition provides a way to verify gradient fields and recover their
potentials [23, 26].

Proposition 2.1. γ = γ (u, t) is a gradient field if and only if γ ′ is a self-adjoint operator w.r.t.
the dual relation 〈·, ·〉, namely γ ′∗ = γ ′. The corresponding potential H(u, t) is given by

H(u, t) =
∫ 1

0
〈γ (λu, t), u〉 dλ. (2.6)

Consider two vector fields F, G : M ×R → S, (u, t) �→ F(u, t), G(u, t); their standard
commutator is the vector field

[[F, G]] = F ′[G] − G′[F ]. (2.7)

A vector field G : M × R → S is a symmetry of equation (2.1) if

Gt(u, t) + [[G(u, t), K(u)]] = 0 (2.8)

holds everywhere in M × R. Here sub-t (or ∂t without making any confusion) denotes partial
derivative w.r.t. t . A scalar field I : M × R → R, (u, t) �→ I (u, t) is a conserved quantity of
equation (2.1) if dI (u,t)

dt

∣∣
ut=K(u)

= 0, or equivalently,

It +
〈 δI
δu

, K
〉
= 0 (2.9)

holds everywhere in M × R. A covector field γ : M × R → S∗, (u, t) �→ γ (u, t) is a
conserved covariant of equation (2.1) if

γt + γ ′[K] + K ′∗[γ ] = 0 (2.10)

holds everywhere in M × R.
Conserved quantities and conserved covariants are related closely to each other through

the following proposition (see [23]).

Proposition 2.2. If G = G(u, t) is a symmetry and γ = γ (u, t) is a conserved covariant of
equation (2.1), then

I (u, t) = 〈γ, G〉 (2.11)

is a conserved quantity of (2.1).

In fact, when u satisfied equation (2.1), we have

dI

dt
=

〈
dG

dt
, γ

〉
+

〈
G,

dγ

dt

〉

= 〈K ′[G], γ 〉 + 〈G, −K ′∗[γ ]〉
= 〈K ′[G], γ 〉 + 〈−K ′[G], γ 〉
= 0.

Another relation is
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Proposition 2.3. Suppose that γ = γ (u, t) ∈ S∗ is a gradient field and scaler field I = I (u, t)

is its potential and dI
dt

∣∣
u=0

= 0. Then, I is a conserved quantity of equation (2.1) if and only
if γ is a conserved covariant of (2.1).

Proof. First, since γ = grad I , i.e. I ′[g] = 〈γ, g〉, by using the Leibniz rule we have

∂t 〈γ, g〉 = ∂t (I
′[g]) = (∂t I )′[g] + I ′[∂tg] = (∂t I )′[g] + 〈γ, ∂tg〉, ∀g = g(u, t) ∈ S,

which gives rise to

(∂t I )′[g] = 〈∂tγ, g〉. (2.12)

Next, when u satisfies equation (2.1), noting that

dI

dt
= ∂t I + I ′[ut ] = ∂t I + I ′[K] = ∂t I + 〈γ, K〉,

we have (
dI

dt

)′
[g] = (∂t I )′[g] + 〈γ, K〉′[g]

= 〈∂tγ, g〉 + 〈γ ′[g], K〉 + 〈γ, K ′[g]〉
= 〈∂tγ, g〉 + 〈γ ′∗K, g〉 + 〈K ′∗γ, g〉
= 〈∂tγ + γ ′K + K ′∗γ, g〉, ∀g = g(u, t) ∈ S,

where we have made use of γ ′ = γ ′∗. Thus it is clear that if I is a conserved quantity of
equation (2.1) then γ is a conserved covariant of (2.1), and vise versa. �

A linear operator θ(u) : S∗ → S is called a Noether operator of equation (2.1) if

θ ′[K] − θK ′∗ − K ′θ = 0 (2.13)

holds everywhere on M . Equation (2.13) means that the Lie derivative of θ along K is zero4.
The Noether operator maps conserved covariants of (2.1) to its symmetries; the inverse of the
Noether operator (if exists) maps symmetries of (2.1) to its conserved covariants.

An implectic operator (also known as Hamiltonian operator or Poisson tensor (see
[23, 25])) is a linear operator θ(u) : S∗ → S satisfying skew-symmetric property

〈f, θg〉 = −〈θf, g〉, ∀f, g ∈ S∗, (2.14)

and the Jacobi identity

〈f, θ ′[θg]h〉 + 〈h, θ ′[θf ]g〉 + 〈g, θ ′[θh]f 〉 = 0, ∀f, g, h ∈ S∗. (2.15)

The evolution equation (2.1) has a Hamiltonian structure if it can be written in the form

ut = K(u) = θ(u)
δH(u)

δu
, (2.16)

where θ(u) is an implectic operator.
Hamiltonian structure, gradient field and Noether operator are related as the following.

Proposition 2.4. Suppose θ(u) : S∗ → S is an implectic operator and equation (2.1) has the
form

ut = K(u) = θ(u)γ (u), γ (u) ∈ S∗. (2.17)

Then θ is a Noether operator of equation (2.1) if and only if γ is a gradient field, namely (2.17)
is a Hamiltonian structure.
4 This was pointed out by the referee.



3202 W Fu et al

Proof. It is not difficult to find

〈f, (θ ′[K] − K ′θ − θK ′∗)g〉
= 〈γ, θ ′[θf ]g〉 + 〈g, θ ′[θγ ]f 〉 + 〈f, θ ′[θg]γ 〉 + 〈θf, (γ ′ − γ ′∗)[θg]〉, ∀f, g ∈ S∗,

which proves the proposition. �

Now we turn to the differential-difference case. By M̄ we denote the infinite dimensional
linear manifold of functions ū(n, x̄) defined on Z × R and vanishing rapidly at infinity. Let S̄

be the fiber of the tangent bundle T M̄ at any point ū ∈ M̄ . In principle there is an identification
between the linear spaces M̄ and S̄, but in the sequel we generally regard them as different
objects, for the same geometrical reasons pointed out when speaking of M and S. Let S̄∗ be
the dual space of S̄ w.r.t. the bilinear form 〈·, ·〉 : S̄∗ × S̄ → R defined as

〈f̄ , ḡ〉 = h2

2

∞∑
n=−∞

∫ +∞

−∞
f̄ (n, x̄)ḡ(n, x̄) dx̄, f̄ ∈ S̄∗, ḡ ∈ S̄, (2.18)

where h stands for some spacing parameter for later use. Consider the (2+1)-dimensional
evolution equation with one discretized argument (or differential-difference equation)

ūt̄ = K̄(ū), ū ∈ M̄, (2.19)

where K̄ is some suitable C∞ vector field on M̄ . The solution u(n, x̄, t̄) is usually asked to
depend in a C∞-way on the time parameter t̄ .

Then the notions of symmetries, conserved quantities, conserved covariants, Noether
operator, implectic operator and Hamiltonian structure can be defined correspondingly, and
they are formally the same as defined in the continuous case.

3. The KP system and integrability

The KP hierarchy can be derived from the pseudo-differential operator (1.2) (for example,
one can refer to [5].) The whole hierarchy admits Hamiltonian structures, infinitely many
symmetries and conserved quantities [7–11]. In the following let us re-derive the KP hierarchy
from Lax triad approach and briefly review their integrability properties.

3.1. Lax triad approach and the KP hierarchies

3.1.1. The isospectral KP hierarchy. Let us start from the pseudo-differential operator (1.2),
i.e.

L = ∂ + u2∂
−1 + u3∂

−2 + · · · + uj+1∂
−j + · · · , (3.1)

where ∂
.= ∂x , ∂∂−1 = ∂−1∂ = 1 and uj = uj (x, y, t) with time parameters t = (t1, t2, · · ·)

are C∞ functions on R
2 and vanish rapidly at infinity. The operator ∂s obeys the Leibniz rule

∂sf =
∞∑
i=0

Ci
s(∂

if )∂s−i , s ∈ Z, (3.2)

where

Ci
s = s(s − 1)(s − 2) · · · (s − i + 1)

i!
. (3.3)
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Using this formula one can calculate the differential part of Lm, denoted by Am = (Lm)+, of
which the first few are

A1 = ∂, (3.4a)

A2 = ∂2 + 2u2, (3.4b)

A3 = ∂3 + 3u2∂ + 3u3 + 3u2,x, (3.4c)

A4 = ∂4 + 4u2∂
2 + (4u3 + 6u2,x)∂ + 4u4 + 6u3,x + 4u2,xx + 6u2

2. (3.4d)

Indeed, in the conventional formulation of the KP isospectral hierarchy, each uj is a
function of x and t only and equation (1.1) is derived from the compatibility of Lφ = ηφ and
φtm = Amφ setting t2 = y, t3 = t . Actually, the function u in the KP equation (1.1) depends on
two independent spatial variables (x, y) and a time parameter t . A Lax triad is indeed needed
to matching these three independent variables (also see [27]). This is crucially important when
the non-isospectral case makes sense. In fact, when we derive a master symmetry as a non-
isospectral flow we cannot take t2 to be y any longer and we have to consider y and t2 as two
different and independent variables. This also requires a triad instead of a pair.

For the whole isospectral KP hierarchy we need

Lφ = ηφ, ηtm = 0, (3.5a)

φy = A2φ, A2 = ∂2 + 2u2, (3.5b)

φtm = Amφ, m = 1, 2, . . . , (3.5c)

where we suppose

Am = ∂m +
m∑

j=1

aj∂
m−j , Am|u=0 = ∂m, (3.6)

with temporarily unknown coefficients {aj }. The compatibility of (3.5) reads

Ly = [A2, L], (3.7a)

Ltm = [Am, L], (3.7b)

A2,tm − Am,y + [A2, Am] = 0, m = 1, 2, · · · , (3.7c)

where [·, ·] denotes the commutator [F, G] = FG − GF . Among the above compatibility
conditions, (3.7a) gives rise to

u2,y = 2u3,x + u2,xx,

u3,y = 2u4,x + u3,xx + 2u2u2,x,

· · · · · · ,
which will be used to express {uj }j>2 in terms of u2, in the following way:

u3 = 1
2 (∂−1u2,y − u2,x), (3.8a)

u4 = 1
4 (∂−2u2,yy − 2u2,y + u2,xx − 2u2

2), (3.8b)

· · · · · · .
The equation (3.7b) plays the role to calculate those unknowns {aj } in Am. In fact, these {aj }
are uniquely determined by (3.7b) and it turns out that Am = (Lm)+ (see [28]). The third
equation (3.7c) provides the isospectral KP hierarchy

utm = Km(u) = 1
2 (Am,y − [A2, Am]), m = 1, 2, · · · , (3.9)
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where we have taken u2 = u. Here are the first four equations in the KP hierarchy:

ut1 = K1(u) = ux, (3.10a)

ut2 = K2(u) = uy, (3.10b)

ut3 = K3(u) = 1
4uxxx + 3uux + 3

4∂−1uyy, (3.10c)

ut4 = K4(u) = 1
2uxxy + 4uuy + 2ux∂

−1uy + 1
2∂−2uyyy. (3.10d)

3.1.2. The non-isospectral KP hierarchy. To derive a master symmetry we turn to the non-
isospectral case, in which we take

ηtm = ηm−1, m = 1, 2, . . . . (3.11)

In this turn the Lax triad is

Lφ = ηφ, (3.12a)

φy = A2φ, (3.12b)

φtm = Bmφ, m = 1, 2, · · · , (3.12c)

and the compatibility reads

Ly = [A2, L], (3.13a)

Ltm = [Bm, L] + Lm−1, (3.13b)

A2,tm − Bm,y + [A2, Bm] = 0, m = 1, 2, · · · , (3.13c)

where we suppose Bm is an undetermined operator of the form

Bm =
m∑

j=0

bj∂
m−j . (3.14)

Checking the asymptotic results (3.13b)u=0 and (3.13c)u=0, respectively, one finds that they
together give rise to the necessary asymptotic condition of Bm:

Bm|u=0 = 2y∂m + x∂m−1, m = 1, 2, · · · . (3.15)

We note that one can also add isospectral asymptotic terms, for example,

Bm|u=0 = 2y∂m + x∂m−1 + ∂m−2

when m � 3. This will lead to a mixed non-isospectral flow which is actually a combination
of a non-isospectral flow σm and isospectral flow Km−2. Such a combination does not change
the basic algebraic structure of flows (see section 3.2.1).

With the asymptotic condition (3.15) the operator Bm can be uniquely determined from
(3.13b) and the first few of them are

B1 = 2yA1 + x, (3.16a)

B2 = 2yA2 + xA1, (3.16b)

B3 = 2yA3 + xA2 + (∂−1u2), (3.16c)

B4 = 2yA4 + xA3 + (∂−1u2)∂ + 2(∂−1u3), (3.16d)

where Aj = (Lj )+ are defined as in section 3.1.1. Then, from (3.13c) we obtain the following
non-isospectral KP hierarchy

utm = σm(u) = 1
2 (Bm,y − [A2, Bm]), m = 1, 2, · · · . (3.17)
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The first four equations are

ut1 = σ1(u) = 2yK1, (3.18a)

ut2 = σ2(u) = 2yK2 + xK1 + 2u, (3.18b)

ut3 = σ3(u) = 2yK3 + xK2 + 2∂−1uy − ux, (3.18c)

ut4 = σ4(u) = 2yK4 + xK3 + uxx + 4u2 + ux∂
−1u + 3

2∂−2uyy − 3
2uy, (3.18d)

where {Kj } are the isospectral flows given in (3.9) and we have taken u2 = u.
{Km(u)} and {σm(u)} are called the isospectral KP flows and non-isospectral KP flows,

respectively. They are used to generate symmetries, Hamiltonians and conserved quantities
for the isospectral KP hierarchy (3.9). For these flows we have the following.

Proposition 3.1. For the isospectral and non-isospectral KP flows {Ks(u)} and {σs(u)} we
have

Ks = 1
2 (As,y − [A2, As]), (3.19a)

σs = 1
2 (Bs,y − [A2, Bs]), (3.19b)

which are called zero-curvature representations of the isospectral flow Ks and the non-
isospectral flow σs , respectively. Here we particularly note that the asymptotic data is

Ks |u=0 = 0, As |u=0 = ∂s, (3.20a)

σs |u=0 = 0, Bs |u=0 = 2y∂s + x∂s−1, (3.20b)

for s = 1, 2, . . ..

Besides, the isospectral flows {Ks(u)} can also be expressed in terms of the pseudo-
differential operator L.

Proposition 3.2. The isospectral flows {Ks(u)} defined by (3.19a) can be expressed as

Ks = ∂ (Res
∂

Ls), (3.21)

where

Res
k


 +∞∑

j=−m

cjk
j


 = c−1, m � 1.

Proof. From (3.19a) we have

2Ks = As,y − [A2, As]

= [(Ls − (Ls)−)y − [A2, L
s − (Ls)−]]0

= [(Ls)y − [A2, L
s] − ((Ls)−)y + [A2, (L

s)−]]0.

Here (Ls)− = Ls − (Ls)+ and ( · )0 means the constant part of the operator ( · ). Noting that
(3.7a) indicates (Ls)y − [A2, L

s] = 0, we then have

2Ks = [A2, (L
s)−]0 = 2∂(Res

∂
Ls). (3.22)

We finish the proof. �
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3.2. Integrability properties of the KP hierarchies

3.2.1. Algebra of flows, recursive structures and symmetries. Now we return to the notions
and notations in section 2. We suppose u = u(x, y, {tj }) with time parameters {tj } is a generic
point on the manifold M . Then the KP flows {Kl(u)} and {σr(u)} are vector fields in S. These
flows generate a Lie algebra w.r.t. the commutator [[·, ·]] defined by (2.7). This fact can be
proved by using the zero-curvature representations of these flows.

Theorem 3.1. The KP flows {Kl(u)} and {σr(u)} span (or generate) a Lie algebra5 X with
basic structure

[[Kl, Kr ]] = 0, (3.23a)

[[Kl, σr ]] = lKl+r−2, (3.23b)

[[σl, σr ]] = (l − r)σl+r−2, (3.23c)

where l, r � 1 and we set K0(u) = σ0(u) = 0.

We prove the theorem through the following two lemmas.

Lemma 3.1. For the vector field X(u) ∈ S and differential operator

N = a0∂
m + a1∂

m−1 + · · · + am−1∂ + am, N |u=0 = 0,

the equation

2X − Ny + [A2, N ] = 0 (3.24)

has only zero solution X = 0, N = 0. Here A2 = ∂2 + 2u in which we have taken u2 = u.

Proof. Comparing the coefficient of the highest power of ∂ in (3.24), we find a0 = 0. Then,
step by step, one can successfully obtain a1 = a2 = · · · = am = 0, which, in turn, gives rise
to N = 0 and consequently X = 0. �

Lemma 3.2. The KP flows {Kl(u)} and {σr(u)} and operators {Al} and {Br} satisfy

2[[Kl, Kr ]] = (|Al, Ar |)y − [A2, (|Al, Ar |)], (3.25a)

2[[Kl, σr ]] = (|Al, Br |)y − [A2, (|Al, Br |)], (3.25b)

2[[σl, σr ]] = (|Bl, Br |)y − [A2, (|Bl, Br |)], (3.25c)

where

(|Al, Ar |) = A′
l[Kr ] − A′

r [Kl] + [Al, Ar ], (3.26a)

(|Al, Ar |) = A′
l[σr ] − B ′

r [Kl] + [Al, Br ], (3.26b)

(|Bl, Br |) = B ′
l [σr ] − B ′

r [σl] + [Bl, Br ]. (3.26c)

These operators satisfy

(|Al, Ar |)|u=0 = 0, (3.27a)

(|Al, Br |)|u=0 = l∂l+r−2, (3.27b)

(|Bl, Br |)|u=0 = (l − r)(2y∂l+r−2 + x∂l+r−3). (3.27c)

5 By this we mean that {Kl} and {σl} generate a linear space X =
{∑

j αjKj +
∑

j βj σj

∣∣∣αj , βj ∈ R

}
which is

closed w.r.t. the commutator [[·, ·]].
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Proof. We only prove (3.25b). The proofs of the other equations are similar. By direct
calculation from (3.19) we find

2K ′
l [σr ] = (A′

l[σr ])y − [2σr, Al] − [A2, A
′
l[σr ]]

= (A′
l[σr ])y − [Br,y, Al] + [[A2, Br ], Al] − [A2, A

′
l[σr ]]

and

2σ ′
r [Kl] = (B ′

r [Kl])y − [2Kl, Br ] − [A2, B
′
r [Kl]]

= (B ′
r [Kl])y − [Al,y, Br ] + [[A2, Al], Br ] − [A2, B

′
r [Kl]].

Then, by substraction of the above two equalities and making using of the Jacobi identity

[[A, B], C] + [[B, C], A] + [[C, A], B] = 0,

we obtain (3.25b). Besides, substituting the asymptotic data (3.20a) and (3.20b) into (3.26b)
yields (3.27b). We note that the method used to prove this lemma has been used for many
systems (for example, see [29–35]). �

These two lemmas together with the zero-curvature representations (3.19) immediately
lead to theorem 3.1. Theorem 3.1 directly yields the following two corollaries.

Corollary 3.1. In the isospectral KP hierarchy (3.9), any equation uts = Ks(u) has two sets
of symmetries

{Kl = Kl(u)}, {τ s
r = τ s

r (u, ts) = stsKs+r−2(u) + σr(u)}, (3.28)

which generate a Lie algebra with basic structure

[[Kl, Kr ]] = 0, (3.29a)

[[Kl, τ
s
r ]] = lKl+r−2, (3.29b)

[[τ s
l , τ s

r ]] = (l − r)τ s
l+r−2, (3.29c)

where l, r, s � 1 and we set K0(u) = τ s
0 (u, ts) = 0.

Corollary 3.2. The vector field σ3(u) is a master symmetry, i.e., it acts as a flow generator via
the following relations:

Ks+1 = 1

s
[[Ks, σ3]], (3.30a)

σs+1 = 1

s − 3
[[σs, σ3]], s 
= 3, (3.30b)

with the initial flows K1 = ux given in (3.10) and σ1 and σ4 given in (3.18).

We note that σ3 and the recursive relation (3.30a) are the same as those given in [7],
which means that the KP hierarchy derived from the Lax triad approach and the KP hierarchy
generated from the recursive structure in [7] are the same.

3.2.2. Hamiltonian structures and conserved quantities. In the literature [7, 9–11] it has been
proved that both isospectral and non-isospectral KP hierarchies have Hamiltonian structures
and each equation in the isospectral KP hierarchy has two sets of conserved quantities. We
list out these results through the following two theorems.
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Theorem 3.2.

(1) Equation uts = Ks(u) in the isospectral KP hierarchy has a Hamiltonian structure, namely

uts = Ks(u) = ∂ γs = ∂
δHs

δu
, (3.31)

where the gradient field γs = γs(u) is defined by

γs = ∂−1Ks =
{
u, s = 1,

1
s−1 grad 〈γs−1, σ3〉, s > 1.

(3.32)

The corresponding Hamiltonian Hs = Hs(u) is

Hs =




1

2
〈u, u〉, s = 1,

1

s − 1
〈γs−1, σ3〉, s > 1.

(3.33)

(2) Equation uts = σs(u) in the non-isospectral KP hierarchy (3.17) has a Hamiltonian
structure

uts = σs(u) = ∂ ωs = ∂
δJs

δu
, (3.34)

where the gradient field ωs = ωs(u) is defined by

ωs =




2yu, s = 1,

1

s − 4
grad〈ωs−1, σ3〉, s > 1, s 
= 4,

2yγ4 + xγ3 +
3

4
ux +

3

2
∂−1u2 +

3

4
∂−3uyy + u∂−1u − 3

2
∂−1uy, s = 4.

(3.35)

The corresponding Hamiltonian Js = Js(u) is

Js =




〈yu, u〉, s = 1,

1

s − 4
〈ωs−1, σ3〉, s > 1, s 
= 4,∫ 1

0
〈ω4(λu), u〉dλ, s = 4.

(3.36)

The key identity that leads to the above theorem is [7]

σ ′
3∂ + ∂σ ′∗

3 = 0. (3.37)

Theorem 3.3. Hamiltonians {Hl(u)} and {Jr(u)} generate a Lie algebra w.r.t. the Poisson
bracket {·, ·}

{H, J } =
〈δH
δu

, ∂
δJ

δu

〉
.

The basic structure of the Lie algebra is

{Hl, Hr} = 0, (3.38a)

{Hl, Jr} = lHl+r−2, (3.38b)

{Jl, Jr} = (l − r)Jl+r−2, (3.38c)

where l, r, s � 1 and we set H0(u) = J0(u) = 0.
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Corollary 3.3. Equation uts = Ks(u) in the isospectral KP hierarchy (3.9) has two sets of
conserved quantities

{Hl = Hl(u)}, {I s
r = I s

r (u, ts) = stsHs+r−2(u) + Jr(u)} (3.39)

and they generate a Lie algebra with basic structure

{Hl, Hr} = 0, (3.40a)

{Hl, I
s
r } = lHl+r−2, (3.40b)

{I s
l , I s

r } = (l − r)I s
l+r−2, (3.40c)

where l, r, s � 1 and we set H0(u) = I s
0 (u, ts) = 0.

4. The D∆KP system and integrability

In this section, we will construct the D�KP hierarchy and discuss their recursive structure,
symmetries, Hamiltonian structures and conserved quantities.

4.1. Lax triad approach and the D�KP hierarchies

4.1.1. The isospectral D�KP hierarchy. First, we introduce a discrete independent variable
n. The basic operation w.r.t. n is a shift. By E we denote a shift operator defined through
Ejg(n) = g(n+j) for j ∈ Z. Besides, a difference operator � = E −1 is a discrete analogue
of derivative and �−1 = (E − 1)−1 satisfies ��−1 = �−1� = 1. �s obeys the following
discrete Leibniz rule,

�sg(n) =
∞∑
i=0

Ci
s (�ig(n + s − i))�s−i , s ∈ Z, (4.1)

where Ci
s is defined in (3.3). In equation (4.1), the notation �sg(n) indicates the composition

between �s and the operator of multiplication by the function n �→ g(n); the notation
(�ig(n + s − i)) indicates the operator of multiplication by the function n �→ �ig(n + s − i).
For example, we have

�g(n) = g(n + 1)� + (�g(n)), (4.2a)

�2g(n) = g(n + 2)�2 + 2(�g(n + 1))� + (�2g(n)), (4.2b)

�−1g(n) = g(n − 1)�−1 − (�g(n − 2))�−2 + · · · + (−1)j−1(�j−1g(n − j))�−j + · · · .
(4.2c)

Formula (4.1) can be proved by using mathematical inductive method, and we note that it is
also valid for negative integer s.

Now we consider the pseudo-difference operator

L̄ = h−1� + ū0 + hū1�
−1 + · · · + hj ūj�

−j + · · · , (4.3)

where h is the lattice spacing parameter of n-direction, ūj = ūj (n, x̄, t̄) with time parameters
t̄ = (t̄1, t̄2, · · ·) are C∞ functions w.r.t. x̄ ∈ R, defined on Z × R and vanishing rapidly at
infinity. Let us look at the following linear triad

L̄φ = ηφ, ηt̄m = 0, (4.4a)

φx̄ = Ā1φ, Ā1 = h−1� + ū0, (4.4b)

φt̄m = Āmφ, m = 1, 2, · · · . (4.4c)
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The compatibility condition is

L̄x̄ = [Ā1, L̄], (4.5a)

L̄t̄m = [Ām, L̄], (4.5b)

Ā1,t̄m − Ām,x̄ + [Ā1, Ām] = 0, (4.5c)

for m = 1, 2, . . ., where Ām = (L̄m)+ with the form

Ām = h−m�m +
m∑

j=1

h−(m−j)āj�
m−j , Ās |ū=0 = h−m�m. (4.6)

Here ū = (ū0, ū1, · · ·) and for a generic difference operator T = ∑m
j=−k aj (ū)�j , m, k � 0,

(T )+ = ∑m
j=0 aj (ū)�j . The first three of the operators Ām are

Ā1 = h−1� + ū0, (4.7a)

Ā2 = h−2�2 + h−1(�ū0 + 2ū0)� + (h−1�ū0 + ū2
0 + �ū1 + 2ū1), (4.7b)

Ā3 = h−3�3 + h−2ā1�
2 + h−1ā2� + ā3, (4.7c)

where

ā1 = �2ū0 + 3�ū0 + 3ū0,

ā2 = 2h−1�2ū0 + 3h−1�ū0 + 3ū2
0 + ū0�ū0 + �ū2

0 + 3ū1 + 3�ū1 + �2ū1,

ā3 = h−2�2ū0 + ū3
0 + h−1ū0�ū0 + h−1�ū2

0 + 5ū0ū1 + (�ū0)�ū1 + 3ū0�ū1

+ ū1�ū0 + ū1E
−1ū0 + 2h−1�2ū1 + 3h−1�ū1 + 3ū2 + 3�ū2 + �2ū2.

Equation (4.5a) is used to express ūj (j > 0) in terms of ū0, i.e.

ū1 = �−1 ∂ū0

∂x̄
, (4.8a)

ū2 = �−2 ∂2ū0

∂x̄2
− h−1�−1 ∂ū0

∂x̄
− �−1

(
ū0�

−1 ∂ū0

∂x̄

)
+ �−1

((
�−1 ∂ū0

∂x̄

)
E−1ū0

)
, (4.8b)

· · · · · · .
Equation (4.5b) actually plays a role to determine the operator Ām. In fact, if starting from
the assumption (4.6) with unknown {āj }, then (4.5b) uniquely determines Ām = (L̄m)+. With
{Ām} ready, equation (4.5c) provides the isospectral D�KP hierarchy (with ū0 = ū)

ūt̄m = K̄m(u) = Ām,x̄ − [Ā1, Ām], m = 1, 2, · · · . (4.9)

The first three equations are

ūt̄1 = K̄1(ū) = ūx̄ , (4.10a)

ūt̄2 = K̄2(ū) = (1 + 2�−1)ūx̄x̄ − 2h−1ūx̄ + 2ūūx̄ , (4.10b)

ūt̄2 = K̄3(ū) = (3�−2 + 3�−1 + 1)ūx̄x̄x̄ + 3�−1ū2
x̄ + 3ū�−1ūx̄x̄

− 6h−1�−1ūx̄x̄ + 3h−2ūx̄ + 3ūx̄�
−1ūx̄ + 3�−1(ūūx̄x̄ )

+ 3ūūx̄x̄ − 3h−1ūx̄x̄ + 3ū2
x̄ + 3ū2ūx̄ − 6h−1ūūx̄ , (4.10c)

in which (4.10b), i.e. (1.3), is first derived in [12] from a discrete Sato’s approach and is referred
to as the D�KP equation.
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4.1.2. The non-isospectral D�KP hierarchy. For the non-isospectral case, we take

ηt̄m = hηm + ηm−1 (4.11)

and assume that

B̄m =
m∑

j=0

h−(m−j)b̄j�
m−j (4.12)

with unknown functions {b̄j }. In this turn, we consider the Lax triad

L̄φ = ηφ, (4.13a)

φx̄ = Ā1φ, (4.13b)

φt̄m = B̄mφ, m = 1, 2, · · · , (4.13c)

together with the spectrum evolution (4.11). The compatibility reads

L̄x̄ = [Ā1, L̄], (4.14a)

L̄t̄m = [B̄m, L̄] + hL̄m + L̄m−1, (4.14b)

Ā1,t̄m − B̄m,x̄ + [Ā1, B̄m] = 0. (4.14c)

Looking at (4.14b) and (4.14c) asymptotically, namely, (4.14b)|ū=0 and (4.14c)|ū=0, from them
one can find

(�b̄0)|ū=0 = 0, (�b̄1)|ū=0 = h, (�b̄j )|ū=0 = 0, j = 2, 3, · · · , m;
(∂x̄ b̄0)|ū=0 = h, (∂x̄ b̄1)|ū=0 = 1, (∂x̄ b̄j )|ū=0 = 0, j = 2, 3, · · · , m.

This provides the necessary asymptotic condition for B̄m
6:

B̄m|ū=0 = h−(m−1)x̄�m + h−(m−1)(x̄ + hn)�m−1. (4.15)

With this condition, B̄m can be uniquely determined by (4.14b) and here we write out the first
three of them:

B̄1 = hx̄Ā1 + x̄ + hn, (4.16a)

B̄2 = hx̄Ā2 + (x̄ + hn)Ā1 + h�−1ū0, (4.16b)

B̄3 = hx̄Ā3 + (x̄ + hn)Ā2 + �−1ū0� + hū0�
−1ū0

+ 2h�−1ū1 − �−1ū0 + h�−1ū2
0, (4.16c)

where Āj = (L̄j )+.
Now, (4.14a) plays a role similar to (4.5a) and provides transformations that are the same

as in (4.8). (4.14c) provides the non-isospectral D�KP hierarchy (with ū0 = ū)

ūtm = σ̄m(ū) = B̄m,x̄ − [Ā1, B̄m], (4.17)

i.e.

ūt̄1 = σ̄1(ū) = hx̄K̄1 + hū, (4.18a)

ūt̄2 = σ̄2(ū) = hx̄K̄2 + (x̄ + hn)K̄1 + hūx̄ + 3h�−1ūx̄ + hū2 − ū, (4.18b)

ūt̄2 = σ̄3(ū) = hx̄K̄3 + (x̄ + hn)K̄2 + 5h�−2ūx̄x̄ − 6�−1ūx̄ + 5h�−1(ūūx̄ )

+ hūx̄�
−1ū + 4hū�−1ūx̄ − 2ū2 + h−1ū + hū3 + 3hūūx̄

+ 3h�−1ūx̄x̄ + hūx̄x̄ − 2ūx̄ , (4.18c)

· · · · · · ,
where {K̄j } are the isospectral D�KP flows defined in (4.9).

{K̄m(ū)} and {σ̄m(ū)} are respectively called the isospectral and non-isospectral D�KP
flows. For them we have the following.
6 In [20] the asymptotic condition for Bm is Bm|ū=0 = h−(m−1)x̄�m + h−(m−2)n�m−1. We note that that is not
sufficient due to missing (4.13b) in the Lax triad (4.13).
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Proposition 4.1. The isospectral and non-isospectral D�KP flows {K̄s(ū)} and {σ̄s(ū)} can
be expressed through the following zero curvature representations together with asymptotic
data,

K̄s = Ās,x̄ − [Ā1, Ās], K̄s |ū=0 = 0, Ās |ū=0 = h−s�s, (4.19a)

σ̄s = B̄s,x̄ − [Ā1, B̄s], σ̄s |ū=0 = 0, B̄s |ū=0 = h−(s−1)x̄�s + h−(s−1)(x̄ + hn)�s−1,

(4.19b)

for s = 1, 2, . . ..

Besides, similar to proposition 3.2, we have the following.

Proposition 4.2. The isospectral D�KP flows {K̄s(u)} defined by (4.9) can be expressed in
terms of the pseudo-difference operator L̄ as

K̄s = �(Res
�

L̄s). (4.20)

The proof is similar to that for proposition 3.2 and here we skip it.

4.2. Integrability properties

We have derived the isospectral and non-isospectral D�KP hierarchies (4.9) and (4.17).
To investigate their integrability properties, in the rest of this subsection we indicate with
ū = ū(n, x̄) a generic point of the manifold M̄ (that might depend as well on the time parameters
{t̄j }). Of course, the flows {K̄l(ū)} and {σ̄r (ū)} are vector fields on M̄ .

4.2.1. Algebra of flows, recursive structures and symmetries. Similar to the continuous case,
the D�KP flows {K̄l(ū)} and {σ̄r (ū)} can span a Lie algebra with recursive structures, and the
algebra leads to symmetries of the isospectral D�KP hierarchy. The proofs for the results of
this part are also similar to the continuous case (see section 3.2.1). We just list these results
without giving proofs.

Lemma 4.1. For the function X̄(ū) ∈ S̄ and difference operator

N̄ = ā0�
m + ā1�

m−1 + · · · + ām−1� + ām, N̄ |ū=0 = 0,

the equation

X̄ − N̄x̄ + [Ā1, N̄ ] = 0 (4.21)

only admits the zero solution X̄ = 0, N̄ = 0.

Lemma 4.2. Define the operators

(|Āl, Ār |) = Ā′
l[K̄r ] − Ā′

r [K̄l] + [Āl, Ār ], (4.22a)

(|Āl, B̄r |) = Ā′
l[σ̄r ] − B̄ ′

r [K̄l] + [Āl, B̄r ], (4.22b)

(|B̄l, B̄r |) = B̄ ′
l [σ̄r ] − B̄ ′

r [σ̄l] + [B̄l, B̄r ]. (4.22c)

Then we have

[[K̄l, K̄r ]] = (|Āl, Ār |)x̄ − [Ā1, (|Āl, Ār |)], (4.23a)

[[K̄l, σ̄r ]] = (|Āl, B̄r |)x̄ − [Ā1, (|Āl, B̄r |)], (4.23b)

[[σ̄l , σ̄r ]] = (|B̄l, B̄r |)x̄ − [Ā1, (|B̄l, B̄r |)], (4.23c)

and

(|Āl, Ār |)|ū=0 = 0, (4.24a)

(|Āl, B̄r |)|ū=0 = h−(l+r−2)l(�l+r−1 + �l+r−2), (4.24b)

(|B̄l, B̄r |)|ū=0 = h−(l+r−3)(l − r)
(
x̄�l+r−1 + (2x̄ + hn)�l+r−2 + (x̄ + hn)�l+r−3

)
. (4.24c)
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Theorem 4.1. The flows {K̄l(ū)} and {σ̄r (ū)} span a Lie algebra X̄ with basic structure

[[K̄l, K̄r ]] = 0, (4.25a)

[[K̄l, σ̄r ]] = l(hK̄l+r−1 + K̄l+r−2), (4.25b)

[[σ̄l , σ̄r ]] = (l − r)(hσ̄l+r−1 + σ̄l+r−2), (4.25c)

where l, r � 1 and we set K̄0(ū) = σ̄0(ū) = 0.

Corollary 4.1. In the isospectral D�KP hierarchy (4.9), each equation ūts = K̄s possesses
two sets of symmetries

{K̄l = K̄l(ū)}, {τ̄ s
r = st̄s(hK̄s+r−1(ū) + K̄s+r−2(ū)) + σ̄r (ū)}, (4.26)

which generate a Lie algebra with basic structure

[[K̄l, K̄r ]] = 0, (4.27a)

[[K̄l, τ̄
s
r ]] = l(hK̄l+r−1 + K̄l+r−2), (4.27b)

[[τ̄ s
l , τ̄ s

r ]] = (l − r)(hτ̄ s
l+r−1 + τ̄ s

l+r−2), (4.27c)

where l, r, s � 1 and we set K̄0(ū) = τ̄ s
0 (ū, t̄s) = 0.

Corollary 4.2. σ̄2 is a master symmetry, i.e., it acts as a flow generator via the following
relations:

K̄s+1 = 1

h

(1

s
[[K̄s, σ̄2]] − K̄s

)
, (4.28a)

σ̄s+1 = 1

h

( 1

s − 2
[[σ̄s , σ̄2]] − σ̄s

)
, s 
= 2, (4.28b)

with initial flows K̄1 = ūx̄ given in (4.10) and σ̄1 and σ̄3 given in (4.18).

4.2.2. Hamiltonian structures and conserved quantities. (1+1)-dimensional Lax integrable
systems usually have their own recursion operators that play important roles in investigating
integrability characteristics (see [23, 35–37]). For the D�KP hierarchy, so far there is no
explicit recursion operator but their recursive structure (4.28) will play a role which is similar
to a recursion operator. We will show that each member in the isospectral D�KP hierarchy (4.9)
and each member in the non-isospectral D�KP hierarchy (4.17) has a Hamiltonian structure,
respectively. These Hamiltonians lead to two sets of conserved quantities for the isospectral
D�KP hierarchy (4.9). Let us prove this step by step.

Lemma 4.3. The following formula

grad〈γ̄ , σ̄ 〉 = γ̄ ′∗σ̄ + σ̄ ′∗γ̄ (4.29)

holds for any γ̄ ∈ S̄∗ and σ̄ ∈ S̄.

In fact, one can verify that

〈γ̄ , σ̄ 〉′[ḡ] = 〈γ̄ ′[ḡ], σ̄ 〉 + 〈γ̄ , σ̄ ′[ḡ]〉 = 〈γ̄ ′∗σ̄ + σ̄ ′∗γ̄ , ḡ〉, ∀ḡ ∈ S̄.

Lemma 4.4. The master symmetry σ̄2(ū) given in (4.18b) satisfies

σ̄ ′
2∂x̄ + ∂x̄ σ̄

′∗
2 = 0. (4.30)

In other words, ∂x̄ is a Noether operator of the master symmetry equation ūt̄2 = σ̄2.

This identity is important for us to obtain Hamiltonian structures for the equations in the
isospectral and non-isospectral D�KP hierarchies. The proof of (4.30) needs a lengthy but
direct calculation and here we skip it.

Now we arrive at some main theorems of this part.
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Theorem 4.2. In the whole isospectral D�KP hierarchy (4.9), each equation ūt̄s = K̄s(ū) has
a Hamiltonian structure

ūt̄s = K̄s(ū) = ∂x̄

δH̄s

δū
. (4.31)

The gradient γ̄s = γ̄s(ū) = δH̄s

δū
is given by

γ̄s =




ū, s = 1,

1

h

(
1

s − 1
grad〈γ̄s−1, σ̄2〉 − γ̄s−1

)
, s > 1.

(4.32)

The Hamiltonian H̄s = H̄s(ū) is given by

H̄s =




1

2
〈ū, ū〉, s = 1,

1

h

(
1

s − 1
〈γ̄s−1, σ̄2〉 − H̄s−1

)
, s > 1.

(4.33)

Proof. Obviously, ∂x̄ is an implectic operator. Next we need to prove γ̄s is a gradient field. Let
us do that by means of mathematical inductive method. Obviously, γ1 = ū is a gradient field.
We suppose γ̄s is a gradient field, i.e. γ̄ ′

s = γ̄ ′∗
s . Then, from the recursive relation (4.28a) we

have

γ̄s+1 = ∂−1
x̄ K̄s+1

= 1

h

(1

s
∂−1
x̄ [[K̄s, σ̄2]] − ∂−1

x̄ K̄s

)

= 1

h

(1

s
∂−1
x̄

(
(∂x̄ γ̄s)

′[σ̄2] − σ̄ ′
2[∂x̄ γ̄s]

) − γ̄s

)

= 1

h

(1

s
∂−1
x̄ (∂x̄ γ̄

′
s σ̄2 − σ̄ ′

2∂x̄ γ̄s) − γ̄s

)
.

It then follows from (4.30) that

γ̄s+1 = 1

h

(1

s
∂−1
x̄ (∂x̄ γ̄ ′

s σ̄2 + ∂x̄ σ̄
′∗
2 γ̄s) − γ̄s

)

= 1

h

(1

s
(γ̄ ′

s σ̄2 + σ̄ ′∗
2 γ̄s) − γ̄s

)

= 1

h

(1

s
grad〈γ̄s , σ̄2〉 − γ̄s

)
.

Here we also made use of lemma 4.3. Thus, it is clear that if γ̄s is a gradient field, so is γ̄s+1.
For the Hamiltonians, H̄1 = 1

2 〈ū, ū〉 is derived by using proposition 2.1 where γ̄1 = ū. When
s > 1 H̄s is derived from the recursive relation of γ̄s given in (4.32). �

Theorem 4.3. In the non-isospectral D�KP hierarchy (4.17), each equation ūts = σ̄s(ū) has
a Hamiltonian structure

ūt̄ = σ̄s(ū) = ∂x̄

δJ̄s

δū
. (4.34)

More precisely, the covector fields

ω̄s(ū) = ∂−1
x̄ σ̄s (4.35)
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are given by

ω̄1 = hx̄ū, (4.36a)

ω̄2 = hx̄γ̄2 + (x̄ + hn)γ̄1 + h�−1ū, (4.36b)

ω̄3 = hx̄γ̄3 + (x̄ + hn)γ̄2 + 2h�−2ūx̄ + h�−1ū2 + hū�−1ū − 2�−1ū, (4.36c)

ω̄s = 1

h

( 1

s − 3
grad〈ω̄s−1, σ̄2〉 − ω̄s−1

)
, s = 4, 5, · · · , (4.36d)

and ω̄s = δJ̄s

δū
, where the Hamiltonian J̄s = J̄s(ū) are given by

J̄s =




h

2
〈x̄ū, ū〉, s = 1,

1

h

(
1

s − 3
〈ω̄s−1, σ̄2〉 − J̄s−1

)
, s > 1, s 
= 3,

∫ 1

0
〈ω̄3(λū), ū〉dλ, s = 3.

(4.37)

Proof. The proof is quite similar to the isospectral case. In this turn we need to start from the
recursive relation (4.28b). However, σ̄3 cannot be derived from (4.28b). By direct verification
we can find that ω̄′

s = ω̄′∗
s holds for s = 1, 2, 3. Now we suppose that ω̄s is a gradient function.

Then, if s > 2, from the recursive relation (4.28b) we have

ω̄s+1 = ∂−1
x̄ σ̄s+1 = 1

h

(
1

s − 2
∂−1
x̄ [[σ̄s , σ̄2]] − ∂−1

x̄ σ̄s

)

= 1

h

(
1

s − 2
∂−1
x̄ (∂x̄ ω̄′

s σ̄2 − σ̄ ′
2∂x̄ ω̄s) − ω̄s

)

= 1

h

(
1

s − 2
∂−1
x̄ (∂x̄ ω̄′

s σ̄2 + ∂x̄ σ̄
′∗
2 ω̄s) − ω̄s

)

= 1

h

(
1

s − 2
(ω̄′

s σ̄2 + σ̄ ′∗
2 ω̄s) − ω̄s

)

= 1

h

(
1

s − 2
grad(ω̄s, σ̄2) − ω̄s

)
,

where we have made use of (4.30) and lemma 4.3. Since ω̄s is a gradient function, so is
ω̄s+1, and therefore (4.34) holds. The Hamiltonian J̄s is determined using proposition 2.1 and
lemma 4.3. Thus the proof is completed. �

As a corollary of the above two theorems and proposition 2.4, we have

Corollary 4.3. ∂x̄ is a Noether operator of the whole isospectral D�KP hierarchy (4.9) and
non-isospectral D�KP hierarchy (4.17), namely

K̄ ′
s∂x̄ + ∂x̄K̄

′∗
s = 0, (4.38a)

σ̄ ′
s∂x̄ + ∂x̄ σ̄

′∗
s = 0 (4.38b)

hold for s = 1, 2, . . ..

These two equations play an important role in deriving the following theorem.

Theorem 4.4. The Hamiltonians {H̄l(ū)} and {J̄r (ū)} described in (4.33) and (4.37) span a
Lie algebra with basic structure

{H̄l, H̄r} = 0, (4.39a)

{H̄l, J̄r} = l(hH̄l+r−1 + H̄l+r−2), (4.39b)

{J̄l , J̄r} = (l − r)(hJ̄l+r−1 + J̄l+r−2), (4.39c)
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where the Poisson bracket {·, ·} is defined as

{F̄ , Ḡ} =
〈δF̄
δū

, ∂x̄

δḠ

δū

〉
(4.40)

with scalar fields F̄ and Ḡ on M̄ .

Proof. The relations (4.39) can be derived from (4.25). We only prove (4.39b), let us look at
the relation

[[K̄l, σ̄r ]] = l(hK̄l+r−1 + K̄l+r−2). (4.41)

On one hand,

∂−1
x̄ [[K̄l, σ̄r ]] = ∂−1

x̄ (∂x̄ γ̄
′
l σ̄r − σ̄ ′

r∂x̄ γ̄l) = γ̄ ′∗
l σ̄r + σ̄ ′∗

r γ̄l = grad〈γ̄l , σ̄r〉,
where we have made use of γ̄ ′

l = γ̄ ′∗
l , (4.38b) and lemma 4.3. On the other hand, applying

∂−1
x̄ on the r.h.s. of (4.41) yields

l∂−1
x̄ (hK̄l+r−1 + K̄l+r−2) = l(hγ̄l+r−1 + γ̄l+r−2).

Thus we have

〈γ̄l , σ̄r〉 = l(hH̄l+r−1 + H̄l+r−2).

Meanwhile, noting that

{H̄l, J̄r} =
〈δH̄l

δū
, ∂x̄

δJ̄r

δū

〉
= 〈γ̄l , ∂x̄ ω̄r〉 = 〈γ̄l , σ̄r〉,

we immediately obtain (4.39b). The relations (4.39a) and (4.39c) can be proved in a similar
way. �

Now we come to the final theorem of this part.

Theorem 4.5. In the isospectral D�KP hierarchy (4.9), each equation

ūt̄s = K̄s(ū) (4.42)

has two sets of conserved quantities

{H̄l = H̄l(ū)}, {Ī s
r = Ī s

r (ū, t̄s) = st̄s(hH̄s+r−1(ū) + H̄s+r−2(ū)) + J̄r (ū)}, (4.43)

where H̄l and J̄r are defined in (4.33) and (4.37), respectively. They generate a Lie algebra
w.r.t. the Poisson bracket (4.40) with basic structure

{H̄l, H̄r} = 0, (4.44a)

{H̄l, Ī
s
r } = l(hH̄l+r−1 + H̄l+r−2), (4.44b)

{Ī s
l , Ī s

r } = (l − r)(hĪ s
l+r−1 + Ī s

l+r−2), (4.44c)

where l, r, s � 1 and we set H̄0(ū) = Ī s
0 (ū, t̄s) = 0.

Proof. Noting that equation (4.42) has two sets of symmetries

{K̄l}, {τ̄ s
r = st̄s(hK̄s+r−1 + K̄s+r−2) + σ̄r} (4.45)

and ∂x̄ is a Noether operator of equation (4.42) (namely ∂−1
x̄ maps symmetries to conserved

covariants for (4.42)), these symmetries applied by ∂−1
x̄ give rise to

{γ̄l = ∂−1
x̄ K̄l}, {ϑ̄ s

r = ∂−1
x̄ τ̄ s

r = st̄s(hγ̄s+r−1 + γ̄s+r−2) + ω̄r}, (4.46)

which are conserved covariants of equation (4.42). Since it is already known that {γ̄l} and {ϑ̄ s
r }

are all gradient fields, according to proposition 2.3, their potentials {H̄l} and {Ī s
r } are conserved

quantities of equation (4.42).
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Finally, the relation (4.44) can be easily verified by using the algebra (4.39). �
Conserved quantities of the equation ūt̄s = K̄s(ū) can also be derived from proposition 2.2

about conserved covariants and symmetries; let us note that the definition of the Poisson bracket
(4.40) readily gives the relations

{H̄r , H̄l} = 〈γ̄r , K̄l〉, (4.47a)

{Ī s
r , H̄l} = 〈ϑ̄ s

r , K̄l〉, (4.47b)

{Ī s
r , Ī s

l } = 〈ϑ̄ s
r , τ̄

s
l 〉. (4.47c)

5. Continuum limits

5.1. Backgrounds

Let us write the KP equation and the D�KP equation below,

ut3 = 1
4uxxx + 3uux + 3

4∂−1
x uyy, (5.1)

ūt̄2 = (1 + 2�−1)ūx̄x̄ − 2h−1ūx̄ + 2ūūx̄ . (5.2)

Following Miwa’s transformation, or in practice, comparing exponential parts in the solution
of these two equations, one can introduce coordinates relation

x = x̄ + τ, y = t̄2 − h

2
τ, t3 = h2

3
τ, τ = nh. (5.3)

The continuum limit is then conducted through replacing ū by hu and taking n → ∞ and
h → 0 simultaneously. The result is that the KP equation (5.1) appears as the leading term of
the D�KP equation (5.2). Similar relationship exists in non-commutative case [38].

However, the continuum limit (5.3) does not fit the whole D�KP hierarchy. It also breaks
those basic algebraic structures and the Hamiltonian structure of the D�KP equation. In fact,
to keep the Hamiltonian structure in a continuum limit, one at least needs t̄m ∝ tm. We need a
new scheme for continuum limits.

5.2. Plan for continuum limits

Our plan for the continuum limit is the following.

• n → ∞ and h → 0 simultaneously such that nh is finite.
• Introduce auxiliary continuous variable7

τ = nh, (5.4)

and thus, function f (n + j) is mapped to f (τ + jh).
• Define coordinates relation

x = x̄ + τ, y = − 1
2hτ, tm = t̄m, (5.5)

under which one has

∂x̄ = ∂x, ∂τ = ∂x − 1
2h∂y, ∂t̄m = ∂tm . (5.6)

• Define functions relation

ū0(n, x̄, t̄m) = ū(n, x̄, t̄m) = hu(x, y, tm), (5.7a)

ūj (n, x̄, t̄m) = uj+1(x, y, tm), j = 1, 2, · · · . (5.7b)

7 In fact, we can take τ = τ0 + nh with constant τ0. Here we take τ0 = 0 for convenience and without loss of
generality.
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5.3. Pseudo-difference operator and the D�KP equation

Under the continuum limit designed in the above subsection, the pseudo-difference operator
L̄ and pseudo-differential operator L satisfy

L̄ = L + O(h). (5.8)

In fact, applying � on a test function f (n) and making use of Taylor expansion, one finds

� = h∂τ +
1

2!
h2∂2

τ +
1

3!
h3∂3

τ + O(h4)

= h∂x +
h2

2
(∂2

x − ∂y) +
h3

6
(∂3

x − 3∂x∂y) + O(h4). (5.9)

Consequently,

�−1 = h−1∂−1
x +

1

2
(∂−2

x ∂y − 1) + h
(1

2
∂−3
x ∂2

y +
1

12
∂x

)
+ O(h2), (5.10a)

�−2 = h−2∂−2
x + h−1(∂−3

x ∂y − ∂−1
x ) +

(3

4
∂−4
x ∂2

y − 1

2
∂−2
x ∂y − 5

12

)
+ O(h), (5.10b)

· · · · · · .
Thus, it is clear that

h−j�j = ∂j
x + O(h), j ∈ Z. (5.11)

Making use of (5.11) together with the relation (5.7) one immediately reaches (5.8).
Let us have a look at some lower order flows. In the continuum limit designed in section 5.2,

we find

K̄1 = hux = hK1, (5.12a)

K̄2 = huy + O(h2) = hK2 + O(h2), (5.12b)

K̄3 = h
(1

4
uxxx + 3uux +

3

4
∂−1
x uyy

)
+ O(h2) = hK3 + O(h2). (5.12c)

In our continuum limit, it is not the so-called D�KP equation ūt̄2 = K̄2 but the next member
in the D�KP hierarchy, namely ūt̄3 = K̄3 that goes to the continuous KP equation ut3 = K3 .

In addition, for the first three non-isospectral flows, we find

σ̄1 = h(2yK1) + O(h) = hσ1 + O(h2), (5.13a)

σ̄2 = h(2yK2 + xK1 + 2u) + O(h2) = hσ2 + O(h2), (5.13b)

σ̄3 = h(2yK3 + xK2 + 2∂−1
x uy − ux) + O(h2) = hσ3 + O(h2). (5.13c)

Let us, taking (5.13a) as an example, explain how the variable y appears. In fact,

σ̄1 = hx̄ūx̄ = h2(x − τ)ux = h2xux + 2hyux = hσ1 + O(h2).

Thus, we have seen that, in our continuum limit, the first three D�KP isospectral and
non-isospectral flows go to their continuous counterparts and the leading terms are of O(h).

5.4. Degrees

In order to investigate the continuum limit for the whole D�KP hierarchies together with their
integrability properties, let us introduce degrees of functions and operators (see [37]).

Definition 5.1. Assume that, under the plan described in section 5.2, a function f̄ (n, x̄, t̄m)

(or an operator P̄ (ū, �)) can be expanded in a series in terms of h; in this case, the order
of the leading term is called the degree of f̄ (n, x̄, t̄m) (or P̄ (ū, �)) and denoted by deg f̄ (or
deg P̄ (ū, �)).
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By this definition, from the previous discussion we immediately have

deg L̄ = 0, (5.14)

deg �j = j, j ∈ Z, (5.15)

deg ū = 1, deg ūj = 0, j = 1, 2, . . . (5.16)

and

deg K̄j = 1, deg σ̄j = 1, j = 1, 2, 3.

Hereafter in this paper, by continuum limit we mean the one we designed in section 5.2
without any confusion. Let us first give some properties about degrees of functions and
operations. We particularly note that propositions 5.1–5.5 are still valid when the involved
functions, i.e. f̄ (ū), ḡ(ū), γ̄ (ū), ϑ̄(ū), H̄ (ū) and Ī (ū), are time dependent.

Proposition 5.1. For the functions (or operators) f̄ (ū) and ḡ(ū) , it holds that

deg f̄ · ḡ = deg f̄ + deg ḡ, (5.17a)

deg (f̄ + ḡ) � min{deg f̄ , deg ḡ}. (5.17b)

Proposition 5.2. For the vector fields f̄ (ū) and ḡ(ū) defined on M̄ and satisfying f̄ (ū)|ū=0 = 0
and ḡ(ū)|ū=0 = 0, suppose that in the continuum limit

f̄ (ū) = f (u)hi + O(hi+1), ḡ(ū) = g(u)hj + O(hj+1), (5.18)

namely

deg f̄ = i, deg ḡ = j.

It then holds that

[[f̄ (ū), ḡ(ū)]]ū = [[f (u), g(u)]]u hi+j−1 + O(hi+j ), (5.19)

deg [[f̄ (ū), ḡ(ū)]]ū � deg f̄ (ū) + deg ḡ(ū) − 1. (5.20)

Here the subscripts ū and u indicate the commutator [[·, ·]] are defined in terms of the Gâteaux
derivatives w.r.t. ū and u, respectively.

Proof. Noting that ū = hu, we have

f̄ ′[ḡ] = ∂

∂ε
f̄ (ū + εḡ(ū))

∣∣∣
ε=0

= ∂

∂ε
f̄ (hu + ε(g(u)hj + O(hj+1)))

∣∣∣
ε=0

= ∂

∂ε
f̄ (h(u + ε(g(u)hj−1 + O(hj ))))

∣∣∣
ε=0

= ∂

∂ε

(
f (u + ε(g(u)hj−1 + O(hj )))hi + · · ·

)∣∣∣
ε=0

= f ′[g]hi+j−1 + O(hi+j ). (5.21a)

Similarly,

ḡ′[f̄ ] = g′[f ]hi+j−1 + O(hi+j ), (5.21b)

which, together with (5.21a), yields (5.19). (5.20) is valid in light of (5.17b). �
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Proposition 5.3. For f̄ (ū) ∈ S̄∗ and ḡ(ū) ∈ S̄, if in the continuum limit,

f̄ (ū) = f (u)hi + O(hi+1), ḡ(ū) = g(u)hj + O(hj+1),

then

〈f̄ (ū), ḡ(ū)〉 = 〈f (u), g(u)〉hi+j + O(hi+j+1), (5.22a)

deg 〈f̄ (ū), ḡ(ū)〉 = deg f̄ (ū) + deg ḡ(ū). (5.22b)

Here on lhs and rhs of (5.22a) the inner products are defined as in (2.18) for the semi-discrete
case and (2.2) for the continuous case, respectively.

Proof. First,

〈f̄ (ū), ḡ(ū)〉 = h2

2

+∞∑
n=−∞

∫ +∞

−∞
f̄ (ū)ḡ(ū) dx̄

= h2

2

+∞∑
n=−∞

∫ +∞

−∞
(f (u)g(u)hi+j + O(hi+j+1)) dx̄

= h

2

∫ +∞

−∞

∫ +∞

−∞
(f (u)g(u)hi+j + O(hi+j+1)) dx̄ dτ.

Next, noting that the coordinates transformation (5.5) indicates the Jacobian

J = ∂(x̄, τ )

∂(x, y)
= − 2

h
,

we have

〈f̄ (ū), ḡ(ū)〉 = h

2

∫ +∞

−∞

∫ +∞

−∞
(f (u)g(u)hi+j + O(hi+j+1)) |J | dx dy

=
∫ +∞

−∞

∫ +∞

−∞
(f (u)g(u)hi+j + O(hi+j+1)) dx dy

= 〈f (u), g(u)〉hi+j + O(hi+j+1).

The proof is finished. �

Proposition 5.4. In the continuum limit if

γ̄ (ū) = δH̄ (ū)

δū
= γ (u)hi + O(hi+1),

then we have

deg H̄ (ū) = deg γ̄ (ū) + 1. (5.23)

In addition, if γ (u) is also a gradient field and we recover its potential by

H(u) =
∫ 1

0
〈γ (λu), u〉 dλ, (5.24)

then we have

H̄ (ū) = H(u)hi+1 + O(hi+2), γ (u) = δH(u)

δu
. (5.25)
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Proof. In light of proposition 5.3 and noting that

H̄ (ū) =
∫ 1

0
〈γ̄ (λū), ū〉dλ = hi+1

∫ 1

0
〈γ (λu〉, u〉dλ + O(hi+2), (5.26)

one has

deg H̄ (ū) = deg γ̄ (ū) + deg ū = deg γ̄ (ū) + 1.

If γ (u) is a gradient field, after defining H(u) in (5.24), from (5.26) we reach to (5.25). �

Proposition 5.5. Suppose that in continuum limit

γ̄ (ū) = δH̄ (ū)

δū
= γ (u)hi + O(hi+1), ϑ̄(ū) = δĪ (ū)

δū
= ϑ(u)hj + O(hj+1),

and both γ (u) and ϑ(u) are still gradient fields. Then, according to proposition 5.4 we have

H̄ (ū) = H(u)hi+1 + O(hi+2), Ī (ū) = I (u)hj+1 + O(hj+2) (5.27)

with γ (u) = δH(u)

δu
and ϑ(u) = δI (u)

δu
and

{H̄ (ū), Ī (ū)} = {H(u), I (u)}hi+j + O(hi+j+1), (5.28a)

deg {H̄ (ū), Ī (ū)} = deg H̄ (ū) + deg Ī (ū) − 2. (5.28b)

Proof. In light of proposition 5.3, one has

{H̄ (ū), Ī (ū)} = 〈γ̄ (ū), ∂x̄ ϑ̄(ū)〉 = 〈γ (u), ∂xϑ(u)〉hi+j + O(hi+j+1)

= {H(u), I (u)}hi+j + O(hi+j+1),

which also indicates the degree relation (5.28b). �

Besides, the following lemmas will be helpful for investigating the degrees of Ām, B̄m, K̄j

and σ̄j .

Lemma 5.1. Suppose that W̄m is a difference operator

W̄m =
m∑

j=0

w̄j (ū)�m−j , with W̄m|ū=0 = 0

and w̄j (ū) are polynomials in ∂i
x̄(�

kū), i, k ∈ Z. If W̄m satisfies [W̄m, L̄] = 0, then W̄m = 0.

Proof. Arrange the terms of [W̄m, L̄] in terms of �. The highest order term reads (�w̄0)�
m+1,

which indicates �w̄0 = 0. This yields w̄0 = 0 due to W̄m|ū=0 = 0. Thus, in the remains
the highest order term is (�w̄1)�

m, which should be zero. Then we obtain w̄1 = 0 due to
W̄m|ū=0 = 0. Repeating the procedure we will finally reach W̄m = 0. �

Similarly, we have

Lemma 5.2. For the differential operator

Wm =
m∑

j=0

wj(u)∂m−j , with Wm|u=0 = 0

and wj(u) are polynomials in ∂i
xu, if [Wm, L] = 0, then Wm = 0.

Now let us present more results on degrees.
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Proposition 5.6. For the difference operator

W̄m =
m∑

j=0

w̄j (ū)�m−j

with w̄j (ū) being polynomials in ∂i
x̄(�

kū), i, k ∈ Z, we have

deg [W̄m, L̄] � deg W̄m, (5.29)

and if W̄m|ū=0 = 0, then

deg [W̄m, L̄] = deg W̄m, (5.30)

Proof. (5.29) holds by virtue of proposition 5.1 and the fact deg L̄ = 0. Let us prove (5.30).
Suppose that

W̄m = p(∂x)h
s + O(hs+1),

i.e.

deg W̄m = s,

where p(∂x) is some differential operator polynomial and p(∂x) 
= 0. Then one has

[W̄m, L̄] = [p(∂x), L]hs + O(hs+1)

with leading term [p(∂x), L]. If

deg [W̄m, L̄] > deg W̄m, (5.31)

then the leading term [p(∂x), L] of [W̄m, L̄] has to be zero, i.e.

[p(∂x), L] = 0. (5.32)

Noting that W̄m|ū=0 = 0 indicates p(∂x)|u=0 = 0, thus in light of lemma 5.2, from (5.32)
one obtain p(∂x) = 0. This is contradictory to the assumption deg W̄m = s, which means the
assumption (5.31) is not correct, and consequently (5.30) holds. �

Proposition 5.7. In the continuum limit, we have

deg Ām = 0, (5.33a)

Ām = Am + O(h). (5.33b)

Proof. First, Ām can be written out in the following form

Ām = �m

hm
+

m∑
j=1

āj

�m−j

hm−j
= ∂m

x + O(h) +
m∑

j=1

āj (∂
m−j
x + O(h)). (5.34)

Note that Ām = (L̄m)+. That is to say, āj only contains shifted ūs without any integration
terms (for example, �−1ūs). That means that deg āj � 0 for j = 1, 2, . . . m, and therefore
(5.33a) holds.

Next, in light of the above discussion, one can write Ām as

Ām = A(0)
m + O(h),

where A(0)
m is a pure differential operator independent of h and A(0)

m |u=0 = ∂m
x . Now, from

L̄t̄m = [Ām, L̄] we have

Ltm = [A(0)
m , L] + O(h)

and taking h → 0 it goes to

Ltm = [A(0)
m , L].

Finally, noting that A(0)
m |u=0 = Am|u=0 = ∂m

x and making use of lemma 5.2, we obtain
A(0)

m = Am, namely (5.33b) holds. �
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Proposition 5.8. In the continuum limit, we have

deg B̄m = 0, (5.35a)

B̄m = Bm + O(h). (5.35b)

Proof. In light of lemma 5.1, B̄m can be written out in the following form

B̄m = D̄m + C̄m−2, (5.36)

where D̄m = x̄hĀm + (x̄ + nh)Ām−1, C̄m−2 is a pure difference operator and C̄m−2|ū=0 = 0.
Suppose that

C̄m−2 = C
(0)
m−2h

s + O(hs+1),

i.e. deg C̄m−2 = s. From (4.14b) we have

L̄t̄m = [D̄m, L̄] + [C̄m−2, L̄] + hL̄m + L̄m−1, (5.37)

where for the term [C̄m−2, L̄] we have deg [C̄m−2, L̄] = deg C̄m−2 = s due to C̄m−2|ū=0 = 0
and proposition 5.6, and the remaining terms altogether have degree zero. If s < 0, there must
have [C(0)

m−2, L] = 0, which yields C
(0)
m−2 = 0 in light of lemma 5.2. This is in contradiction

with the assumption deg C̄m−2 = s. Consequently, we must have s � 0. Thus, noting that
deg D̄m = 0, (5.35a) holds.

With (5.35a) in hand, we can write

B̄m = B(0)
m + O(h), (5.38)

where

B(0)
m = 2yAm + xAm−1 + Cm−2,

and Cm−2 is a pure differential operator independent of h, that satisfies Cm−2|u=0 = 0.
Substituting (5.38) into (4.14b) and taking the leading terms we get

Ltm = [B(0)
m , L] + Lm−1.

Obviously, Bm and B(0)
m satisfy the same equation and have same asymptotic condition

Bm|u=0 = B(0)
m |u=0 = 2y∂m

x + x∂m−1
x ,

which gives B(0)
m = Bm in light of lemma 5.2. Therefore the relation (5.35b) holds as well. �

Proposition 5.9. In the continuum limit, we have

deg K̄m = 1, (5.39a)

K̄m = hKm + O(h2). (5.39b)

Proof. First, we would like to stress the following relation,

Ā1 = A1 +
h

2
(A2 − ∂y) + O(h2). (5.40)

This can be derived by substituting (5.9) and ū0 = ū = hu into equation (4.7a) for Ā1.
Actually, to derive (5.39) we need to make higher order expansions. Let us write

Ām = Am + A(1)
m h + O(h2). (5.41)
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Inserting (5.40) and (5.41) into the zero-curvature representation (4.19a) we obtain

K̄m = Ām,x̄ − [Ā1, Ām]

= h

2
(Am,y − [A2, Am]) + O(h2)

= hKm + O(h2),

which proves (5.39). �

In a quite similar way, by using (5.40), (4.19b) and the expression

B̄m = Bm + B(1)
m h + O(h2), (5.42)

we have the following.

Proposition 5.10. In the continuum limit, we have

deg σ̄m = 1, (5.43a)

σ̄m = hσm + O(h2). (5.43b)

5.5. Lax triads

From the previous discussions we have known that

L̄ = L + O(h), (5.44a)

Ā1 = A1 +
h

2
(A2 − ∂y) + O(h2), (5.44b)

Ām = Am + A(1)
m h + O(h2), (5.44c)

B̄m = Bm + B(1)
m h + O(h2). (5.44d)

Substituting them into the Lax triads and their compatibility equations given in section 4
we immediately reach the following results.

Proposition 5.11. For the isospectral D�KP hierarchy we have

L̄φ − ηφ = Lφ − ηφ + O(h), (5.45a)

φx̄ − Ā1φ = h

2
(φy − A2φ) + O(h2), (5.45b)

φt̄m − Āmφ = φtm − Amφ + O(h), (5.45c)

and

L̄x̄ − [Ā1, L̄] = h

2
(Ly − [A2, L]) + O(h2), (5.46a)

L̄t̄m − [Ām, L̄] = Ltm − [Am, L] + O(h), (5.46b)

Ā1,t̄m − Ām,x̄ + [Ā1, Ām] = h

2
(A2,tm − Am,y + [A2, Am]) + O(h2). (5.46c)

Proposition 5.12. For the non-isospectral D�KP hierarchy we have

L̄φ − ηφ = Lφ − ηφ + O(h), (5.47a)

φx̄ − Ā1φ = h

2
(φy − A2φ) + O(h2), (5.47b)

φt̄m − B̄mφ = φtm − Bmφ + O(h), (5.47c)
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and

L̄x̄ − [Ā1, L̄] = h

2
(Ly − [A2, L]) + O(h2), (5.48a)

L̄t̄m − [B̄m, L̄] − hL̄m − L̄m−1 = Ltm − [Bm, L] − Lm−1 + O(h), (5.48b)

Ā1,t̄m − B̄m,x̄ + [Ā1, B̄m] = h

2
(A2,tm − Bm,y + [A2, Bm]) + O(h2). (5.48c)

5.6. Symmetries and algebra deformation

We have shown that both isospectral D�KP flows {K̄m} and non-isospectral D�KP flows {σ̄m}
go to their continuous counterparts in the continuum limit designed in section 5.2. However,
comparing the basic algebra structures (3.23) and (4.25), one can see that the structures are
different. In fact, this deformation in the basic structures can be well understood with the help
of the degrees of the flows. Let us take (4.25b) and (3.23b) as an example. (4.25b) reads

[[K̄l, σ̄r ]] = l (hK̄l+r−1 + K̄l+r−2). (5.49)

Among the three terms of (5.49)

deg [[K̄l, σ̄r ]] = 1, deg (hK̄l+r−1) = 2, deg K̄l+r−2 = 1. (5.50)

Noting that in the continuum limit only the terms with the lowest degrees (i.e. leading terms)
remain, and comparing the degrees of each term of (5.49) we have

[[Kl, σr ]] = l Kl+r−2, (5.51)

i.e. (3.23b). Such degree analysis works as well as in understanding the relationship of
symmetries together with their algebras in semi-discrete and continuous cases. Let us conclude
these relations in the following.

Theorem 5.1. In continuum limit, the basic algebra structure (4.25) of flows goes to (3.23),
symmetries given in (4.26) are related by

{K̄l} → {Kl}, {τ̄ s
r } → {τ s

r },
and their basic structure (4.27) goes to (3.29).

5.7. Hamiltonian structures and conserved quantities

Now let us investigate the continuum limits of Hamiltonian structures and conserved quantities.
Since

K̄m = hKm + O(h2), ∂x̄ = ∂x,

it is easy to obtain

K̄m = ∂x̄ γ̄m = h Km + O(h2) = h ∂xγm + O(h2),

namely

γ̄m = h γm + O(h2), (5.52)

and γm is still a gradient field. Then, following proposition 5.5 we obtain

H̄m = h2Hm + O(h3).

We can conduct the similar discussion in the non-isospectral case and obtain similar results.
To sum up, for the Hamiltonian structures we have the following.
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Proposition 5.13. The continuum limit designed in section 5.2 keeps the Hamiltonian
structures of equations (4.31) and (4.34), in which

γ̄m = hγm + O(h2), H̄m = h2Hm + O(h3), (5.53a)

ω̄m = hωm + O(h2), J̄m = h2Jm + O(h3). (5.53b)

Next we look at the basic algebraic structure (4.44) composed by the conserved quantities
{H̄l} and {Ī s

r }. We have seen that in the continuum limit γ̄m(ū) and ω̄m(ū) go to γm(u) and
ωm(u) that are still gradient fields. Noting that γm(u) = δHm(u)

δu
and ωm(u) = δJm(u)

δu
, it then

follows from proposition 5.5 that in the continuum limit

{H̄l, H̄r} = {Hl, Hr}h2 + O(h3),

{H̄l, J̄r} = {Hl, Jr}h2 + O(h3),

{J̄l , J̄r} = {Jl, Jr}h2 + O(h3).

We use the same trick as in the previous subsection for symmetries. By comparing the degrees
of both sides of the basic algebraic relation (4.39), the leading terms yield

{Hl, Hr} = 0,

{Hl, Jr} = lHl+r−2,

{Jl, Jr} = (l − r)Jl+r−2,

i.e. (3.38). This also leads to the basic algebraic relation (3.40). Let us conclude this in the
following.

Theorem 5.2. In the continuum limit designed in section 5.2, we have

H̄l → Hl, J̄r → Jr, Ī s
r → I s

r , (5.54)

the basic algebra structure (4.39) goes to (3.38) and the basic structure (4.44) goes to (3.40).

5.8. Deformation of Lie algebras

Now let us see something special of the obtained algebras. The Lie algebra X̄ spanned by
the D�KP flows {K̄m} and {σ̄m} with the basic structures (4.25) has generators {K̄1, σ̄1, σ̄3}
w.r.t. the commutator [[·, ·]], while the Lie algebra X spanned by the KP flows {Km} and
{σm} with the basic structures (3.23) has generators {K1, σ1, σ4}. Obviously, the two algebras
have different basic structures: (3.23) is a neat centerless Kac–Moody–Virasoro structure but
(4.25) is not. Now let us look at subalgebras. X has infinitely many subalgebras spanned
by {K1, K2, · · · , Kj , σ1, σ2} for any j ∈ Z

+; for X̄ it also has infinitely many subalgebras
spanned by {K̄1, K̄2, · · · , K̄j , σ̄1} for any j ∈ Z

+. Moreover, by calculating the degrees of
the flows, the deformation of the basic algebraic structures in the continuum limit can be
understood. However, the continuum limit does not keep generators and subalgebras. In fact,
such discontinuity of Lie algebras of the flows (or symmetries), also known as the contraction
of algebras, is not rarely seen in some semi-discrete cases when they go to their continuous
correspondences in continuous limit [37, 39, 40]. Here, the spacing parameter h acts as a
contraction parameter that brings changes of basic algebraic structures.

Since the basic algebraic structures (4.39) for Hamiltonians, (4.44) for conserved quantities
and (4.25) for flows are the same, and the basic structures (3.38) for Hamiltonians, (3.40) for
conserved quantities and (3.23) for flows are also the same, we conclude that these Lie algebras
undergo the same deformation.

Finally, we end up this section by the following comment. We can see that all the analysis
on degrees in section 5.4 are done with respect to a generic u on M and the continuum limit
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keeps equations and their integrability characteristics. Thus, we conclude that the continuum
limit is performed at arbitrary points of the phase space but it keeps evolution equations (i.e.
maps solutions of the semi-discrete case to those of the continuous case) and their integrability
characteristics.

6. Conclusions

We have discussed integrability properties of the D�KP hierarchy, including symmetries,
Hamiltonian structures and conserved quantities. The obtained results have been listed out in
section 1. To achieve them, we introduced Lax triads as our starting point. In this approach
we consider the spatial variable x̄ (y for the KP system) as a new independent variable that is
completely independent of the temporal variable t̄1 (t2 for the KP system). Such a separation
of spatial and temporal variables not only enables us to derive master symmetries as non-
isospectral flows but also provides simple zero-curvature representations for both isospectral
and non-isospectral flows. Compared with the traditional treatments, we believe that the Lax
triad approach would be more reasonable in the study of (2+1)-dimensional systems related
to pseudo-difference operators and pseudo-differential operators. Besides, explicit recursion
operators might exist and be used to investigate integrable (2+1)-dimensional systems [6, 41],
but this is absent in discrete case.

Continuum limit acts as a bridge to connect discrete and continuous integrable systems.
However, such connections usually are hidden behind integrable discretization [42–44]. It is
not easy to find out a uniform continuum limit to connect both equations and their integrability
properties [37, 45–47]. Sometimes combinatorics is used. In this paper we designed a
continuum limit that connects the D�KP and KP hierarchies. The continuum limit has been
shown to keep their Lax triads, zero-curvature representations, Hamiltonian structures (for
both isospectral and non-isospectral cases), symmetries and conserved quantities. We defined
and made use of degrees of some elements to analyze continuum limits. By calculating and
comparing degrees, the deformation of the basic algebraic structures in the continuum limit
can be understood. We also want to emphasize that in our continuum limit the traditional
D�KP equation ūt̄2 = K̄2 goes to the linear equation ut2 = uy instead of the KP equation. It
is the next member ūt̄3 = K̄3 that corresponds to the continuous KP equation.

The pseudo-difference operator L̄ is not a unique means for investigating the D�KP
hierarchy. In a series of papers [48–51] two semi-discrete KP hierarchies together with
conserved quantities and Hamiltonian structures were investigated. In their approach a fully
discrete KP is a starting point and the semi-discrete KP hierarchies were derived by introducing
infinitely many continuous time variables in continuum limits. Infinitely many conserved
quantities were derived from a time-independent scattering problem and the obtained conserved
quantities can be treated as Hamiltonians to match the semi-discrete KP hierarchies under
suitable poisson brackets. Here we have given more conserved quantities and more algebraic
structures for the D�KP hierarchy. The integrable master symmetry played an important role
in our paper and in the continuum limit we have fixed time variables so that the continuum
limit keeps Hamiltonian structures for the whole hierarchies.
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