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Steady-state two-dimensional pseudo-
homogeneous model  
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Steady-state two-dimensional pseudo-
homogeneous model  
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Steady-state two-dimensional pseudo-
homogeneous model 

Continuity equation (Constant Dea and Der): 
 

 

 

Energy equation (Constant cp, Δhrxn and ker): 
   

 

 

  

 For the derivations, see class notes and book by Missen, Ref. 10. 
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Steady-state two-dimensional pseudo-
homogeneous model with negligible axial 

diffusion 

Peclet number for mass transfer:  

 

 

 
 

Peclet number for heat transfer: 
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Boundary conditions 
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Overall heat transfer coefficient, U 

 

 

 

How can one find the overall heat transfer 

coefficient? 
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Overall heat transfer coefficients: 
hollow cylinder 
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Individual and overall heat transfer 
coefficients: hollow cylinder 
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Bed properties 
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Effective radial mass diffusivity [7] 

 

 

 

  

 



14 

Wall heat transfer coefficient [7] 
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Effective radial thermal 
conductivity [7] 
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Ergun equation for pressure drop 
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Thermodynamic properties of 
a mixture 

Heat capacity:  
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Thermodynamic properties of 
a mixture 

Transport properties such as mass diffusivity, thermal 

conductivity, viscosity should not be taken as additive. 

Recommended mixing rules should be applied for such 

calculations. See Bird et al. Ref. 8. Chapters 1, 9, and 

17. 
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Steady-state one-dimensional pseudo-
homogeneous model with negligible axial 

diffusion for adiabatic operation 

Continuity equation: 

 

 

or 
 

Energy equation (Constant cp and Δhrxn): 
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Steady-state one-dimensional pseudo-
homogeneous model with negligible axial 

diffusion for non-adiabatic operation 

Energy equation (Constant cp and Δhrxn): 
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Steady-state one-dimensional pseudo-
homogeneous model with negligible axial 

diffusion 

 

  

 

 

 

What would be the boundary 

conditions for each case? 
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Packed column: A few rules of 
thumb 

1. Usually dp is chosen so that the ratio Di/dp > 10. 

2. In one of the criteria, the effect of axial dispersion depends 

on the ratio of the length of the reactor to the particle size. 

If the ratio is 100 or more, the effect is usually negligible 

compared to convective mass transfer.  

3. Carman-Kozeny equation is suitable for fine particles. 

Ergun equation works well for both laminar and turbulent 

regions.  
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Solution of partial differential 
equations 

• Finite difference approach 

• Finite element approach  

 

Finite difference:  

• Explicit methods  

 (Easy to put but beware of convergence and stability) 

• Implicit methods 

 The Crank-Nicolson method 

 

Finite element:  

• Comsol Multiphysics (old name Femlab), Fluent etc. 
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Euler’s method 

Euler’s method is employed for approximate solution of ordinary 

differential equations with initial value problems.  

 

 

 

 

 

 

 

Take interval “h” as low as possible. Take at least 100 steps for the 

Euler’s method for a better accuracy. 

Runge-Kutta 4th order method has better efficiency than Euler’s 

method. 

Euler 1707-1783 
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Polymath software 

Polymath software is an excellent source for solving single and 

simultaneous ordinary differential equations.  
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Problem 
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Problem 
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