

UNIVERSITY OF THE PUNJAB, LAHORE, PAKISTAN

University of the Punjab

Associate Degree in Science (2 Years) physics degree program under annual system (Affiliated Colleges of University of the Punjab)

DEPARTMENT OF PHYSICS, UNIVERSITY OF THE PUNJAB, LAHORE, PAKISTAN

BACHELOR OF SCIENCE (Associate Degree in Science) (TWO YEARS) PHYSICS DEGREE PROGRAM FOR AFFILIATED COLLEGES OF UNIVERSITY OF THE PUNJAB

Duration of Degree Course	Two Years (Part-I, Part-II)
Teaching System	Annual System

MISSION STATEMENT

The mission of the program is to prepare students with the latest developments in the subject of physics and its associated technologies. Moreover, it aims at helping the students to design and develop a strong background in fundamentals of physics such as mechanics, electricity, magnetism, thermodynamics, waves, electronics and modern physics. We wish to prepare our students to conduct independent scientific and analytical investigation in the changing discipline and to develop critical and scientific thinking skills needed for a suitable career in academia and industry.

OBJECTIVES			
The Asso Physics as objectives	The Associate Degree in Science (Physics) (2 Years) degree program is offered by the Department of Physics as a full-time period of teaching for affiliated colleges of University of the Punjab. The main objectives of the program are		
•	to equip students with an understanding of fundamental concepts in physics, including: classical mechanics and electromagnetism, thermodynamics and statistical physics, principles of waves and optics, and quantum mechanics.		
•	to apply knowledge and techniques from physics to solve problems in other physical sciences. to identify problems for study, conduct independent studies and be effective members of collaborative teams		
•	to enhance student experties in setting up experiments, collecting and analyzing data. to enable students understand physical aspects of a problem, formulate a strategy for solution utilizing mathematical and computational methods, make appropriate approximations, and evaluate the correctness of their solution.		
•	to furnish an in-depth understanding of some specialized area of physics through choice of elective courses		
•	to prepare stundents to know and follow the high professional and ethical standards of scientific work		
•	to prepare students to join an appropriate and respectable level position in a physics related field, and to maintain their professional skills in rapidly evolving industry and academia.		
•	to develope research based scientific thinking and to enhance professional skills for teaching, research, managerial positions in wide range of professions in national and international organizations		

The program is offered under annual system of examination. The year-wise breakup and outline of courses for this program are given as under. Teaching, laboratory work and examinations are held according to rules and regulations of University of the Punjab.

SCHEME OF STUDIES

SCHEME OF STUDIES (Associate Degree in Science PHYSICS 2 Years Program for affiliated colleges)

Associate Degree in Science (PHYSICS) PART-I (YEAR-I)

EXAM PAPER	TITLE	TOTAL MARKS	EXAM DURATION
Paper A	Vector Analysis, Mechanics	40	3 Hrs
	and		
	Special Relativity		
Paper B	Electricity and	40	3 Hrs
_	Magnetism		
Lab-I (Practical Exam)	Mechanics, Electricity and	20	4Hrs
	Magnetism		

Associate Degree in Science (PHYSICS) PART-II (YEAR-II)

EXAM PAPER	TITLE	TOTAL MARKS	EXAM DURATION
Paper C	Thermodynamics, Waves	40	3 Hrs
	and Optics		
Paper D	Electronics and Modern	40	3 Hrs
_	Physics		
Lab-II (Practical Exam)	Thermodynamics, Waves,	20	4Hrs
	Electronics and Modern		
	Physics		

EXAM PAPERS

Each exam paper (i.e. Paper A, Paper B, Paper C, Paper D) shall consist of EIGHT (08) questions in total and the candidates shall have to attempt FOUR (04) questions. Each question will carry 10 Marks and will be of 3 parts consisting of basic concept, description of a law or an idea, mathematical erivation of physical laws or a theory and numerical or analytical problems. The marks distribution of each question will be as under

Quistion

(a)	Description of a law or an idea, mathematical derivation	(6 Marks)
(b)	Numerical Problem	(3 Marks)
(c)	Short question	(1 Marks)

EXAM PAPER STYLE

PHYSICS PAPER A (Associate Degree in Science Part-I) (Vector Analysis, Mechanics and Special Relativity)

There will be EIGHT (08) questions of 10 marks each and the candidate will have to attempt FOUR (04) questions out of 08 by selecting one question from each section. There will be four sections consisting of two questions each. The course distribution of each section is as under:

SECTION	COURSE DISTRIBUTION	NO. OF QUESTIONS
Section I	Vector, Newton's laws,	02 Questions
	applications of Newton's laws,	
	momentum	
Section II	System of Particles, Rotational	02 Questions
	dynamics, Angular momentum	
Section III	Work, Kinetic energy, Potential	02 Questions
	energy, Conservation of energy	
Section IV	Gravitation and Special Relativity	02 Questions

The instructions of exam paper will read

Attempt FOUR questions by selecting ONE question from each section.

PHYSICS PAPER B (Associate Degree in Science Part-I) (Electricity and Magnetism)

There will be EIGHT (08) questions of 10 marks each and the candidate will have to attempt FOUR (04) questions out of 08 by selecting one question from each section. There will be four sections consisting of two questions each. The course distribution of each section is as under:

SECTION	COURSE DISTRIBUTION	NO. OF QUESTIONS
Section I	Electric field, Gauss's law,	02 Questions
	Electric potential, Mechanical	
	properties of materials	
Section II	Capacitance, DC circuits,	02 Questions
	Magnetic field	
Section III	Magnetic field of current,	02 Questions
	Faraday's law, magnetic properties	
	of materials	
Section IV	Inductance, AC circuits,	02 Questions
	Maxwell's equations and	
	electromagnetic waves	

The instructions of exam paper will read

4

Attempt FOUR questions by selecting ONE question from each section.

PHYSICS PAPER C (Associate Degree in Science Part-II) (Waves, Optics and Thermodynamics)

There will be EIGHT (08) questions of 10 marks each and the candidate will have to attempt FOUR (04) questions out of 08 by selecting one question from each section. There will be four sections consisting of two questions each. The course distribution of each section is as under:

SECTION	COURSE DISTRIBUTION	NO. OF QUESTIONS
Section I	Oscillations, Wave Motion, Sound	02 Questions
	Waves	
Section II	Light Waves, Mirrors, Lenses,	02 Questions
	Interference	
Section III	Diffraction, Grattings, Spectra,	02 Questions
	Polarization	
Section IV	Temperature, Molecular properties	02 Questions
	of gases, First law of	
	thermodynamics, Entropy and	
	second Law of Thermodynamics	

The instructions of exam paper will read

Attempt FOUR questions by selecting ONE question from each section.

PHYSICS PAPER D (Associate Degree in Science Part-II) (Electronics and Modern Physics)

There will be EIGHT (08) questions of 10 marks each and the candidate will have to attempt FOUR (04) questions out of 08 by selecting one question from each section. There will be four sections consisting of two questions each. The course distribution of each section is as under:

SECTION	COURSE DISTRIBUTION	No. OF QUESTIONS
Section I	Nature of Light, Nature of Matter	02 Questions
Section II	Electrons in potential well,	02 Questions
	Atomic structure	
Section III	Nuclear Physics, Energy from	02 Questions
	nucleus, particle physics and	
	cosmology	
Section IV	Semiconductors, Transistor,	02 Questions
	Feedback and Oscillators	

The instructions of exam paper will read

Attempt FOUR questions by selecting ONE question from each section.

LAB-I (PRACTICAL EXAM) (Associate Degree in Science Part-I) (Mechanics, Electricity and Magnetism)

Distribution of marks of Practical Exam is as under

Description	Marks
Setting up appratus	02
Observations and collection of data	08
Calculations	04
Results, graphs and percentage error	02
Lab Notebook and Viva Voce Exam	04
Total Marks	20

LAB-II (PRACTICAL EXAM) (Associate Degree in Science Part-II) (Thermodynamics, waves, electronics and modern physics)

Distribution of marks of Practical Exam is as under

Description	Marks
Setting up appratus	02
Observations and collection of data	08
Calculations	04
Results, graphs and percentage error	02
Lab Notebook and Viva Voce Exam	04
Total Marks	20

OUTLINES OF COURSES

Recommended Text Books

1. Physics Vol. I & II by Resnick, Halliday and Krane (RHK), 5th Edition, Wiley, (2002). **Rerference Books**

- 1. An introduction to vector analysis for Physicists and Engineers by B. Hague, Mathuen and Co. (1970).
- 2. University Physics with Modern Physics by H. D. Young, R. A. Freedman (14th Edition), Addison-Wesley (2015)

- 3. Advanced Engineering Mathematics by D. G. Zill and W. S. Wright (6th Edition), Jones and Bartlett (2018)
- 4. Electronic Devices, by T. L. Floyd, Pearson, 10th Edition, (2017)

Paper A (Associate Degree in Science Part-I)

Vectors, Mechanics and Special Relativity

Section-I		
Торіс	Description	
Vectors	Derivatives and integration of a vector, gradient of a scalar, divergence and	
	curl of a vector, physical significance of gradient of scalars, divergence and	
	curl of vectors, Green theorem, divergence theorem (without proof), Stokes'	
	theorem (without proof) and physical significance and applications	
	(see Chapter No. 9 of Advanced Engineering Mathematics (5th Edition) by Dennis	
	Zill)	
Force and Newton's	Review of motion in one-dimension, classical mechanics, Newton's first law,	
Laws	force, mass, Newton's second law, Newton's third law, weight and mass,	
	applications of Newton's laws in one-dimension (see Chapter No. 3 of HRK)	
Motion in Two and	Motion three dimensions with constant acceleration, Newton's laws in three-	
Three Dimensions	dimensional vector form, projectile motion, drag forces and motion of	
	projectiles, uniform circular motion, relative motion (see Chapter No. 4 of	
	HRK)	
Applications of	Force laws, frictional forces, the dynamics of uniform circular motion,	
Newton's Law	equation of motion (constant and non-constant) forces, Time dependent	
	forces, drag forces and the motion of projectiles, limitations of Newton's laws	
	(see Chapter No. 5 of HRK)	
Momentum	Collisions, linear momentum, impulse and momentum, conservation of	
	momentum, two-body collisions (see Chapter No. 6 of HRK)	
	Section-II	
Systems of Particles	Two-particle systems, many-particle systems, center of mass of solid objects,	
	Linear momentum of a particle, linear momentum of s system of particles,	
	conservation of linear, work and energy in a system of particles, systems of	
	variable mass (see Chapter No. 7 of HRK)	
Rotational Dynamics	Review of rotational kinematics, torque, rotational inertia and Newton's	
	law, rotational inertia of solid bodies, torque due to gravity, equilibrium	
	applications of Newton's law for rotation, non-equilibrium applications of	
	Newton's laws for rotation, combined rotational and translational motion (see	
	Chapter No. 9 of HRK)	
Angular Momentum	Angular momentum of a particle, system of particles, angular momentum and	
	angular velocity, conservation of angular momentum, the spinning top (see	
	Chapter No. 10 of HRK)	
	Section-III	
Work and Kinetic	Work and energy, work done by constant forces, power, work done by a	
Energy	variable force in one- and two-dimensions, kinetic energy and the work-	
	energy theorem (see Chapter No. 11 of HRK)	
Potential Energy	Conservative forces, potential energy, conservation of mechanical energy,	
	one-dimensional conservative systems and complete solution, Two- and three-	
	dimensional conservative systems (see Chapter No. 12 of HRK)	

7 Curriculum (2020), Physics Degree Programs, University of the Punjab, Lahore

	1908		
Conservative of	Work done on a system by external forces, internal energy of particles,		
Energy	frictional work, conservation of energy in a system of particles, center-of-mass		
	energy (see Chapter No. 13 of HRK)		
	Section-IV		
Торіс	Description		
Gravitational	Gravitation from the ancients to Kepler, Newton and law of universal		
	gravitation, the gravitational constant G, gravity near earth's surface,		
	gravitational effect of a spherical distribution of matter, gravitational potential		
	energy, the gravitational field and potential, the motions of planets and		
	satellites, universal gravitation (see Chapter No. 14 of HRK)		
Special Relativity	Troubles with classical physics, the postulates of special relativity,		
	consequences of Einstein's postulates, the Lorentz transformation, measuring		
	the space-time coordinates of an event, the transformation of velocities,		
	consequences of the Lorentz transformation, relativistic momentum,		
	relativistic energy (see Chapter No. 20 of HRK)		

Paper B (Associate Degree in Science Part-I)

Electricity and Magnetism

Section-I		
Торіс	Description	
The Electric field	Review of electric charge and Coulomb's law, fields, the electric field E , the electric field of point charges, lines of force, the electric field of continuous charge distribution, a point in an electric field, a dipole in an electric field (see Chapter No. 26 of HRK)	
Gauss's Law	The flux of a vector field, the flux of the electric field, Gauss's law, a charged isolated conductor, applications of Gauss's law, experimental tests of Gauss's law and Coulomb's law (see Chapter No. 27 of HRK)	
Electric Potential Energy and Potential	Electrostatic and gravitational forces, electric potential energy, electric potential, calculating the potential due to point a charge, potential due to collection of point charges, the electric potential of continuous charge distributions, equipotential surfaces, calculating the field from the potential, an isolated conductor (see Chapter No. 28 of HRK)	
The Mechanical Properties of Materials	Types of materials, a conductor in an electric fields (static condition/dynamic conditions), Ohmic materials, Ohm's law (a microscopic view), an insulator in an electric field (see Chapter No. 29 of HRK)	
Section-II		
Capacitance	Capacitors, capacitance, calculation the capacitance, capacitors in series and parallel, energy storage in an electric field, capacitors with dielectrics, an atomic view of dielectrics, dielectrics and Gauss's law (see Chapter No. 30 of HRK)	
DC Circuits	Electric current, electromotive force, analysis of circuits, electric fields in circuits, resistors in series and parallel, energy transfers in an electric circuit, RC circuits (see Chapter No. 31 of HRK)	

	1900		
The Magnetic field	Magnetic interactions and magnetic poles, the magnetic force on a moving		
	charge, circulating charges, the Hall effect, the magnetic force on a current		
	carrying wire, the torque on a current loop		
	(see Chapter No. 32 of HRK)		
Section-III			
Торіс	Description		
The Magnetic field	The magnetic field due to a moving charge, the magnetic field of a		
of a Current	current, two parallel currents, the magnetic field of a solenoid, Ampere's		
	law, electromagnetism and frame of reference		
	(see Chapter No. 33 of HRK)		
Faraday's Law of	Faraday's experiments, Faraday's law of induction, Lenz' law, motional EMF,		
Induction	generators and motors induced electric fields, induction and relative motion		
	(see Chapter No. 34 of HRK)		
Magnetic Properties	The magnetic dipole, the force on a dipole in a non-uniform field, atomic and		
of Materials	nuclear magnetism, atomic and nuclear magnetism, magnetization, magnetic		
	materials, the magnetism of the planets, Gauss' law for magnetism (see		
	Chapter No. 35 of HRK)		
Section-IV			
Description	Description		
Inductance	Inductance, calculating the inductance, LR circuits, energy storage in a		
	magnetic field, electromagnetic oscillations (qualitative and quantitative),		
	damped and forced oscillations (see Chapter No. 36 of HRK)		
Alternating Current	Alternating currents, three separate elements, the single loop RLC circuit,		
Circuits	power in AC circuit, the transformer (see Chapter No. 37 of HRK)		
Maxwell's Equations	The basic equations of electromagnetism, induced magnetic fields and the		
and Electromagnetic	displacement current, Maxwell's equations, generating electromagnetic wave,		
Waves	traveling waves and Maxwell's equations, energy transport and the poynting		
	vector, radiation pressure		
	(see Chapter No. 38 of HRK)		

Paper C (Associate Degree in Science Part-II)

Waves, Optics and Thermodynamics

Section-I		
Торіс	Description	
Oscillation	Oscillating systems, the simple harmonic oscillator, simple harmonic motion, energy consideration in simple harmonic motion, applications of simple harmonic motion, simple harmonic motion and uniform circular motion, combinations of simple harmonic motions, damped harmonic motion, forced oscillations and resonance (see Chapter No. 17 of HRK)	
Wave Motion	Mechanical waves, types of waves, traveling waves, Waves Speed, Waves equation, Power and intensity in wave motion, Principle of superposition, Interference of waves, standing waves, resonance (see Chapter No. 18 of HRK)	
Sound Waves	The speed of sound, traveling longitudinal waves, power and intensity of sound waves, standing longitudinal waves, vibrating systems and sources of sound, Beats, the Doppler effect (see Chapter No. 19 of HRK)	

9 Curriculum (2020), Physics Degree Programs, University of the Punjab, Lahore

Section-II				
Торіс	Description			
Light Waves	The electromagnetic spectrum, visible light, the speed of light, reflection and refraction of light waves, total internal reflection, the Doppler effect for light (see Chapter No. 39 of HRK)			
Mirrors and Lenses	Image formation by mirrors and lenses, plane mirrors, spherical mirrors, spherical reflecting surfaces, thin lenses, optical instruments (see Chapter No. 40 of HRK)			
Interference	Two-source interference, double slit interference, coherence, intensity in double slit interference, interference from thin films, optical reversibility and phase changes on diffraction, Michelson' interferometer, Michelson' interferometer and light propagation (see Chapter No. 41 of HRK)			
	Section-III			
Diffraction	Diffraction and the wave theory of light, single slit diffraction, intensity in single slit diffraction, diffraction at a circular aperture, double slit and diffraction combined (see Chapter No. 42 of HRK)			
Gratings and Spectra	Multiple slits, diffraction grating, dispersion and resolving power, X-ray diffraction, Holography (see Chapter No. 43 of HRK)			
Polarization	Polarization of electromagnetic waves, polarizing sheets, polarization by reflection, double refraction, circular polarization, scattering of light, to the quantum limit (see Chapter No. 44 of HRK)			
	Section-IV			
Temperature	Temperature and thermal equilibrium, temperature scales, measuring temperatures, thermal expansion, the ideal gas (see Chapter No. 21 of HRK)			
Molecular Properties of Gases	The atomic nature of matter, a molecular view of pressure, the mean free path, the distribution of molecular speeds, the distribution of molecular energies, equations of states for real gases, the intermolecular forces (see Chapter No. 22 of HRK)			
The first law of thermodynamics	Heat (energy in transit), the transfer of heat, the first law of thermodynamics, heat capacity and specific heat, work done on or by an ideal gas, the internal energy of an ideal gas, heat capacity of an ideal gas, applications of the first law of thermodynamics (see Chapter No. 23 of HRK)			
Entropy and second law of thermodynamics	Defining entropy, entropy change for irreversible processes, second law of thermodynamics, entropy and engines, efficiencies of engins, statistical view of entropy (see Chapter No. 24 of HRK)			

Paper D (Associate Degree in Science Part-II)

Electronics, Modern Physics and Nuclear Physics

Section-I		
The Nature of Light	Introducing the photon, thermal radiations, the photoelectric effect, Einstein's	
	photon theory, the Compton effect, the photon revealed, photons and waves,	
	slowing down atoms by photon bombardment	
	(see Chapter No. 45 of HRK)	
	Matter waves, testing DeBroglie's hypothesis, waves and particles,	
The Nature of Matter	Heisenberg's uncertainty principle, the wave function, Schrodinger's equation,	
	barrier tunneling	
	(see Chapter No. 46 of HRK)	
Tonia	Section-II Description	
Flootnong in Detential	Electrons free and hound an electron transad in a notantial well an electron	
Wells	tranned in a finite well, an electron tranned in an atom, the ground state of	
wens	Hydrogen angular momentum of electron in atoms, an excited states of	
	Hydrogen atom, counting the states of Hydrogen	
	(see Chapter No. 47 of HPK)	
Atomia Structuro	The V Pay Spectrum of stoms V Pay and the numbering of the elements	
Atomic Structure	building stoms, the periodic table stomic magnetism, the Stern Gerlach	
	avportigent Nuclear magnetic resonance, magnetism, the stern-Gerlach	
	Lesors and Lesor light	
	(see Chapter No. 48 of HBK)	
	Section-III	
Nuclear Dhusias	Discussion the method are method and is a discussion of the	
Nuclear Physics	Discovering the nucleolus, some nuclear properties, radioactive decay, alpha	
	decay, beta decay, Measuring fonizing radiation, natural radioactivity, nuclear	
	reactions, nuclear models	
	(see Chapter No. 50 of HKK)	
Energy from the nucleus	The atom and the nucleus nuclear fission theory of nuclear fission basic	
Lifergy nom the nucleus	principles of nuclear reactors a natural reactor basic process of	
	thermonuclear fusion Thermonuclear fusion in stars Controller	
	thermonuclear fusion, magnetic confinement inertial confinement	
	(see Chapter No. 51 of HRK)	
	(
Particle Physics and	Particle interactions, families of particles, conservation laws, the quark model,	
Cosmology	the big bang cosmology, Nucleosynthesis, the age of universe	
	(see Chapter No. 52 of HRK)	
	Section-IV	
Торіс	Description	
Semiconductors		
	Review of conductors, insulators and semiconductors and band theory of	
	solids, N- and P-type semiconductors, the diode, biasing the diode, voltage	
	current characteristics of a diode, Half wave & full wave rectifier, bridge	
	rectifier. Smoothing circuit (RC filter circuit)	
	(see chapter No.1 of Electronic Devices, by T. L. Floyd)	
Transistor	Basic structure, biasing, operation, brief review of transistor configuration,	

II Curriculum (2020), Physics Degree Programs, University of the Punjab, Lahore

	1900
	characteristics of common emitter, DC load lines and Q points, construction
	and operation of amplifier in common emitter mode.
Feedback, Oscillators	Principle of feedback amplifiers, Positive and Negative Feedback,
and Logic gates	RC feedback oscillator (phase shift, common emitter mode only)
	OR, AND, NOT, NAND, NOR gates. Symbol, truth table and Boolean
	equations. Use of diode and transistor for OR, AND, NOT, NAND,
	NOR gates

LABORATORY EXAM

LAB-I (Mechanics, Electricity and Magnetism)

Subject	Experiment			
	1. Modulus of Rigidity by Static methods (Barton's Apparatus), by Maxwell			
Mechanics	needle or by solid cylindrical rod			
	2. To find surface tension of water by capillary tube method/Jaeger's method			
	3. To study the damping features of an oscillating system			
	4. Measurement of viscosity of liquid by Stoke's / Poiseulli's method			
	5. To determine the value of "g" by compound pendulum / Kater's Pendulum			
	6. To study the dependence of Centripetal force on mass, radius, and angular velocity of a body in circular motion,			
	7. Investigation of phase change with position in traveling wave and			
	measurement of the velocity of sound by C.R.O.,			
	8. Determination of moment of inertia of a solid/hollow cylinder and a sphere			
	etc., Spring constant by static and dynamic methods			
Electricity and	9. Calibration of an Ammeter and a Voltmeter by potentiometer			
Magnetism 10. Conversion of a pointer Galvanometer into a voltmete and an amm				
	11. Charge sensitivity of a ballistic Galvanometer and comparison of capacities			
	by ballistic galvanometer.			
	12. To study the B.H. curve and measure the magnetic parameters.			
	13. Measurement of low resistance coil by a Carey Foster Bridge.			
	14. Study of the parameter of wave i.e. amplitude, phase and time period of a complex signal by CRO.			
	15. Measurement of self/mutual inductance.			
	16. To study the network theorems (Superposition, Thevinin, Norton)			
	17. To study the application of Lorentz force by CRO (e/m by J. J. Thomson method)			
	18. Determination of temperature coefficient of resistance of a given wire			
	19. Determination of Stefan's constant			
	20. Calibration of thermocouple by potentiometer			

(Note: At least 15 experiments with almost equal weightage of subjects mentioned above be performed by the individual department of affiliated colleges)

12 Curriculum (2020), Physics Degree Programs, University of the Punjab, Lahore

LAB-2 (Waves,	Thermody	vnamics.	Electronics	and Moder	n Physics)
LAD-2 (marcs,	I nei mou	ynannes,	Laccu ones	and mouth	a i nysics)

Subject	Experiment		
Waves and Optics	 To determine Horizontal/Vertical distance by Sextant The determination of wavelength of Sodium –D lines by Newton's Ring The determination of wavelength of light/laser by Diffraction grating Determination of wavelength of sodium light by Fresnel's bi-prism The determination of resolving power of a diffraction grating The measurement of specific rotation of sugar by Polarimeter and determination of sugar concentration in a given solution To study the combinations of harmonic motion (Lissajous figures) To study the parameters of waves (Beats phenomenon) 		
Thermodynamics	 To determine thermal emf and plot temperature diagram To determine the Thermal conductivity of good and bad conductors using Lee's and Searl's apparatus Determination of "J" by Callender – Barnes method 		
Electronics	 12. Characteristics of a semiconductor diode (Compare Si with Ge diode) 13. Setting up of half and full wave rectifier and study of following factors i. Smoothing effect of a capacitor ii. Ripple factor and its variation with load. iii. Study of regulation of output voltage with load. 14. To set up a single stage amplifier and measure its voltage gain and bandwidth. 15. To set up transistor oscillator circuit and measure its frequency by an oscilloscope 16. To set up an electronic switching circuit using transistor LDR and demonstrate its use as a NOT gate. 17. Characteristics of a transistor. 		
Modern Physics	 18. To study the characteristics of Photo emission and determination of Plank's constant using a Photo cell 19. Determination of e/m of an electron. 20. Determination of ionization potential of mercury 21. To study the characteristic curves of a G. M. counter 22. To determine the absorption co-efficient of β-particle in Aluminum by G.M. counter 23. Determination of range of α-particles 24. Mass absorption coefficient of lead for γ-rays using G.M counter 		

(Note: At least 15 experiments with almost equal weightage of subjects mentioned above be performed by the individual department of affiliated colleges)