Influence of *Trichoderma* species on seed germination in okra

Irum Mukhtar

Government College University, Lahore, Pakistan.

E. mail: erumm21@yahoo.com

Abstract

Three *Trichoderma* species were evaluated for their potential regulatory effect. Okra (*Abelmoschus esculentus* (L) Moench) seeds were coated with spore suspension of each test species of *Trichoderma* supplemented with 2% of starch (w/v) as an adhesive. For each treatment, ten seeds were placed in each Petri plate and incubated at 25 °C under dark. Germination of seeds was recorded daily for 10 days. Among the three species, *T. harzianum* was found to be highly effective to enhance the germination percentage in okra seeds. However the species *T. viridi* and *T. koningii* were also significantly effective as compared to control. Okra seeds also gave the highest germination index values with *T. harzianum* which confined to better germination. Seed treatment with *T. harzianum* can be useful to enhance the germination percentage of okra seeds as well as reduce lose due to delayed germination. Further investigations however are required to study in vivo effect of *Trichoderma* spp. on germination as well as morphological and physiological characteristics in okra plant and fruit production.

Key words: Okra seeds, seed treatment, *Trichoderma* spp.

Introduction

Trichoderma spp. are beginning employed widely in plant agriculture, both for disease control and yield increases (Harman, 2006), even under axenic conditions (Lo *et al*., 2000; Yedidia *et al*., 2001). *Trichoderma* spp have evolved multiple mechanisms that result in improvements in plant resistance to disease and plant growth and productivity (Harman *et al*., 2004; Vinale *et al*., 2008). Possible explanations of this phenomenon include: control of minor population of pathogens leading to stronger root growth and nutrient uptake (Harman, 2000; Yedidia *et al*., 2001), secretion of plant growth regulatory factors such as phytohormones (Celar and Valic, 2005; Muthukumar *et al*., 2005) and release of soil nutrients and minerals by increased saprophytic activity of *Trichoderma* in the soil (Ousley *et al*., 1994). Moreover, recent studies have indicated that these fungi also induce localized or systemic resistance systems in plants (Yedidia *et al*., 1999; Howell, 2003; Hanson, 2004). Thus, the variety of effects indicates that these beneficial fungi have multiple modes of action.

Okra (*Abelmoschus esculentus* L.) belongs to family Malvaceae. It is one of the prominent summer vegetable crops grown in Pakistan. Although, okra is an important vegetable crop, but its yield is lower as compared to advanced countries (Usman *et al*., 2005). Delayed and erratic germination of okra seeds is one of the reasons of low yield of okra. Water imbibitions is first step in the seed germination. But crop field may lack adequate moisture content for the same, so poor and delayed germination occurs. To combat this, farmer pre soak the seed in plain water for a few hours. But this may cause seed damage in more than one ways. Of them, major one is that, excess water may be trapped in the area of embryonic axis, nodal zone and cotyledons. This leads to suffocation, resulting in delayed and poor germination as well as weak seedling growth (Hydecker, 1977). Delayed and erratic germination creates problems with fertilizer utilization, post emergence weed control, and uniform harvesting (Standifer *et al*., 1989). The hard seed coat of okra is also a major physiological constraint to uniform stand establishment and performance (Marsh, 1993; Standifer *et al*., 1989). Therefore, this study was design to find out the effect of different *Trichoderma* species on the germination percentage rate of okra seeds.

Materials and Methods

Spore suspension preparation of *Trichoderma* spp.

Cultures of the *Trichoderma* species i.e. *T. harzianum*, *T. koningii* and *T. viride* were obtained from First Fungal Culture Bank of Pakistan. The test fungi were grown on 2% Maltose Extract Agar (MEA) medium in Petri plats at 28 °C for 10
days. Spore suspension of each test species was prepared by flooding the plates with sterile distilled water and gently scraping the surface with a sterile spatula. Concentration of spore suspension was adjusted to 10^6 conidia/ml by use of a hemacytometer under a light microscope.

Seed selection and treatment

The okra seeds were one year old and had been stored at 5 °C. Standard germination of the seeds was 80%. Seeds with no cracks or other visible deformations were selected and surface sterilized for 15 minutes with 1% sodium hypochlorite solution. Seeds were then rinsed three times with sterile water and air dried.

A seed coating was prepared from spore suspension supplemented with 2% of starch (w/v) as an adhesive. Dry okra seeds were dipped in seed coating suspension for each *Trichoderma* spp. for 1-2 minutes. For untreated control seeds were dipped in 2% starch suspension and for water control seeds were dipped in water. Seeds were air dry on metallic mash and were placed in Petri plates lines with two layers of Whatman filter paper soaked in sterile distil water. In each Petri plate, ten seeds were placed. Plates were incubated at 25 °C under dark. Germination of coated seeds was compared with untreated control and to a water control Germination of seeds was recorded daily for 10 days. Data were analysed by Duncan’s Multiple Range Test. Germination percentage and germination index of okra seeds were calculated as:

Germination (%) = \(\frac{\text{Number of germinated seeds} \times 100}{\text{Total number of seeds}} \)

Germination Index = \(\frac{\text{Number of germinated seed (first count)}}{\text{Days to first count}} \) + \(\frac{\text{Number of germinated seed (2nd count)}}{\text{Days to 2nd count}} \) + \(\frac{\text{Number of germinated seed (final count)}}{\text{Days to final count}} \)

Results and Discussion

The effect of three species of *Trichoderma* on germination of okra seeds is shown in Fig 1. Statistical analysis of data showed significant differences in treatments at p ≤ 0.05 level. Results showed that all the three test *Trichoderma* spp. was found effective to enhance the germination percentage. However among the three species, *T. harzianum* exhibited significant enhancement of germination percentage in okra seeds. However the *T. viridi* and *T. koningii* effectively regulated seed germination as compare to control. Seeds treated with *T. harzianum*, *T. viridi* and *T. koningii* also showed high percentage of germination than control Fig. 1. In controls, both untreated control and water soaked control showed no significant difference was evidenced in germination percentage. Okra seed germination percentage was highly increased by *T. harzianum*. The influence growth promotion by *Trichoderma* is not species specific. Okra seed germination index (GI) also clearly differentiated the potential of different *Trichoderma* spp. (Fig. 2). The results related to germination index showed similar differences as in germination percentages. GI was significantly affected by *Trichoderma* species Fig. 2. Seed treatment with *Trichoderma* spieces increased germination index compared to control. Okra seeds gave the highest GI values with *T. harzianum*. The lowest germination index was recorded in control. Seed showed better germination in the presences of *Trichoderma* species. The higher GI results show the higher seed quality and better performance (Wang et al., 2004).

Some landmarks along the way include the discoveries that these fungi frequently increase plant growth and productivity (Harman, 2006; Manju and Mall, 2008). In this study, three different *Trichoderma* spp gave early germination as well as high germination percentage which have also been reported by many workers in different plants (Hanson, 2000; Mishra and Sinha, 2000; Oyarbide et al., 2001) and numerous other species such as *T. longipile* and *T. tomentosum* have been shown to promote plant growth (Rabeendran, et al., 2000). Studies have been confirmed in case of *T. harzianum* and *T. viridi* to enhanced seed germination root and shoot length (Dubey et al., 2007) as well as increasing the frequency of healthy plants, and boosting yield (Rojo et al., 2007). Methanol extract of *T. harzianum* and *T. viridi* significantly improved various growth parameters of okra (Prasad and Anes, 2008). Other investigators have also reported that seeds pretreated with *Trichoderma viride*, *Trichoderma harzianum* and *Trichoderma pseudokoningii* inoculant extracts, showed the increased seed germination rates, seedling vigour and reduced the incidence of seed-borne fungal pathogens compared to control (Zheng and Shetty, 2000; Bharath et al., 2006). The present study concludes that *Trichoderma* species have potential to enhance the germination in okra seeds which can be useful to enhance the germination percentage of okra seeds besides reducing loses due to delayed germination. Further investigations are required to study in vivo, effects of these fungi on seed germination as well as the morphological and physiological characteristics in okra.
Influence of Trichoderma species on seed germination in okra

Fig 1. Effect of seed treatment with Trichoderma spp on the germination percentage of okra seeds. Vertical bars show standard error of means of three replicates. Values with different letters in a column shows significant difference as determined by Duncan’s Multiple Range Test (P<0.05).

Fig 2. Germination index of okra seeds.

References

