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Chapter 1

Hirota’s Bilinear Integrability

1.1 Bilinear operator

Definition 1.1.1. For C∞ differential functions f(x, y) and g(x, y) defined on R2,

their bilinear derivatives are defined as:

Dm
x D

n
y f(x, y) · g(x, y) = (∂x − ∂x′)m(∂y − ∂y′)nf(x, y)g(x′, y′)|x′=x,y′=y. (1.1.1)

where D is called Hirota’s bilinear operator. Here ∂x = ∂
∂x

.

(1.1.1) can also be defined as follows:

eεDx+κDyf(x, y) · g(x, y) = f(x+ ε, y + κ)g(x− ε, y − κ). (1.1.2)

In fact, expanding both sides at (ε, κ) = (0, 0) and comparing coefficients of power

εmκn we get definition (1.1.1). As examples, let us see

Dxf · g = fxg − fgx,
D2
xf · g = fxxg − 2fxgx + fgxx,

D3
xf · g = fxxxg − 3fxxgx + 3fxgxx − fgxxx,

DxDyf · g = fxyg − fxgy − fygx + fgxy,

Dm
x f · g =

m∑
j=0

(−1)jCj
mf

(m−j)(x)g(j)(x),

where Cj
m = m!

(m−j)!j! , f
(j) = ∂jxf(x). From these examples one can see the difference

between the bilinear derivatives of f and g and Leibniz’s rule of the m-th order

derivative of the product fg.

1
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Bilinear derivatives admit symmetric and bilinear properties:

Dm
x f · g = (−1)mDm

x g · f,
(aDm

x + bDn
y )f · g = aDm

x f · g + bDn
y f · g,

Dm
x D

n
y (af + bg) · h = aDm

x D
n
y f · h+ bDm

x D
n
y g · h,

where a, b ∈ C, and particularly,

Dm
x f · 1 = ∂mx f(x).

For linear exponential functions like ekx+ωt (k, ω ∈ C), there is a simple formula for

their bilinear derivatives:

Dm
x D

n
y e

η1 · eη2 = (k1 − k2)m(ω1 − ω2)
neη1+η2 , (1.1.3)

where

ηi = kix+ ωiy + η
(0)
i , ki, ωi, η

(0)
i ∈ C. (1.1.4)

The above definition and properties can be extended to arbitrary dimensions.

Suppose that t = (t1, t2, · · · , ts), p = (p1, p2, · · · , ps), q = (q1, q2, · · · , qs) are vectors

in Rs, define inner product p · t =
∑s

i=1 piti, and denote Dt = (Dt1 , Dt2 , · · · , Dts).

Then we can define

ep·Dtf(t) · g(t) = f(t + p)g(t− p). (1.1.5)

Suppose P (t) is a polynomial of t, and introduce P (Dt). For example, if P (t) =

3t21t2+2t2t3, then P (Dt) = 3D2
t1
Dt2 +2Dt2Dt3 . For a general P (Dt), it is not difficult

to find

P (Dt)e
p·t · eq·t = P (p− q)e(p+q)·t, (1.1.6)

P (Dt)e
p·t · 1 = P (p)ep·t = P (∂p)ep·t. (1.1.7)

Besides, one can prove that

Dr
xD

s
y(e

η1f(x, y)) · (eη2g(x, y))

= eη1+η2(Dx + k1 − k2)r(Dy + ω1 − ω2)
sf(x, y) · g(x, y), (1.1.8)

and particularly, when η1 = η2, one has

Dr
xD

s
y(e

η1f) · (eη1g) = e2η1Dr
xD

s
yf · g, (1.1.9)

which is called the gauge property of bilinear derivatives. A more general case is

P (Dt)(e
p·tf(t)) · (eq·tg(t)) = e(p+q)·tP (Dt + p− q)f(t) · g(t), (1.1.10)

and

P (Dt)(e
p·tf) · (ep·tg) = e2p·tP (Dt)f · g . (1.1.11)
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1.2 N soliton solutions

In this section we show that how Hirota’s method works in finding NSS. KdV equa-

tion and KP equation will serve as examples.

1.2.1 NSS of the KdV equation

The KdV equation reads

ut + 6uux + uxxx = 0. (1.2.1)

Note that its coefficients can be arbitrary. Usually we consider potential form of the

equation:

wt + 3(wx)
2 + wxxx = 0, (u = wx). (1.2.2)

Under transformation

u = 2(ln f)xx, i.e. w = 2(ln f)x, (1.2.3)

Eq.(1.2.2) can be written as

fxtf − fxft + fxxxxf − 4fxxxfx + 3(fxx)
2 = 0, (1.2.4)

which is

(DxDt +D4
x)f · f = 0 (1.2.5)

if we employ the notation of bilinear operator D given in (1.1.1). The above equation

is called the bilinear form of the KdV equation (1.2.1), also called the bilinear KdV

equation; the solution f is usually called τ function of the KdV equation; once we

have f , we can get back a solution of the KdV equation through the transformation

(1.2.3).

Note: In 1971 Ryogo Hirota first introduced bilinear methods to derive NSS for

the KdV equation [20]. At that time the bilinear form of the KdV equation was

(1.2.4); the bilinear operator D as defined in Definition1.1.1 was formally introduced

by Hirota in 1974 [22, 53].

It is easy to check

f = 1 + eη, η = kx− k3t+ η(0), k, η(0) ∈ R (1.2.6)

satisfies the bilinear KdV equation (1.2.4). For achieving more solutions, we can

(perturbatively) expand

f = 1 +
∞∑
i=1

f (i)εi, (1.2.7)
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where subscript (i) is for numbering coefficients. Substituting the above into (1.2.5)

and comparing coefficients of each power of ε, we reach an equation system

ε1 : (∂xt + ∂4x)f
(1) = 0, (1.2.8a)

ε2 : (∂xt + ∂4x)f
(2) = −1

2
(DxDt +D4

x)f
(1) · f (1), (1.2.8b)

ε3 : (∂xt + ∂4x)f
(3) = −(DxDt +D4

x)f
(1) · f (2), (1.2.8c)

ε4 : (∂xt + ∂4x)f
(4) = −(DxDt +D4

x)(f
(1) · f (3) +

1

2
f (2) · f (2)), (1.2.8d)

· · · · · · .

For (1.2.8a) we can take f (1) = eηi , where

ηi = kix− k3i t+ η
(0)
i , ki, η

(0)
i ∈ R. (1.2.9)

Since (1.2.8a) is a homogeneous linear equation, for any positive integer N

f (1) =
N∑
i=1

eηi (1.2.10)

gives a solution to (1.2.8a), where ηi is defined by(1.2.9).

Now, let us look at equation system (1.2.8) with (1.2.10) in more details. When

N = 1, f (1) = eη1 satisfies (1.2.8a); meanwhile, when f (2) = f (3) = · · · = 0, the rest

equations in (1.2.8) hold. Thus,

f = 1 + εeη1 (1.2.11)

provides a solution to the bilinear KdV equation (1.2.5). This means the “per-

turbation” formula (1.2.7) can be truncated to (1.2.11), and therefore (1.2.11) is

independent of ε. Taking ε = 1 in (1.2.11) and through (1.2.3) we have

u = 2(ln f)xx = 2[ln(1 + eη1)]xx (1.2.12)

which is an 1SS of the KdV equation.

When N = 2, from (1.2.10) we have f (1) = eη1 + eη2 , and then (1.2.8b) we find

f (2) = A12e
η1+η2 , A12 =

(k1 − k2
k1 + k2

)2
. (1.2.13)

Meanwhile, f (j) = 0 (j = 3, 4, · · · ) solve the rest of equations in (1.2.8). Thus,

f = 1 + ε(eη1 + eη2) + ε2A12 e
η1+η2 (1.2.14)
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provides a second solution to the bilinear KdV equation (1.2.5), which will lead to

a 2SS for the KdV equation via (1.2.3).

When N = 3, from (1.2.10) we can find a solution for (1.2.8):

f =1 + ε(eη1 + eη2 + eη3)

+ ε2(A12e
η1+η2 + A13e

η1+η3 + A23e
η2+η3)

+ ε3A12A13A23e
η1+η2+η3 , Aij =

(ki − kj
ki + kj

)2
. (1.2.15)

Again, through (1.2.3) it gives a 3SS to the KdV equation.

For a general number N , Hirota gave the following compact form:

f =
∑
µ=0,1

exp

(
N∑
j=1

µjηj +
N∑

1≤i<j

µiµjaij

)
, (1.2.16)

where ηj is defined as in (1.2.9), eaij = Aij, and the summation of µ means to take all

possible µj = {0, 1} (j = 1, 2, · · · , N). NSS of the KdV equation is given by (1.2.3).

(1.2.16) is a truncated form of (1.2.7) (we have taken ε = 1 since it is independent

of ε). A proof of (1.2.16) satisfying (1.2.5) can be found in [20] and [2].

1.2.2 NSS of the KP(II) equation

The KP equation reads

(4ut + 6uux + uxxx)x + 3σuyy = 0, (σ = ±1), (1.2.17)

where when σ = 1 it is the KP(II) equation and when σ = −1 it is the KP(I)

equation. We solve the KP(II) equation. By the transformation

u = 2(ln f)xx, (1.2.18)

the KP(II) equation is bilinearized as

(4DxDt +D4
x + 3D2

y)f · f = 0. (1.2.19)

With the expension

f = 1 +
∞∑
i=1

f (i)εi (1.2.20)



6 CHAPTER 1. HIROTA’S BILINEAR INTEGRABILITY

the bilinear KP(II) equation (1.2.19) yields

ε1 : (4∂xt + ∂4x + 3∂3y)f
(1) = 0, (1.2.21a)

ε2 : (4∂xt + ∂4x + 3∂3y)f
(2) = −1

2
(4DxDt +D4

x + 3D2
y)f

(1) · f (1), (1.2.21b)

· · · · · · .

For (1.2.21a) we can take f (1) = ekx+hy+ωt, and k, h, ω satisfy

4kω + k4 + 3h2 = 0. (1.2.22)

Compared with the KdV equation, here we have two free parameters. For a better

parametrisation, we introduce h = ak, by which we have ω = −k(k2 + 3a2)/4. here

a is an arbitrary parameter, as free as k. In practice we take k = p− q, a = p+ q,

and it follows that

k = p− q, h = p2 − q2, ω = −(p3 − q3). (1.2.23)

Thus, we have

f (1) = eη1 , (1.2.24)

where

ηi = (pi − qi)x+ (p2i − q2i )y − (p3i − q3i )t+ η
(0)
i , pi, qi, η

(0)
i ∈ R. (1.2.25)

Then 1SS of the KP(II) equation can be given as (taking ε = 1)

u = 2(ln f)xx =
(p1 − q1)2

2
sech2η1

2
. (1.2.26)

Similar to the KdV equation, we take

f (1) =
N∑
i=1

eηi , (1.2.27)

where ηi is defined by (1.2.25). When N = 2, corresponding to 2SS, we find (taking

ε = 1)

f = 1 + eη1 + eη2 + A12 e
η1+η2 , (1.2.28a)

solves (1.2.19), where

Aij =
(pi − pj)(qi − qj)
(pi − qj)(qi − pj)

. (1.2.28b)
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Continuing this procedure, for 3SS, f has the same structure as (1.2.15). For NSS,

there is

f =
∑
µ=0,1

exp

(
N∑
j=1

µjηj +
N∑

1≤i<j

µiµjaij

)
, (1.2.29)

where ηj is defined as (1.2.25), eaij = Aij which is defined as (1.2.28b), and the

summation of µ means to take all possible µj = {0, 1} (j = 1, 2, · · · , N). Then, NSS

of the KP(II) equation is given via (1.2.18).

1.3 Asymptotic analysis of 2SS

1.3.1 The KdV equation

First, let us look at 1SS (1.2.12) of the KdV equation, i.e.

u =
k21
2

sech2η1, η1 = k1x− k31t+ η
(0)
1 , (1.3.1)

which describes a solitary wave as depicted in Figure1.1(a). The maximum of the

(a)

2 4 6 8
t

-2

2

4

6
xHtL

(b)

Figure 1.1: (a) 1SS of the KdV equation. (b) trajectory of the vortex of 1SS: η1 = 0,

where k1 = 1, η
(0)
1 = 0.

wave, i.e. amplitude, which is
k21
2

, occurs when η1 = 0; η1 = 0, i.e.

x(t) = k21t−
η
(0)
1

k1
, (1.3.2)

is a straight line depicted in Figure1.1(b) for trajectory of the vortex of the wave;

x′(t) = k21 stands for velocity of the wave. One can see that the velocity is always

positive, which means the solitary wave described by the KdV equation is of single

direction.
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2SS of the KdV equation exhibits scattering behavior, as depicted in Figture1.2

and 1.3. The 2SS is

u = 2(ln f)xx, (1.3.3a)

f = 1 + eη1 + eη2 + A12 e
η1+η2 , (1.3.3b)

where

ηi = kix− k3i t+ η
(0)
i , A12 =

(k1 − k2
k1 + k2

)2
. (1.3.3c)

-20 -10 0 10 20
x

0.2

0.4

0.6

0.8
u

(a)

-20 -10 0 10 20
x

0.2

0.4

0.6

0.8
u

(b)

-20 -10 0 10 20
x

0.2

0.4

0.6

0.8
u

(c)

-20 -10 0 10 20
x

0.2

0.4

0.6

0.8
u

(d)

Figure 1.2: 2SS (1.3.3) of the KdV equation (k1 = 0.6, k2 = 1.1, η
(0)
1 = η

(0)
2 = 0). (a)

t = −12, (b) t = −5, (c) t = 1, (d) t = 10.

Figure 1.3: 2SS (1.3.3) of the KdV equation (k1 = 0.6, k2 = 1.1, η
(0)
1 = η

(0)
2 = 0).

Such a scattering behavior can be understood mathematically using asymptotic

analysis, of which the generic procedure is the following.

We consider f in (1.3.3b) and assume k1 > k2 > 0 without loss of generality.

Suppose η1 = c (c is certain constant) so that we can observe the 2SS along the
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straight line η1 = c. To do that, we rewrite (1.3.3b) in the new coordinate system

(η1, t):

f = 1 + eη1 + eη2 + A12 e
η1+η2 , (1.3.4a)

where

eη2 = exp
[k2
k1
η1 + k2(k

2
1 − k22)t+ η

(0)
2 −

k2
k1
η
(0)
1

]
. (1.3.4b)

Because of k1 > k2 > 0, we find

eη2 ∼
{

0, t→ −∞,
+∞, t→ +∞.

Therefore in (η1, t) we have

f ∼
{

1 + eη1 , t→ −∞,
eη2(1 + A12e

η1), t→ +∞. (1.3.5)

Due to the gauge property of bilinear derivatives, the factor eη2 in the above does

not change solutions of the bilinear KdV equation (1.2.5), and does not change

u = 2(ln f)xx either. Thus, if we observe 2SS along the straight line η1 = c, when

t→ −∞ we only see the 1SS

u = 2[ln(1 + eη1)]xx; (1.3.6a)

and when t→ +∞, we see

u = 2[ln(1 + A12e
η1)]xx. (1.3.6b)

This is still the original 1SS (1.3.6a) (after interaction it has same amplitude and

velocity as before) but there is a phase shift − 2
k1

ln
(
k1−k2
k1+k2

)
.

Similarly, in the coordinate system (η2, t) we can see

eη1 ∼
{

+∞, t→ −∞,
0, t→ +∞.

Then we have

f ∼
{
eη1(1 + A12e

η2), t→ −∞,
1 + eη2 , t→ +∞. (1.3.7)

Thus we can see that the soliton determined by k2 keeps its amplitude and velocity

before and after interaction but gains a phase shift 2
k2

ln
(
k1−k2
k1+k2

)
. Such phase shifts

due to interaction can be seen in Figure 1.3.
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1.3.2 The KP(II) equation

The 1SS (1.2.26) of the KP(II) equation is depicted in Figure 1.4(a). At any given

time t it exhibits like a straight line on (x, y) plane, with amplitude (p1 − q1)2/2.

The straight line is given by η1 = 0 and it also provides the velocity by which the

line is traveling on (x, y) plane:

(x′(t), y′(t)) = −(p2 + pq + q2)
(

1,
1

p+ q

)
.

(a)

-20 -10 10 20
y

-10

-5

5

10

xHyL

(b)

Figure 1.4: (a) 1SS of the KP(II). It is given by (1.2.26) with (p1, q1, η
(0)
1 ) = (0.5, 1, 0), t =

0. (b) Trajectory of the line soliton in (a): red line is for t = −4 and blue for t = 4.

For the 2SS given by (1.2.18) with (1.2.28), at a given time t it behaves like two

lines crossed in Figure 1.5. When t is fixed we can consider it as a constant and

analysis asymptotic behaviors when y → ±∞. When A12 6= 0, the procedure is

similar to the KdV case in §1.3.1, and here we skip it.

Let us consider the case of A12 = 0. Recalling in §1.3.1 for the KdV equation

its 1SS (1.3.1) is completely determined by the k1; in 2SS (1.3.3) if k1 = k2 then

A12 = 0 and the 2SS degenerates to 1SS. However, for the KP(II) equation, its 1SS

is determined by two parameters, p1 and q1. Particularly, on the basis of the special

form of A12, i.e. (1.2.28b),

A12 =
(p1 − p2)(q1 − q2)
(p1 − q2)(q1 − p2)

, (1.3.8)

for example, when p1 6= p2 but q1 = q2, we have A12 = 0 and (1.2.28a) degenerates

to

f = 1 + eη1 + eη2 , (1.3.9)
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(a) (b)

Figure 1.5: 2SS of the KP(II) equation. It is given by (1.2.18) with (1.2.28): (a)

(p1, q1, η
(0)
1 ) = (0.8, 0.2, 0), (p2, q2, η

(0)
2 ) = (−0.5, 0.9, 0), t = 0; (b) (p1, q1, η

(0)
1 ) =

(−0.4, 0.7, 0), (p2, q2, η
(0)
2 ) = (0.8, 0.4, 0), t = 0.

where ηi is given as (1.2.25). In this case, the 2SS does not degenerate to 1SS but

exhibits resonance of two line solitons, as described in Figure 1.6.

Figure 1.6: 2SS resonance of the KP(II) equation. It is given by (1.2.18) with (1.2.28),

where p1 = 1.0, p2 = −0.2, q1 = q2 = 0.5, η
(0)
1 = η

(0)
2 = 0, t = 0.

Resonance of solitons can be understood as a behavior occurring when some

parameters tend to be same (q1 = q2 can be considered as a result of q2 → q1).

Such a phenomena of solitary waves was studied by J.W. Miles [39], K. Ohkuma,

M. Wadadi [47], etc.

Now let us give an asymptotic analysis for the resonance described in Figure1.6.

Consider simplified case in which we take t = 0 and η
(0)
i = 0. Thus in (1.3.9),

ηi = kix+ hiy, ki = pi − qi, hi = p2i − q2i .
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We rewrite η2 in the coordinate frame (η1 = c, y):

η2 =
k2
k1
η1 +

1

k1
(k1h2 − k2h1)y.

Using the data in Figure1.6 (noticing that k1 > 0, k1h2 − k2h1 > 0), we find

eη2 ∼
{

0, y → −∞,
+∞, y → +∞.

Thus, in the coordinate system (η1, y) we have

f ∼
{

1 + eη1 , y → −∞,
eη2 , y → +∞,

and for u in (η1, y) we can see the following,

u ∼

{
k21
2

sech2η1, y → −∞,
0, y → +∞.

In a similar way, if in the coordinate system (η2, t) we can see that

u ∼

{
k22
2

sech2η2, y → −∞,
0, y → +∞.

These can explain the two “legs” in Figure1.6 and there are no solitons along the

same directions when y → +∞.

Next, let us find the soliton when y → +∞. In the coordinate system (η1 −
η2 = c, y) we rewrite ηi and find (noticing that with the date in Figure1.6 we have

k1 − k2 > 0, k1h2 − k2h1 > 0)

eηi = e
ki

k1−k2
(η1−η2)+ k1h2−k2h1

k1−k2
y ∼

{
0, y → −∞,
+∞, y → +∞.

Then, in the coordinate system (η1 − η2, y) there is

f = 1 + eη2(1 + eη1−η2) ∼
{

0, y → −∞,
eη2(1 + eη1−η2), y → +∞.

Thus, for u in (η1 − η2, y) we can see that

u ∼

{
0, y → −∞,
(k1−k2)2

2
sech2(η1 − η2), y → +∞.
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Asymptotic analysis is helpful to understand interaction of solitons and explain

special scattering behaviors. For more examples of multi-soliton interactions and

their asymptotic analysis, one can refer to the review paper [17] written by Jarmo

Hietarinta. For the variety of resonance of line solitons of the KP(II) equation and

their related interesting mathematical structures and applications, one can refer

to [26–28] by Yuji Kodama, et al.

1.4 2SS of bilinear equations

It is amazing that many bilinear equations automatically admit 1SS and 2SS.

1.4.1 Bilinear equations of the KdV-type

Consider the following bilinear equation

P (Dt)f · f = 0, (1.4.1)

where P is an even polynomial, i.e. P (t) = P (−t) and satisfying P (0) = 0. Such a

bilinear equation (1.4.1) is call a bilinear equation of the KdV-type [13,23]. Assume

that

f = 1 + eη1 , (1.4.2a)

where

η1 = p1 · t + η
(0)
1 . (1.4.2b)

It follows that

f · f = 1 · 1 + 1 · eη1 + eη1 · 1 + eη1 · eη1 .

Since the terms 1 · 1 and eη1 · eη1 varnish under the action of P (Dt), we have

P (Dt)f · f = 2P (Dt)e
η1 · 1 = 2P (∂t)e

η1 = 2P (p1)eη1 .

Thus, once P (p1) = 0, (1.4.2) is a solution of (1.4.1). We call P (p1) = 0 to be

dispersion relation (DR) of the bilinear equation (1.4.1).

Consider

f = 1 + eη1 + eη2 + A12e
η1+η2 , (1.4.3a)

where A12 is a constant to be determined,

ηi = pi · t + η
(0)
i (1.4.3b)
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satisfying DR

P (pi) = 0. (1.4.3c)

Substitute (1.4.3a) into the equation (1.4.1) and making use of the DR (1.4.3c), it

is easy to see that (1.4.3a) satisfies the equation (1.4.1) provided

A12 = −P (p1 − p2)

P (p1 + p2)
. (1.4.3d)

It is Hirota who first found this fact [23]. Here we note that “automatically” existing

2SS means there is no extra condition on pi beyond the DR (1.4.3c).

1.4.2 Other cases

As an example let us look at the following bilinear equation system [15]

B(Dt)G · F = 0, (1.4.4a)

A(Dt)(F · F + εG ·G) = 0, (1.4.4b)

where A is an even polynomial and ε = ±1. The above equation system admits 1SS;

F = 1, G = eη1 , η1 = p1 · t + η
(0)
1 ,

where η1 satisfies DR: B(p1) = 0. One type of 2SS of (1.4.4) is:

F = 1− A12e
η1+η2 , G = eη1 + eη2 , (1.4.5a)

where ηi = pi · t + η
(0)
i satisfies DR B(pi) = 0, and

A12 = −ε A(p1 − p2)

A(p1 + p2)
. (1.4.5b)

Not any arbitrary bilinear equation (system) will automatically admit a 2SS. For

example, the following bilinear equation system

B(Dt)G · F = 0, (1.4.6a)

A(Dt)F · F = 2ε|G|2, (1.4.6b)

where A is an even polynomial, F ∈ R(t) and G ∈ C(t). It has 1SS:

F = 1 + a eη1+η
∗
1 , G = eη1

where η1 = p1 · t + η
(0)
1 , p ∈ Cs, η

(0)
1 ∈ C, B(p1) = 0, a = −ε

A(p1+p1
∗)

, ∗ stands for

complex conjugate, |G|2 = GG∗. However, its 2SS does not exist automatically [16].
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1.5 Hirota’s integrability and 3SS condition

Take the KdV-type bilinear equation (1.4.1) as an example. For such an equation

P (Dt)f · f = 0, (1.5.1)

it is said to be Hirota-integrable if for all positive integers N , it has NSS of the form

f = 1 + ε
N∑
i=1

eηi + {finite number of higher-order terms in ε}, (1.5.2)

without any further conditions on the parameters pi beyond DR

P (pi) = 0. (1.5.3)

In general, for a bilinear equation (system), when it has 1SS which is described

by eηi (ηi = pi · t + η
(0)
i ), there is a condition on eηi , for example, DR, which

we call 1SS-condition. If the bilinear equation (system) allows a solution which is

described by a polynomial of arbitrarily many {eηi} (where each eηi describes one

single soliton), and there is no extra condition on each eηi besides 1SS-condition, we

say the bilinear equation (system) is Hirota integrable.

Hirota presented the following form for NSS of the KdV-type bilinear equation

(1.5.1) [23]:

f =
∑
µ=0,1

exp

(
N∑
j=1

µjηj +
N∑

1≤i<j

µiµjaij

)
, (1.5.4a)

where ηj = pj · t + η
(0)
j are defined as (1.4.3b),

P (pi) = 0, eaij = Aij = −P (pi − pj)

P (pi + pj)
, (1.5.4b)

the summation of µ means to take all possible µj = {0, 1} (j = 1, 2, · · · , N); and

further than that, the following condition is needed:

∑
σ=±1

[
P (

N∑
j=1

σjpj)×
( ∏

1≤i<j≤N

σiσjP (σipi − σjpj)
)]

= 0, (1.5.5)

the summation of σ means to take all possible σj = {1,−1} (j = 1, 2, · · · , N). This

condition holds automatically for the N = 2 case.

Those bilinear equations (systems) that automatically have 2SS may not have

3SS; even when they have 3SS, they might not Hirota integrable (there may be
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extra condition on pi). One famous example is the (2+1)-dimensional sine-Gordon

equation (see [21])

ϕxx + ϕyy − ϕtt = sinϕ, (1.5.6)

which, by the transformation

ϕ = 4 arctan
g

f
, (1.5.7)

is transformed into bilinear form

(D2
x +D2

y −D2
t )g · f = gf, (1.5.8a)

(D2
x +D2

y −D2
t )(f · f − g · g) = 0. (1.5.8b)

The above equations have 2SS automatically (see (1.4.4) and (1.4.5)), and its 3SS

reads

f = 1 + A12e
η1+η2 + A13e

η1+η3 + A23e
η2+η3 , (1.5.9a)

g = eη1 + eη2 + eη3 + A12A13A23e
η1+η2+η3 , (1.5.9b)

where

ηi = aix+ biy − cit+ η
(0)
i , (1.5.9c)

DR : a2i + b2i − c2i = 1, (1.5.9d)

Aij =
(ai − aj)2 + (bi − bj)2 − (ci − cj)2

(ai + aj)2 + (bi + bj)2 − (ci + cj)2
, (1.5.9e)

and an extra condition is needed:∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ = 0. (1.5.9f)

In the above results, for the 2SS which exists automatically, the only condition on

{ai, bi, ci} is the DR (1.5.9d); however, if 3SS exists, in addition to the DR, the

extra condition (1.5.9f) is rquired. Thus, the equation system (1.5.8) is an bilinear

system that possesses 3SS but is not integrable in Hirota’s sense. This is an famous

example. Hirota once proposed such a question in [23] for the KdV-type bilinear

equations: “Under what conditions does P satisfy the identity (1.5.5)?”

3SS-condition is specially referred to the case: a bilinear equation (system) has a

3SS, and the condition on each ηi is nothing beyond the 1SS-condition. In general,

it is conjectured that for a bilinear equation (system) the 3SS-condition is equivalent

to the Hirota’s integrability.
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In the following, let us take the KdV-type bilinear equation as an example to

see how the form of 3SS is determined by the elastic scattering behavior of multi-

solitons.

The property of elastic scattering of multi-solitons requires the following: “re-

moving a soliton from NSS, the left (N-1) solitons keep the elastic scattering struc-

ture of (N-1)SS”. Removing a soliton means the soliton is far from others ——

which, mathematically, can be done through two ways: either eηk → 0 or eηk →∞
(refer to the asymptotic analysis of 2SS in §1.3.1). For the KdV-type bilinear equa-

tion (1.5.1), it automatically has 2SS (see (1.4.3)):

f = 1 + eη1 + eη2 + A12e
η1+η2 , (1.5.10a)

where

P (pi) = 0, (1.5.10b)

Aij = −P (pi − pj)

P (pi + pj)
. (1.5.10c)

With the requirement of elastic scattering, if there is no further condition on pi

beyond (1.5.10b), after analysis we can find 3SS of equation (1.5.10) (if it has) can

only be in the following form

f =1 + eη1 + eη2 + eη3

+ A12e
η1+η2 + A13e

η1+η3 + A23e
η3+η3

+ A12A13A23e
η1+η2+η3 , (1.5.11)

and Aij must be defined as (1.5.10c). If we start from the 3SS (1.5.11) and using the

requirement of elastic scattering once again, we can reach a form for 4SS. Continuing

such a procedure one can obtain 5SS, 6SS, · · · · · · .
Thus, for the KdV-type bilinear equation (1.5.1), if we only require the DR

(1.5.10b) and elastic scattering property, its NSS (if it has) can only be the form

(1.5.4), which is the same as the NSS given in (1.2.16).

Now, if (1.5.4) provides a solution to (1.5.1), then (1.5.1) is Hirota’s integrable.

However, not all the bilinear equations have their 3SS which is only built on DR:

P (pi) = 0. In general, it is conjectured that for a bilinear equation (system) the

3SS-condition is equivalent to the Hirota’s integrability. In 1987 Jarmo Hietarinta
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found that the KdV-type bilinear equations that satisfy 3SS-condition are:

(D4
x − 4DxDt + 3D2

y)f · f = 0,

(D3
xDt + aD2

x +DtDy)f · f = 0,

[DxDt(D
2
x +
√

3DxDt +D2
t ) + aD2

x + bDxDt + cD2
t ]f · f = 0,

(D6
x + 5D3

xDt − 5D2
t +DxDy)f · f = 0,

etc., where, a, b, c are arbitrary constants. For more results one can refer to [13–16]

and [18].



Chapter 2

Bilinearity and Transformations

2.1 Bilinear identities

To study bilinear Bäcklund transformation, we introduce some bilinear identities.

First, we introduce a way to generate a large class of bilinear identities.

Property 2.1.1. The following equality holds:

eD1(eD2a · b) · (eD3c · d)

= e
1
2
(D2−D3)(e

1
2
(D2+D3)+D1a · d) · (e

1
2
(D2+D3)−D1c · b), (2.1.1)

where Di = εiDx + δiDt, εi, δi ∈ R, and a, b, c, d are sufficiently smooth functions of

(x, t).

It can be verified directly.

In the following we give examples to show how we use the formula (2.1.1) works

in generating bilinear identities.

Example 2.1.1: Taking D2 = D3 in (2.1.1) yields

eD1(eD2a · b) · (eD2c · d) = (eD2+D1a · d) · (eD2−D1c · b). (2.1.2)

Next, taking D1 = δDx, D2 = εDx in (2.1.2) and expanding the exponential func-

tions of both sides, we have

(1 + δDx + · · · )[(1 + εDx + · · · )a · b)] · [(1 + εDx + · · · )c · d)]

= [(1 + (ε+ δ)Dx +
1

2
(ε+ δ)2D2

x + · · · )a · d)]

× [(1 + (ε− δ)Dx +
1

2
(ε− δ)2D2

x + · · · )c · b)].

19
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The coefficient of the term εδ leads to a bilinear identity

Dx[(Dxa · b) · (cd)− (Dxc · d) · (ab)] = (D2
xa · d)bc− (D2

xc · b)ad. (2.1.3)

Example 2.1.2: Taking D2 = D3, b = c, d = a in (2.1.1) yields

eD1(eD2a · c) · (eD2c · a) = (eD2+D1a · a) · (eD2−D1c · c). (2.1.4)

Then we take D1 = εDx, D2 = δDt, and from the coefficient of εδ term in the

expansion we find

2Dx(Dta · c) · (ac) = (DxDta · a)c2 − (DxDtc · c)a2; (2.1.5)

from ε4 term we find

2Dx[(D
3
xa · c) · (ac)− 3(D2

xa · c) · (Dxa · c)] = (D4
xa · a)c2 − (D4

xc · c)a2. (2.1.6)

In general, by specially taking Di in the formula (2.1.1) and comparing coeffi-

cients of {ε, δ}, one can obtain variety of bilinear identities. They play important

roles in constructing bilinear Bäcklund transformations and nonlinear superposition

formulas from bilinear Bäcklund transformations.

2.2 Bilinear Bäcklund transformations

In this section we take the bilinear KdV equation (1.2.5), i.e.

(DxDt +D4
x)f · f = 0 (2.2.1)

as an example, to explain how a bilinear Bäcklund transformation is constructed

and how it works in finding solutions.

Suppose that g is also a solution of (2.2.1), i.e.

(DxDt +D4
x)g · g = 0. (2.2.2)

Then the following holds

g2(DxDt +D4
x)f · f − f 2(DxDt +D4

x)g · g = 0, (2.2.3)

i.e.

[(DxDtf · f)g2 − (DxDtg · g)f 2] + [(D4
xf · f)g2 − (D4

xg · g)f 2] = 0. (2.2.4)
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Now, employing the identities (2.1.5) and (2.1.6), (taking a = f, c = g), one can

rewrite (2.2.4) as

2Dx[(D
3
x +Dt)f · g] · (fg) + 6Dx[(Dxf · g) · (D2

xf · g)] = 0. (2.2.5)

Next, introduce

D2
xf · g = λfg, (2.2.6a)

where λ is a constant independent of x, by which (2.2.5) yields

2Dx[(D
3
x +Dt + 3λDx)f · g] · (fg) = 0.

Then we can take

(D3
x +Dt + 3λDx)f · g = 0. (2.2.6b)

(2.2.6a,b) compose a bilinear equation system which provides a bilinear Bäcklund

transformation of the KdV equation (1.2.1). In fact, from the above procedure we

can see that when (2.2.6a) and (2.2.6b) hold, equation (2.2.3) holds; if f is a solution

to (2.2.1), so is g to (2.2.2), due to (2.2.3).

In many cases, using a bilinear Bäcklund transformation to calculate soliton

solutions is not as convenient as directly using the orginal bilinear equation. Now

we show some details. First, taking λ =
k21
4

and f = 1 (noticing that f = 1 is

a solution to (2.2.1)), and substituting them into (2.2.6), one can find g needs to

satisfy the following

gxx =
k21
4
g,

gt + gxxx +
3

4
k21gx = 0.

As a solution we find

g = g1 = e
η1
2 + e−

η1
2 ,

where

ηi = kix− k3i t+ η
(0)
i , ki, ηi ∈ R. (2.2.7)

Thus, 1SS of the KdV equation (1.2.1) can be expressed by u = 2(ln g1)xx.

Next, taking f = g1, λ =
k22
4

and substituting them into (2.2.6), we have

(D2
x −

k22
4

)g · (e
η1
2 + e−

η1
2 ) = 0, (2.2.8a)

(D3
x +Dt +

3

4
k22Dx)g · (e

η1
2 + e−

η1
2 ) = 0. (2.2.8b)
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To get a solution we assume g to be the following form:

g = g2 = α(e
η1+η2

2 + e−
η1+η2

2 ) + β(e
η1−η2

2 + e−
η1−η2

2 ),

where ηi is defined as (2.2.7) and α, β are undetermined constants. Substituting the

above g into (2.2.8) we find: when α = k1−k2 and β = −(k1+k2), g satisfies (2.2.8).

Next, we can take f = g2, λ =
k23
4

, and from (2.2.6) we solve out solution g = g3.

However, it is obviously the above procedure is not as “mechanized” as the one we

used in §1.2 to calculate NSS from the bilinear KdV equation (1.2.5). In general we

can successively take λ =
k2j
4
, j = 1, 2, · · · , N to calculate higher order solutions; for

generic N , g has the following expression:

gN =
∑
ε=±1

[
N∏

1≤j<l

εl(εjkj − εlkl)e
1
2

∑N
j=1 εjηj

]
, (2.2.9)

where ηj is defined as (2.2.7), the summation over ε means to take all possible

εj = {1,−1} (j = 1, 2, · · · , N).

A proof that (2.2.9) satisfies the bilinear KdV equation (1.2.5) will be given in

Chapter ?? by making use of Wronskians.

2.3 Deformations of bilinear BTs

We have already seen that using bilinear Bäcklund transformation (2.2.6) to cal-

culate soliton solutions is not as convenient as using the original bilinear equation

(1.2.5). The reason is f = 1, g = 1 are not a solution pair to (2.2.6). To change

such a situation, we try deforming bilinear Bäcklund transformations.

In (2.2.6) we replace f and g with eξ1f and eξ2g, respectively, i.e.

f → eξ1f, g → eξ2g, (2.3.1)

where ξi = pix+qit+ξ
(0)
i , pi, qi, ξ

(0)
i ∈ R. Noticing that solutions of the KdV equation

can be expressed through u = 2(ln f)xx or u = 2(ln g)xx, such a replacement does

not change solutions; of course, due to gauge property (1.1.11) of bilinear equations,

such a replacement does not change (2.2.1) and (2.2.2), either. Using identity (1.1.8),
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we have

Dx(e
ξ1f) · (eξ2g) = eξ1+ξ2 [(p1 − p2)fg +Dxf · g],

D2
x(e

ξ1f) · (eξ2g) = eξ1+ξ2 [(p1 − p2)2fg + 2(p1 − p2)Dxf · g +D2
xf · g],

D3
x(e

ξ1f) · (eξ2g) = eξ1+ξ2 [(p1 − p2)3fg + 3(p1 − p2)2Dxf · g
+ 3(p1 − p2)D2

xf · g +D3
xf · g],

Dt(e
ξ1f) · (eξ2g) = eξ1+ξ2 [(q1 − q2)fg +Dxf · g].

By means of them we rewrite (2.2.6) into

[D2
x + 2(p1 − p2)Dx]f · g = [λ− (p1 − p2)2]fg, (2.3.2a)

{Dt +D3
x + 3(p1 − p2)D2

x + 3[λ+ (p1 − p2)2]Dx}f · g
= −[(q1 − q2) + (p1 − p2)3 + 3λ(p1 − p2)2]fg. (2.3.2b)

Introducing

2(p1 − p2) = λ′, λ = (p1 − p2)2, (q1 − q2) + 4(p1 − p2)3 = 0,

so that we can simplify (2.3.2a) to

(D2
x + λ′Dx)f · g = 0, (2.3.3a)

and further, eliminating D2
x term in (2.3.2b), we reach

(Dt +D3
x)f · g = 0. (2.3.3b)

(2.3.3a,b) compose a deformed bilinear Bäcklund transformation of the KdV equa-

tion (1.2.1).

Compared with (2.2.6), (2.3.3) admits solutions f = g = 1, which bring conve-

nience in calculation: it allows to calculate f and g by a perturbation expansion.

Assuming

f = 1 +
∞∑
i=1

f (i)εi, g = 1 +
∞∑
i=1

g(i)εi (2.3.4)
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and substituting them into (2.3.3) yield

(∂2x + λ′∂x)(f
(1) − g(1)) = 0, (2.3.5a)

(∂2x + λ′∂x)(f
(2) − g(2)) = −(D2

x + λ′Dx)f
(1) · g(1), (2.3.5b)

(∂2x + λ′∂x)(f
(3) − g(3)) = −(D2

x + λ′Dx)(f
(1) · g(2) + f (2) · g(1)), (2.3.5c)

· · · · · · ;

(∂t + ∂3x)(f
(1) − g(1)) = 0, (2.3.5d)

(∂t + ∂3x)(f
(2) − g(2)) = −(Dt +D3

x)f
(1) · g(1), (2.3.5e)

(∂t + ∂3x)(f
(3) − g(3)) = −(Dt +D3

x)(f
(1) · g(2) + f (2) · g(1)), (2.3.5f)

· · · · · · .

To get solutions, first we can take g(j) = 0, (j ≥ 1), which means we take zero as a

seed solution in the transformation. Taking λ′ = −k1, from (2.3.5a,d) we find

f (1) = eη1 , ηi = kix− k3i t+ η
(0)
i , ki, η

(0)
i ∈ R, (2.3.6)

where ηi is defined as (1.2.9). For those f (j), (j ≥ 2) we can trivially take them to

be 0. Thus, 1SS is obtained as u = 2[ln(1 + f (1))]xx.

Next, still considering g as a new seed solution and taking g(1) = eη1 , g(j) =

0, (j ≥ 2), in the following we will see that the deformed bilinear Bäcklund trans-

formation does bring some new aspects.

Case 1: Taking λ′ = −k2 and assuming

f (1) = aeη1 + beη2 ,

where ηi is defined as (2.3.6), from (2.3.5a,d) we find a = −k1+k2
k1−k2 and b can be an

arbitrary constant. Next, from (2.3.5b,e) we find

f (2) = − b
a
eη1+η2 .

For f (j), (j ≥ 3), we can take them to be 0. Thus, 2SS is obtained as u = 2(ln f)xx,

where

f = 1 + aeη1 + beη2 − b

a
eη1+η2 , a = −k1 + k2

k1 − k2
. (2.3.7)

Case 2: Still take λ′ = −k1 (as in getting 1SS). In this case we have

f (1) = ζ1e
η1 , f (2) = e2η1 ,
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where η1 is defined as (2.3.6), ζ1 = 2k1(x− 3k21t) + ζ(0), ζ(0) ∈ R, and f (j) = 0, (j ≥
3). The obtained solution is u = 2(ln f)xx, where

f = 1− ζ1eη1 + e2η1 , (2.3.8)

The solution is called double-pole solution (corresponding to the case k2 → k1).

The above are two examples. If in (2.3.7) we scale a, b to be 1 by redefining the

constants η
(0)
i , f can be written as

f = 1 + eη1 + eη2 + A12 e
η1+η2 , A12 =

(k1 − k2
k1 + k2

)2
,

which is the standard Hirota’s form for 2SS of the KdV equation. If in (2.3.7) we

take b = −a and the limit k2 → k1, we can obtain (2.3.8). Double-pole solutions

correspond to the case that the transmission coefficient T (k) in the Inverse Scattering

Transform has a double pole (note that simple poles leads to solitons). Double-pole

solutions can be obtained from several ways (e.g. [9, 31,55]).

The deformed bilinear Bäcklund transformations have advantages in allowing

more freedom in calculations and obtaining more kinds of solutions. If we keep

taking λ′ = 0 in each step of the transformations, we may obtain high order rational

solutions. Besides, rational solutions can also be derived directly from bilinear

equations [23], or from determinantal approach.For more examples on deformed

bilinear Bäcklund transformations, one can refer to [5, 8], etc.

2.4 Bäcklund transformations and Lax pairs

A bilinear Bäcklund transformation appears as an equation system and actually

requires compatibility among these equations. This fact brings Bäcklund transfor-

mations and Lax pairs together.

For the KdV equation (1.2.1), i.e.

ut + 6uux + uxxx = 0, (2.4.1)

its Lax pair reads (see Appendix A.1)

φxx + uφ = λφ, (2.4.2a)

φt = φxxx + 3(λ+ u)φx. (2.4.2b)
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Noticing that in the bilinear Bäcklund transformation (2.2.6), f and g correspond

to two solutions of the KdV equation: u = 2(ln f)xx and ũ = 2(ln g)xx, we put them

together and we have

ũ = u+ 2(lnφ)xx, φ =
g

f
, (2.4.3)

which is as same as the relation of two solutions of the KdV equation obtained from

the Darboux transformation [38].

In the bilinear Bäcklund transformation (2.2.6), taking

u = 2(ln f)xx, φ =
g

f
, (2.4.4)

and rewriting (2.2.6) in terms of u and φ directly yield the Lax pair (2.4.2) for

the KdV equation. In the reverse direction, substituting (2.4.4) into the Lax pair

(2.4.2), one can find the bilinear Bäcklund transformation (2.2.6).

In general, once we have a bilinear equation we can construct its bilinear Bäcklund

transformation, and with suitable substitutions from the bilinear Bäcklund trans-

formation one can obtained a Lax pair for the original nonlinear equation.

There is a nonlinear Bäcklund transformation which was given by Wahlquist and

Estabrook in 1973 [57]:

(w̃ + w)x = 2λ− 1

2
(w̃ − w)2, (2.4.5a)

(w̃ − w)t =
1

2
[(w̃ − w)3]x − 6λ(w̃ − w)x − (w̃ − w)xxx, (2.4.5b)

where w satisfies the potential KdV equation (1.2.2), i.e. u = wx satisfying the KdV

equation (1.2.1). Once w̃ is solved out from (2.4.5), ũ = w̃x provides a new solution

to the KdV equation. For the derivation of the Bäcklund transformation (2.4.5),

one can refer to Appendix A.2.

The Bäcklund transformation (2.4.5) can be bilinearized [23]. Taking

w = 2(ln f)x, w̃ = 2(ln g)x, (2.4.6)

and substituting them into (2.4.5), one can obtain the Bäcklund transformation

(2.2.6).

With (2.4.6) and φ = g/f , which yields w̃ − w = 2(lnφ)x, from (2.4.5) one can

directly obtain the Lax pair (2.4.2) of the KdV equation.

Note: Lax pair, bilinear Bäcklund transformation and nonlinear Bäcklund trans-

formation provide different forms for a same thing. Around the year 1974, many

researchers considered relations between Bäcklund transformations and Lax pairs,
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see [6,22,32,42,56], etc. Besides, Lambert and Springael also discussed the relations

between bilinear Bäcklund transformations and Lax pairs in “Bilinear Integrable Sys-

tems: From Classical to Quatum, Continuous to Discrete” [34].

2.5 BTs and superposition formulas

2.5.1 Nonlinear BTs and superposition formulas

How can we use a Bäcklund transformation to generate solutions? In the nonlinear

Bäcklund transformation (2.4.5), taking w = 0 and λ = k21, we have

w̃x = 2k21 −
1

2
w̃2, (2.5.1a)

w̃t =
1

2
(w̃3)x − 6k21w̃x − w̃xxx. (2.5.1b)

From (2.5.1a) we can assume

w̃ = 2k1 tanh(kx+ c(t)),

where c(t) is undetermined. Substituting it into (2.5.1b) we find c(t) = 4k31t+ η
(0)
1 .

Thus,

w̃ = 2k1 tanh η1, ηi = kix+ 4k3i t+ η
(0)
i , (ki, η

(0)
i ∈ R) (2.5.2)

provides a solution to the potential KdV equation (1.2.2) and u = w̃x is an 1SS of

the KdV equation (1.2.1).

Next, taking w to be (2.5.2) and substituting it into the Bäcklund transformation

(2.4.5) to solve w̃, (taking λ = k22), one will get a 2SS for the KdV equation. However,

we have to make use of quadrature and obviously this is not as convenient as using

bilinear Bäcklund transformation.

Once we get the first few solutions from the Bäcklund transformation (2.4.5), a

recursive relation of these solutions can be built, from which new solutions can easily

be generated. Such a recursive relation is referred to as a nonlinear superposition

formula of solutions. Next, let us derive the nonlinear superposition formula for the

KdV equation. We only use equation (2.4.5a) in the Bäcklund transformation.

Next, we start from (2.4.5a) with a seed solution w, denote w̃ = w1 when taking

λ = λ1 and w̃ = w2 when taking λ = λ2, i.e.

(w1 + w)x = 2λ1 −
1

2
(w1 − w)2, (2.5.3a)

(w2 + w)x = 2λ2 −
1

2
(w2 − w)2. (2.5.3b)
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Then, using (2.4.5a) with a new seed w = w1 and λ = λ2, the obtained solution

being denoted by w̃ = w12, we have

(w12 + w1)x = 2λ2 −
1

2
(w12 − w1)

2; (2.5.4a)

and taking w = w2, λ = λ1 in (2.4.5a) and denoting w̃ = w21, yields

(w21 + w2)x = 2λ1 −
1

2
(w21 − w2)

2. (2.5.4b)

The above procedure can be described as in Figure 2.1. The question is whether

��
��
� HHHHH

HHHHH ��
��
�

w1

w2

w w12 = w21?

λ1 λ2

λ2 λ1

Figure 2.1: Permutability property of solutions based on Bäcklund transformation.

w12 and w21 are same. To answer this question, we eliminate w1,x from (2.5.3a) and

(2.5.4a) and we reach

w1 =
1

2
(w12 + w) +

2(λ1 − λ2)
w12 − w

+ [ln(w12 − w)]x.

Substituting it into (2.5.4a) we find

λ1 + λ2 =(w12 + w)x + [ln(w12 − w)]xx +
1

2
[ln(w12 − w)]2x

+
1

8
(w12 − w)2 +

2(λ1 − λ2)2

(w12 − w)2
. (2.5.5)

This can be viewed as an ODE for both w12 and because it is invariant if switching

λ1 and λ2 in the equation. Thus, once we impose same initial condition on w12 and

w21, we will get w12 = w21.

To obtain a neat form of the recursive relation for the solutions, from (2.5.3a)

and (2.5.3b) we have

(w1 − w2)x = 2(λ1 − λ2)−
1

2
(w1 − w2)(w1 + w2 − 2w);

and from (2.5.4a) and (2.5.4b) we have (noticing that w12 = w21)

(w1 − w2)x = −2(λ1 − λ2)−
1

2
(w1 − w2)(w1 + w2 − 2w12).
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Eliminating derivative terms from them yields

4(λ1 − λ2) = (w1 − w2)(w12 − w), (2.5.6)

which is referred to as the nonlinear superposition formula of solutions of the (po-

tential) KdV equation, also known as the Bianchi identity1, also called the discrete

potential KdV equation [19,45]. As a discrete equation, (2.5.6) is usually written as

(wn+1,m − wn,m+1)(wn,m − wn+1,m+1) = q2 − p2, (2.5.7)

in which p and q are spacing parameters of n- and m- direction, respectively.

It is remarkable that the derivation of the nonlinear superposition formula is only

based on x-part in the Bäcklund transformation, which implies the superposition

formula is valid for the solutions of the whole KdV hierarchy. The formula is so

simple and neat. In addition to the KdV equation, some equations such as the

modified KdV(mKdV) equation, sine-Gordon equation, an so on, have superposition

formulas in simple forms (cf. [6,29,31,32,54]). In fact, the mKdV equation and sine-

Gordon equation share a same superposition formula. Besides, when these nonlinear

superposition formulas are treated as 2D discrete equations, they exhibit beautiful

3D consistency [3, 19].

2.5.2 Bilinear BTs and superposition formulas

Using bilinear Bäcklund transformations one can derive nonlinear superposition

formulas for bilinear equations, which was first found by Hirota and Satsuma in

1978 [24]. Still we take the KdV equation as an example to show the construction

procedure.

We start from the x-part of the bilinear Bäcklund transformation (2.2.6) of the

KdV equation, i.e.

D2
xf · f̃ = λff̃ , (2.5.8)

where for convenience we replaced g with f̃ . We will construct a relation as shown

in Figure2.2. Of course, first we need to investigate the possibility f12 = f21. Similar

to §2.5.1, from (2.5.8) we have

(D2
x − λ1)f · f1 = 0, (2.5.9a)

(D2
x − λ2)f · f2 = 0, (2.5.9b)

(D2
x − λ2)f1 · f12 = 0, (2.5.9c)

(D2
x − λ1)f2 · f21 = 0. (2.5.9d)

1It is Bianchi who first derived a nonlinear superposition formula of solutions of the sine-Gordon

equation and first proved permutation property of solutions [4].
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f1

f2

f f12 = f21

λ1 λ2

λ2 λ1

Figure 2.2: Permutability property of bilinear Bäcklund transformations.

Introducing w = 2(ln f)x, we write (2.5.9a) as

(w + w1)x = 2λ1 −
1

2
(w − w1)

2,

which is the same as (2.5.3a). (2.5.9b,c,d) can also written as (2.5.3b) and (2.5.4a,b)

in terms of w.2 Thus, both w12 = 2(ln f12)x and w21 = 2(ln f21)x will satisfy the

same ODE (2.5.5), and f12 and f21 can be same provided that enjoy same initial

conditions.

Now, f2f12 × (2.5.9a)− ff1 × (2.5.9d) yields

(D2
xf · f1)f2f12 − (D2

xf2 · f12)ff1 = 0; (2.5.10)

meanwhile, using bilinear identity (2.1.3) we have

(D2
xf ·f1)f2f12−(D2

xf2 ·f12)ff1 = Dx[(Dxf ·f12)·(f1f2)−Dx(f2 ·f1)·(ff12)]. (2.5.11)

By a comparison we immediately find

Dx[(Dxf · f12) · (f1f2)− (Dxf2 · f1) · (ff12)] = 0;

Switching indices: 1↔ 2, yields

Dx[(Dxf · f12) · (f1f2)− (Dxf1 · f2) · (ff12)] = 0.

For the above two equations, adding and subtracting each other yield, respectively

Dx(Dxf · f12) · (f1f2) = 0,

Dx(Dxf1 · f2) · (ff12) = 0.

Then, noticing the property Dxg · g = 0 we can take

Dxf · f12 = αf1f2, (2.5.12a)

Dxf2 · f1 = βff12, (2.5.12b)

2This shows the coincidence between bilinear and nonlinear Bäcklund transformations and Lax

pairs.
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where α, β ∈ R. These two equations together compose a nonlinear superposition

formula for the bilinear KdV equation (1.2.5).

One can derive the nonlinear superposition formula (2.5.6) from (2.5.12). In fact,

multiplying each other in (2.5.12) yields

(Dxf · f12)× (Dxf2 · f1) = αβff1f2f12.

Then introducing w = 2(ln f)x, we reach

(w − w12)(w1 − w2) = −4αβ, (2.5.13)

which is the nonlinear superposition formula (2.5.6). Thus, two forms of the super-

position formulas are unified.

2.6 Vertex operators

2.6.1 Vertex operator of the KdV equation

The function f defined by (1.2.16) corresponds to the NSS of the KdV equation

(1.2.1). It is called τ function of the KdV equation, denoted by τN . The bilinear

Bäcklund transformation (2.2.6) provides a transformation between τN and τN+1.

Besides, there is an operator X(k) (called vertex operator) which provides a more

direct transformation between τN and τN+1:

τN+1 = ecN+1X(kN+1)τN . (2.6.1)

We will explain such an operator in this subsection.

We rewrite the KdV equation (by t→ −4t) as

4ut − 6uux − uxxx = 0. (2.6.2)

Then, under transformation

u = 2(ln τ)xx, (2.6.3)

bilinear KdV equation is

(4DxDt −D4
x)τ · τ = 0. (2.6.4)

For convenience we introduce t1 = x, t3 = t, with which the above bilinear equation

reads

(4D1D3 −D4
1)τ · τ = 0. (2.6.5)
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Its NSS is given by

τN =
∑
µ=0,1

exp

(
2

N∑
j=1

µj(ζj + ζ
(0)
j ) +

N∑
1≤i<j

µiµjaij

)
, (2.6.6a)

where

ζj =
∞∑
i=0

k2i+1
j t2i+1, eaij = Aij =

(ki − kj
ki + kj

)2
, (2.6.6b)

ζ
(0)
j ∈ R and the summation over µ is as same as in (1.2.16). Here we note that, to

employ those notations in Sato’s theory, we use infinite coordinates (t1, t3, t5, · · · ).
In fact, for the KdV equation we can treat (t5, t7, · · · ) (which do not appear in the

equation) as parameters.

The above τN can be written as [43]

τN =
∑
J⊂I

[(∏
i∈J

ci

)( ∏
i,j∈J
i<j

Aij

)
exp

(
2
∑
i∈J

ζi

)]
, (2.6.7)

where ci ∈ R, I stands for the set I = {1, 2, · · · , N}, J is a subset of I, and sum-

mation over J ⊂ I means taking all possible subsets of I. In the above expression,

J = ∅ corresponds to “1”, J = {i} corresponds to cie
2ζi , and J = {1, 2} corresponds

to c1c2A12e
2(ζ1+ζ2), · · · · · · . Obviously, ci takes the place of e2ζ

(0)
i in (2.6.6). When

N = 2, we have

τ2 = 1 + c1e
2ζ1 + c2e

2ζ2 + c1c2A12 e
2(ζ1+ζ2),

which is the same as (1.2.14) (ε = 1).

For the transformations between τ functions based on vertex operators, there is

the following [10,43].

Theorem 2.6.1. For the τ function defined by (2.6.7), there is

τN+1 = ecN+1X(kN+1)τN , (2.6.8)

where

X(k) = e2ζ(t,k) e−2ζ(∂̃, k
−1), (2.6.9a)

ζ(t, k) =
∞∑
j=0

k2j+1t2j+1, t = (t1, t3, t5, · · · ), (2.6.9b)

∂̃ =
(
∂1,

∂3
3
,
∂5
5
, · · ·

)
, ∂j = ∂tj . (2.6.9c)

(2.6.9a) is called a vertex operator.
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The vertex operator (2.6.9a) was constructed by James Lepowsky and Robert

Lee Wilson, who also found the operator is isomorphic to the affine Lie algebra

A
(1)
1 [35]. Date et al [10] found the connection (2.6.8) between the operator and

the τ function of the KdV equation, which led to a series of beautiful work on

transformation groups and integrable systems.

We prove this theorem through some lemmas.

Lemma 2.6.1. ∀a, k ∈ R, there is

eaζ(∂̃, k
−1)f(t) = f(t + aε(k)), (2.6.10)

where

ε(k) =
(1

k
,

1

3k3
,

1

5k5
, · · ·

)
.

The proof is obvious.

Lemma 2.6.2.

e−4ζ(ε(p),q) =
(p− q
p+ q

)2
. (2.6.11)

Proof.

ln
(p− q
p+ q

)
= ln(1− q/p)− ln(1 + q/p)

= −
∞∑
j=1

qj

j pj
−
∞∑
j=1

(−1)j+1 q
j

j pj

= −2
∞∑
j=0

q2j+1

(2j + 1) p2j+1

= −2ζ(ε(p), q),

which is equivalent to (2.6.11).

Lemma 2.6.3.

e−2ζ(∂̃, k
−1
i )e2ζ(t,kj) = Aije

2ζ(t,kj) e−2ζ(∂̃, k
−1
i ). (2.6.12)

Proof. For any sufficiently smooth function f(t), successively using Lemma 2.6.1

and Lemma 2.6.2, we find

e−2ζ(∂̃, k
−1
i )e2ζ(t,kj)f(t)

=e2ζ(t−2ε(ki),kj)f(t− 2ε(ki))

=e2ζ(t,kj)e−4ζ(ε(ki),kj)e−2ζ(∂̃, k
−1
i )f(t)

=Aije
2ζ(t,kj) e−2ζ(∂̃, k

−1
i )f(t).

The lemma is proved due to arbitrariness of f(t).
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There is another expression for (2.6.12). If denoting A = −2ζ(∂̃, k−1i ), B =

2ζ(t, kj), first we have

[A,B] = −4ζ(ε(ki), kj) = lnAij, (2.6.13)

where [A,B] = AB − BA. In fact, because B is a linear function, [A,B] must be a

scalar. Noticing that

[∂2r+1, t2s+1] = δr,s,

we have

[A,B] = −4
∞∑
r=0

∞∑
s=0

1

2s+ 1

k2r+1
j

k2s+1
i

[∂2s+1, t2r+1]

= −4
∞∑
r=0

∞∑
s=0

1

2s+ 1

k2r+1
j

k2s+1
i

δr,s

= −4
∞∑
r=0

1

2r + 1

k2r+1
j

k2r+1
i

= −4ζ(ε(ki), kj).

Then, using (2.6.13), (2.6.12) can be written as

eAeB = e[A,B]eBeA. (2.6.14)

Lemma 2.6.4. For the vertex operator X(k) defined by (2.6.9a), there is

X(ki)X(kj) = Aije
2(ζ(t,ki)+ζ(t,kj))e−2ζ(∂̃, k

−1
i )e−2ζ(∂̃, k

−1
j ). (2.6.15)

Proof. Using formula (2.6.12), we find

X(ki)X(kj) = e2ζ(t,ki)e−2ζ(∂̃, k
−1
i )e2ζ(t,kj))e−2ζ(∂̃, k

−1
j )

= e2ζ(t,ki)Aij e
2ζ(t,kj))e−2ζ(∂̃, k

−1
i )e−2ζ(∂̃, k

−1
j ),

which is (2.6.15).

Lemma 2.6.5. (Can be considered as a corollary of Lemma 2.6.4) For the vertex

operator X(k) defined by (2.6.9a), there are

(X(k))2 = 0, (2.6.16)

ecX(k) = 1 + cX(k), (2.6.17)

X(ks) · · ·X(k2)X(k1)

=

(
s∏

1≤i<j

Aij

)
exp

(
2

s∑
j=1

ζ(t, kj)

)
exp

(
2

s∑
j=1

ζ(∂̃, k−1j )

)
; (2.6.18)
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and

X(k)◦1 = e2ζ(t,k), (2.6.19)

X(ks) · · ·X(k2)X(k1)◦1 =

(
s∏

1≤i<j

Aij

)
exp

(
2

s∑
j=1

ζ(t, kj)

)
, (2.6.20)

where “ ◦1” means an operator acting on “1”.

Making use of Lemma 2.6.5, it is not difficult to calculate:

τ1 = ec1X(k1)◦1 = (1 + c1X(k1))◦1 = 1 + c1e
2ζ(t,k1),

τ2 = ec2X(k2)ec1X(k1)◦1 = (1 + c2X(k2))(1 + c1X(k1))◦1
= 1 + c1e

2ζ(t,k1) + c2e
2ζ(t,k2) + c1c2A12e

2(ζ(t,k1)+ζ(t,k2)),

τN = ecNX(kN ) · · · ec2X(k2)ec1X(k1)◦1
= (1 + cNX(kN)) · · · (1 + c2X(k2))(1 + c1X(k1))◦1
= ecNX(kN )τN−1.

Thus we also finish the proof for Theorem 2.6.1.

2.6.2 Vertex operator of the KP(II) equation

Rewriting the bilinear KP(II) equation (1.2.19) as (2.6.5), we have

(4D1D3 −D4
1 − 3D2

2)τ · τ = 0. (2.6.21)

Its NSS(1.2.29) is

τN =
∑
J⊂I

[(∏
i∈J

ci

)( ∏
i,j∈J
i<j

Aij

)
exp

(∑
i∈J

ξi

)]
, (2.6.22a)

where ci ∈ R,

ξj =
∞∑
i=0

(pij − qij)ti, eaij = Aij =
(pi − pj)(qi − qj)
(pi − qj)(qi − pj)

, (2.6.22b)

I stands for the set I = {1, 2, · · · , N}, J is a subset of I, and summation over J ⊂ I

means taking all possible subsets of I.

For the vertex operator related to the KP(II) equation, we have the following

[10,43].
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Theorem 2.6.2. For the τ function defined by (2.6.22a), there is

τN+1 = ecN+1X(pN+1,qN+1)τN , (2.6.23)

where

X(p, q) = eξ(t,p)−ξ(t,q) e−(ξ(∂̃, p
−1)−ξ(∂̃, q−1), (2.6.24a)

ξ(t, k) =
∞∑
j=0

kjtj, t = (t1, t2, t3, · · · ), (2.6.24b)

∂̃ =
(
∂1,

∂2
2
,
∂3
3
, · · ·

)
, ∂j = ∂tj . (2.6.24c)

In fact, (similar to §2.6.1) one can prove that (will be given in Chapter??)

X(pi, qi)X(pj, qj) = Aij :X(pi, qi)X(pj, qj):, (2.6.25)

where

:X(pi, qi)X(pj, qj): = eξ(t,pi)−ξ(t,qi)eξ(t,pj)−ξ(t,qj) e−(ξ(∂̃, p
−1
i )−ξ(∂̃, q−1

i )) e−(ξ(∂̃, p
−1
j )−ξ(∂̃, q−1

j ))

is the normally arranged product of X(pi, qi)X(pj, qj), (just moving all differential

operators to the most right place).

Then we can results which are similar to Lemma 2.6.5:

(X(p, q))2 = 0, (2.6.26)

ecX(p,q) = 1 + cX(p, q), (2.6.27)

X(ps, qs) · · ·X(p2, q2)X(p1, q1)

=

(
s∏

1≤i<j

Aij

)
:X(ps, qs) · · ·X(p2, q2)X(p1, q1): ; (2.6.28)

and

X(p, q)◦1 = eξ(t,p)−ξ(t,q), (2.6.29)

X(ps, qs) · · ·X(p2, q2)X(p1, q1)◦1

=

(
s∏

1≤i<j

Aij

)
exp

(
s∑
j=1

(ξ(t, pj)− ξ(t, qj))

)
. (2.6.30)

Then it is not difficult to reach Theorem 2.6.2.



Appendix A

Lax pair and BT of the KdV

equation

A.1 KdV hierarchy

The KdV equation (1.2.1) can be expressed as a compatibility of the Schrödinger

special problem

φxx + uφ = λφ (A.1.1)

and

φt = 4φxxx + 6uφx + 3uxφ, (A.1.2)

where the spectral parameter λ is independent of t, i.e. λt = 0. On the basis of

this fact, GGKM [12] developed the IST to derive NSS for the (nonlinear) KdV

equation. It is P.D. Lax who first realized that not only the KdV equation, but

also more nonlinear evolution equations can be expressed as compatibilities of some

linear problems; in his celebrated paper [30] in 1968, he also introduced symme-

tries, conserved covariants and conserved quantities to investigate properties of these

equations, which, in some sense, together with [12], triggered the modern theory of

integrable systems.

In the following we start from the Schrödinger spectral problem (A.1.1) to derive

the KdV hierarchy. Introduce a time evolution relation

φt = Aφ+Bφx, (A.1.3)

where A and B are undetermined functions of the potential u and spectral parameter

λ, and λt = 0. From the compatibility condition (φxx)t = (φt)xx we have

(2Ax +Bxx)φx + [ut + Axx + 2(λ− u)Bx − uxB]φ = 0,

37
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and then

2Ax +Bxx = 0, (A.1.4a)

ut = −Axx − 2(λ− u)Bx + uxB. (A.1.4b)

Eliminating A yields

ut = TB − 2λBx, T =
1

2
∂3x + 2u∂x + ux. (A.1.5)

To construct the KdV hierarchy, we assume B is a polynomial of λ:

B =
n∑
j=0

bj(2λ)n−j. (A.1.6)

Substituting it into (A.1.5) and comparing coefficients of each power of λ yield

ut = Tbn, (A.1.7a)

bj+1,x = Tbj (j = 0, 1, · · · , n− 1), (A.1.7b)

b0,x = 0. (A.1.7c)

{bj} can be obtained by integrating successively. To achieve that we assume the

integration constants to be1

B|u=0 = (4λ)n.

Then, from (A.1.7) we can successively get b0 = 2n, b1 = 2nu, b2 = 2n−1(uxx + 3u2),

bj+1 = 2n−j∂−1x Ljux, j = 0, 1, · · · , n− 1,

where

L = 2T∂−1x = ∂2x + 4u+ 2ux∂
−1
x (A.1.8)

is called the recursion operator of the KdV hierarchy. By (A.1.7a), the KdV hierar-

chy can be expressed as:

utn = LnK0, K0 = ux, (n = 0, 1, 2, · · · ). (A.1.9)

When n = 1, 2, there are

ut = K1 = uxxx + 6uux, (A.1.10a)

ut = K2 = uxxxxx + 10uuxxx + 20uxuxx + 30u2ux, (A.1.10b)

1Integration operator ∂−1x satisfies ∂−1x ∂x = ∂x∂
−1
x = 1, and usually is defined as ∂−1x =

1
2 (
∫ x

−∞−
∫ +∞
x

). Since for soliton solutions u satisfies u → 0 (x → ±∞), usually integration

constants are given through ( · )|u=0.
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where (A.1.10a) is the KdV equation (1.2.1) (with t → −t) and (A.1.10b) is called

the 5th-order KdV equation.

For the KdV equation (A.1.10a), corresponding to n = 1, we have b0 = 2, b1 =

2u, i.e. B = 4λ + 2u; then from (A.1.4a) we have A = −ux. Substituting them to

(A.1.3) gives

φt = −uxφ+ (4λ+ 2u)φx. (A.1.11)

Corresponding to the KdV equation (1.2.1), we need to switch t→ −t, and we have

φt = uxφ− (4λ+ 2u)φx. (A.1.12)

(A.1.1) and (A.1.12) compose the Lax pair of the KdV equation (1.2.1). If using

(A.1.1) to eliminate λ in (A.1.12), we get (A.1.2). If we only eliminate only one λ

in (A.1.12) and leave 3λ, we get

φt = φxxx + 3(λ+ u)φx. (A.1.13)

(A.1.1) and (A.1.13) also present a Lax pair for the KdV equation.

A.2 BT of the KdV equation

In 1968 R.M. Miura [40] proposed famous Miura transformation

u = −vx − v2, (A.2.1)

by which the KdV equation (1.2.1) and modified KdV (mKdV) equation

vt − 6v2vx + vxxx = 0 (A.2.2)

are related together through

ut + 6uux + uxxx = −(2v + ∂x)(vt − 6v2vx + vxxx).

Miura’s transformation provides more profound links for the KdV and mKdV equa-

tion, which can be summarized as the following:

• Miura’s transformation corresponds to the Schrödinger spectral problem of the

KdV equation: Making use of the fact that the KdV equation is invariant under

the Galilean transformation (u(x, t)→ λ+ u(x− 6λt, t)), one can introduce λ

and rewrite the Miura transformation (A.2.1) by u→ u− λ, i.e.

u = λ− vx − v2. (A.2.3)

Then, using the Cole-Hopf transformation v = φx/φ it becomes the Schrödinger

spectral problem (A.1.1) of the KdV equation. In fact, Miura found the trans-

formation before the IST.
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• The mKdV equation provides the time evolution part in the Lax pair of the

KdV equation: Under the Miura transformation (A.2.1) and v = φx/φ, the

mKdV (A.2.2) becomes (A.1.2).

Making use of Miura’s transformation (A.2.3) one can construct nonlinear Bäcklund

transformation for the KdV equation. First, noticing that the mKdV equation

(A.2.2) is invariant under v → −v, from (A.2.3) we have two relations:

ũ = λ+ vx − v2, (A.2.4a)

u = λ− vx − v2. (A.2.4b)

Obviously, when v solves the mKdV equation (A.2.2), ũ satisfies the KdV equation

(1.2.1). For the relation between u and ũ, it is easy to see that

ũ+ u = 2(λ− v2), (A.2.5a)

ũ− u = 2vx. (A.2.5b)

Consider the potential form of the KdV equation, i.e. (1.2.2). After introducing

u = wx, ũ = w̃x, from (A.2.5b) we have

w̃ − w = 2v; (A.2.6)

substituting it into (A.2.5a) yields

(w̃ + w)x = 2λ− 1

2
(w̃ − w)2. (A.2.7a)

Next, since both w and w̃ satisfies (1.2.2), i.e.

wt + 3(w2)x + wxxx = 0,

w̃t + 3(w̃2)x + w̃xxx = 0,

subtracting them each other yields2

(w̃ − w)t = −3(w̃ − w)x(w̃ + w)x − (w̃ − w)xxx,

in which replacing (w̃ + w)x with (A.2.7a) we have

(w̃ − w)t =
1

2
[(w̃ − w)3]x − 6λ(w̃ − w)x − (w̃ − w)xxx. (A.2.7b)

2If adding them each other we will have

(w̃ + w)t = −(w̃ − w)(w̃ − w)xx + 2[(w̃x)2 + w̃xwx + (w̃x)2],

which, coupled with (A.2.7a), can also compose a Bäcklund transformation for the KdV equation.
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(A.2.7a) and (A.2.7b) compose a nonlinear Bäcklund transformation for the KdV

equation [57].

Note: For the early history of Bäcklund’s transformation and Bianchi’s per-

mutability theorem, please refer to [49] and [50].
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