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Abstract: In this paper, we constrain the Modified Quadratic Shepard interpolant to
preserve positivity in one-dimensional interpolation such that the constrained
interpolant also retains the least-squares fit to data. We preserved positivity by obtaining
control over the extremum point of the basis functions of the Modified Quadratic
Shepard interpolant. The constraining process destroyed the least-squares fitting
character of the Modified Quadratic Shepard method. We insert an extra knot to convert
each basis function into a spline and use the resultant freedom to make the provision for
least-squares fit. Since each basis function is a positive spline which interpolates its
respective data point being the least-square fit to other, the consequent Modified
Quadratic Shepard interpolant is positive as well as a least-squares fit.
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1. Introduction

Generally in computer graphics and
particularly in CAD (Computer Aided
Design) and / or CAGD (Computer
Aided Geometric Design) environments
a user is usually in need of visualizing
scientific data, through a curve
representation, that possesses certain
shape characteristics inherent in data. As
such the preservation of shapes, inherent
in the data, by the interpolants has always
been an important matter. Positivity is
one such shape. The significance of
Positivity lies in the fact that sometimes it
does not make any sense to talk of some
of the quantities to be negative, for
example a negative amount of a
particular bacteria in a specimen tissue
from a human body or the probability ofa
rainfall or a snowfall in a given area has
no meaning if negative.

In this paper we focus on one-
dimensional interpolation, constructing a
curve through a set of positive data. The
work contained in this paper also
includes work in Asim [2]. The earlier
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work related to shape preservation can be
found in Hussain M.Z., Ayuab N. &
Irshad M. [7] and the papers mentioned
therein. The Hussain M.Z. and Sarfraz
M. [6], starts with a positive rational
cubic curve through 1D positive data and
it also extends it to an economical
positive rational bicubic for a 2D data
arranged over a rectangular grid. A C'
curve interpolation scheme is discussed
in Hussain M.Z., Hussain M and
Shamaila [8]. Their scheme is also
flexible due to the provision of a free
parameter.

However, piecewise cubic approach does
not extend so easily to higher dimensions
when the data is scattered and is G'
continuous only. Consequently we
developed a method Asim and Brodlie
2000 [1] which is C'and cheaper than the
original modified Shepard interpolant
but loses least-square fit to data. This idea
has already been extended to 2D and
surface through scattered data is
constructed Asim and Nadeem [3].
However this paper too has a drawback
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of loss of least-squares fit. The loss of
least-squares fit property affects the
visual appearance some what adversely
(see Figure 1). Also the least-squares fit
property is the key characteristic of the
modified quadratic Shepard interpolant.
So the development of constrained
modified Shepard interpolant which
retains both C' continuity and least-
square fit properties, and is also
extendible to higher dimensions easily is
justified. The slope preserving 1D
positive method Asim and Sajid L. R.
2007 [4] is an other version of the series
of quadratic Shepard interpolants
starting with Asim and Brodlie [1].

The Shepard family of interpolants is a
famous approach Shepard [11]. The
Shepard interpolants are a distance-
weighted average of basis functions
defined for each data point. Each basis
function interpolated its respective data
point and is the best weighted least-
square fit to others. The modified
quadratic Shepard interpolant, with basis
functions that are quadratic, is the most
popular version in this family (Nielson
1993). The Shepard methods have C'
continuity Lancaster and Salkauskas [9]
and are applicable to a space of any
dimension for data of any distribution.
However, to their disadvantage they do
not preserve any of the local shapes
implied by the data Nielson [5]. Recent
work on Shepard methods have focused
on reducing the computational cost by
limiting the least-squares fitting process
to alocal subset of the data.

Shepard method is widely used for 2D
and 3D data, but is equally applicable to a
curve interpolation technique. In this
paper we show how it can be constrained
so as to generate positive 1D interpolants
from positive data without losing its
least-square fit property.

In section 1 we develop a constrained
interpolant that retains the least-squares
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fit characteristic. Each quadratic basis
function is replaced by a spline which is
not only a least-squares fit to positive
data but also positive over the
interpolation interval. This provides us
with the Shepard interpolant which itself
is not only a least-squares fit to positive
data but also positive. The boundedness
of the interpolant developed by us in this
paper is discussed in section 2. Section 3
elaborates conclusion and future
research.

ol

H &
——y————p

IR, S

Figure 1: Preservation of positivity by
constrained quadratic Shepard method
lacking least square fit.

2. Constrained Least-Squares Fit for
Curve Drawing

Let (x,, 1)), (X5, /,),---»(Xx, fx) b€ given data
points, where the f-values are samples of
some functions f(x) which is non-
negative forevery x € [x,, x,] and

X, <X, <. <Xy,

The modified quadratic Shepard curve
F(x)isdefined as

where the weight function and the basis
function

Q) =f+b,(x-x)+a(x-x)’

is related to data point (x,, f,). By definition
Qi(x,) =f,and the coefficients a,an b, are
chosen so that Q, is a best distance-weighted
least-squares approximation to the other data
points.
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In Asim and Brodlie [1], the quadratic basis
functions Q,, were fully defined by three
conditions, namely

e Interpolationatx=x,

e value fixed at x =x_equal to zero for

convex and y, for concave.

e derivative atx =x,, equal to zero.
So the least-squares approximation was lost.
In order to retain the condition of best least-
squares approximation to other data points,
we need to relax the stipulation that the basis
function be a quadratic. Somewhat similar to
the idea of Schumaker [10] we use instead a
quadratic spline, with a single knot, to give us
the extra flexibility in a convex case. For a
concave case too, we construct a quadratic
spline using freedom in the choice of the y-
coordinate of the maximum point to give the
flexibility. The two cases are discussed
separately.

Convex Case

Suppose first that x; < x_, so the interpolation
point lies to the left of the minimum of the
original basis function. We shall define a
quadratic spline, Q, (x), with quadratic pieces
S, and S, joined ataknot (X, f o) Where

X .o 1S the mid-point of [x,, X ]. The value

fo Ofthe spline atx , , gives the extra degree
of freedom required. However, to ensure
positivity, it is necessary to include a
constraint that the spline is convex.

More precisely, the constrained basis
function is a quadratic spline,

Sx) i al £ x 2 Xy

0,(x)= 2)

S2(x) i wpe =X Zxy

Where (omitting subscript 1 for

simplicity of notation)

SI(X) :f knot +b knot (X —X knm) +
aknot(X_anot)2 (3)
S,(x)=a,(x-x)’ 4

The definition of S, ensures that the

spline has zero value and derivative at

x = X,. For interpolation at x = x; we

require:

S\(x) =/

and

©)
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while for C' continuity of the spline we
require

S1(X tao) = Sa(X o) (6)

S' (X ko) = S'o(X o) (7)
Finally to ensure convexity, and hence
positivity, we require a, >0 and a > 0.
The equation (6) and (7) respectively
give us

S =K o= X)’
b knot 2as(X knot ~ Xs)'
Hence from (3),
S1(%) =A% o= X +28,(X - X,)

(X -X knot) +a knot (X -X knot)z' (8)
Then, from the interpolation condition
(5), we have:
f=a(X - Xs)z +28,(X o= X)) (X =X )

Toa,,(x -X knot)2
f=ah™+2ah’+a, h’
fi=Bata, )
whereh= x,, - X;.
Hence £
aknut = L -

and

- —3a,.
: 9)
Thus, the quadratics S,(x) and S,(x) of the
spline can be rewritten in terms of a, as :

SI(X) =a knot(X -X knot)2 - 2ash(x —X knot) +

ah’ (10)
Witha,  asdefinedin(9)and
SZ(X) = as(X - Xs)z' (1 1)

We now have to chose the optimum value
of a_ such that Q,(x) is the best weighted
least-squares fit to the other data points,
with the restriction that Q,(x) be convex.
Thus we need to minimize:

Z@i (=G, 05) - 1T

X #X;

(12)

subject to the conditions a, >0 and
a,.. > 0 where the weight function

,(x) = >, From (10) and (11) we

1
(x— xg')
need to minimize:

Pa)= Yo G0-AT+

ZU);‘(XA')[SE('X‘:') - f,(-.]z

(13)
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or

P(a,)= Zmi (X )00

Xk <Xpnot » Xk #X;

(xk - xknot )2_2ash('xk - xknot) + ashz_ﬁc ]2

+ z(’oi (‘xk )[as (‘xk - ‘xs )z_f}c ]2 .
Rewriting in terms of a,
P(a,)= Y o,(x)[oa, BT
Xp #X; (14)
where forx, <x,_,

a‘k = _3(xk _xknnt) _Zh(‘xk _xkl10t)+h2’
(15)
1
Bk:fk_?f;(xk_xknat)z (16)

a'nd X k > X knot
2
o, =(x, —x,)",
k ( k s) (17)
B = fi- (13)
Differentiating (14) with respect to a:

P'(a)=2 zwi(xk)[akas —Biby

Xp#X; (1 9)
or
Pla,)=2a, Y o(x)o; -
2 zmi(xk)akﬁk'
(20)
Hence minimum is achieved for
Zxkix_ o, (x ), B,
a, = : .
Zx ix,mi(xk)alg @D
with a, B, given by (15), (16), (17) and
(18).

Ifa <0, then we seta,=0in which case
a,. > 0from(9).

If a> 0, then again from (9),
aknotzﬁ Ji—=3a, which is positive

provided

> Ji

a,
Y3’

maximum value. In conclusion, we

sowe constrain g = —L asa

Ji
h

calculate as according to (21), 0, L’z]
3h

but restrict its value to the interval.

Because we want to retain convexity of

the basis function while constraining it to

be positive.

x |0 2 4 10 |28 |30 |32
y | 20.8 |88 |42 |.5 39 162 | 9.6

Tablel: Oxygen levels in flue gas.
Figure 2: Preservation of positivity by
quadratic Shepard method due to constrained
least-square fit for data in Table 1.
if x,> x_, that is when minimum is on the left
side of the data point, we proceed in the same
way as we did in case x, <x_except that:

e quadratics S, and S, swap their
domains of definition.

b X knot€ [Xs’ Xi] .
The graph (corresponding to the data in Table
1) thus obtained is in Figure 2 whose visual
appearance is much better than the one in
Figure 1. The noisy behavior of the data has
been tackled successfully but at a cost higher
than that of the original modified quadratic
Shepard method. The discussion so far has
dealt with the convex case. Now let us
consider the concave case.
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Figure 3: Preservation of positivity by
quadratic Shepard method due to
constrained least-square fit for data in
Table 2.

Concave Case

In the case where Q,(x) is concave Asim
and Brodlie [1], the focus changes from
raising the minimum value to zero, to
raising the value at one or both end-
points to zero. The addition of a least-
squares fitting condition again requires
extra flexibility, which we get by using a
quadratic spline with one knot. In fact
this case is slightly simpler because we
can place the knot at x, (we could not do
this in convex case because the value at x,
was fixed, and therefore placing a knot
there did not provide the extra flexibility
required).

x |1 2 4 6 7
y |0 0.06 |35 006 |O

Table 2: Data that provides concave basis
function.

Suppose x; < x,, and suppose the original
basis function is negative at x,. We create a
constrained basis function which is a
quadratic spline, with S, interpolating

(x,, f) and S, interpolating (x,, 0). This gives

1A
=
A

us:
Q(x) _ Si(x) it x ; X,
i

Sy(x) if x, £ x £ xy

(22)

such that

S =y, + L (roxy (23)
(xi - xs)

Sy(x) =y, ——2—(x—x,)° (24)
(x N X )

with freedom to vary y, to provide best
least-square fit. We need to minimize:

> 0,0 (x) - f,.T (25)

X/: #X,

subject to Q(x,) = 0. That is we need to

minimize

P(y)= D oIS (x)-fi ]+

Xk <x.v 5 Xk ¢Xl-

> o,(x)IS,(x)- f,T

X5 >X (26)
or
P(y,) = Y o,(x)lo,y, —B, T
o 27)
where for x, <x,
_ 2
akzl_(xk xs)z ,
()Ci - xs )
_ e mx)
=Sy
and forx >x,
_ 2
(X,kzl_(Xk XS)27
(xN - xs )
Bk = fk

Then as in (21), the minimum is achieved
when:

Zxk i, P (x o, By

Yy, = ;
Zxk #X; (Di (xk )ak

(28)

This value of y, when put in to (23) and (24)
gives a quadratic spline which interpolates
(x4, 0)and (x;,f), and is abest least-squares
fit to the other data points. To guarantee that
S, and S, are both concave we restrict y, > f..
In addition we need Q,(x,) > 0 which requires:
Si(x,)>0.
That isf

i — Vs 2
v, + G —Xs)z (x, =x,)">0,

01;(1_(x1_xs)z +f;(xl_xsz)2 >O
‘ (xi_xs) ('xi _xs) )
which after re-arrangement gives

filx, = x,)°

T mx) (- xy)?

Since(x, — x,)*>(x, — x,)2 0 >1.Inother

>=0 f,.
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Words finally we need to restrict

y.byy. €[/.6 f].

Similar discussion follows for the case x,>x,,
where the original basis function is negative
atx .

Finally, consider the case (x,, f;)) = (X, y,), that
is both the data point and the maximum
coincide with each other. Since y, in this case
cannot be changed, the only freedom
available is that of a change in curvature. We
avail this freedom to fita spline

(x{ - x,)°

Six) 5 A = x <ok,

O(x) = S:(x) # xS ¥ sxy (29)
suchthat S,(x)= f; +a,(x—x,)’,
f (30)
With 42707 and
S,(0)=fi+ay(x—=x)", @31y

With 9~ 2_(x _ix 2 It may be
N s

mentioned here that if x, and x, are
equidistant from x, then only one
quadratic covers both sides. For x_ in a
close neighbourhood of x,, we take x, = x,
and proceed as above. The graph thus
obtained is shown in Figure 3. We may
observe that the visual appearance of the
curve due to the original constrained
Shepard interpolant has been maintained
by the one drawn by the constrained
least-square fit Shepard interpolant in
Figure 3. We may mention that we
carried out a lot of experimentation and
figures given here are only a specimen of
the results obtained.

3 Extension of Constrained Least-
square Fit to a Linear Constraint

The idea of positive least-square fit based
interpolation is extendible to the more
general constraint so as to keep the
interpolant greater than some linear
function of the independent variable. For
this we need to reframe the above
problem as follows.

32

Consider data points (x,, ), (X,,£5), - - -
(Xy, fy), and the linear function given by
y=mx +cwith

X, <x,< " xyandf Zmx,+cv .

to seek a basis quadratic Q,(x) such that
Q.(x)=fand Q,(x) 2mx tc vV x € [X,, X, ].
We construct a basis quadratic L,(x) such
that

L(x)=Q(x)-mx-c

or

L(x)=a(x-x)"+(b-m) (x-x)-mx-c+f
or

L(x)=a(x-x)" +(b-m) (x-x)+g

For

g=f,-mx,;-c, with

Li(Xi) =ﬁ_ mX; -C and Li(x) 20V x€ [XU XN]'
It transforms the problem to that of
preservation of positivity while retaining
the least-squares fit. As such the
technique laid down for the constrained
Modified Quadratic Shepard method to
be a least-square fit in section 4 is now
applicable to L,. This discussion has just
covered the curve bounded below, and
the similar argument works for the one
bounded above.

We are confident that the same applies to
the boundedness by a higher degree
curve such as quadratic as well.

4 Conclusion

This paper shows how the modified
quadratic Shepards method can be
extended in order to provide a
constrained least-square fit to a 1D data.
As mentioned in section 3 constraint can
be any linear or non-linear function. But
we have restricted the practical
implementation to the extensively used
special case of positive interpolant
through positive data. The flexibility
required for the least-squares fit is
provided by inserting a knot. The
essential idea is to ensure that each
individual quadratic basis function is
obtained by the constrained least-squares
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fit to the data. This in turn gives rise to a
constrained interpolant which is the
least-square fit to the data as a whole.

The further work in the area is to obtain
the least-squares fit based constrained
modified quadratic Shepards interpolant
in higher dimensions. Also there is an
interest in looking at the similar work in
the areas of monotonicity and convexity.
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