On Upper and Lower Contra-Continuous Fuzzy Multifunctions

S. E. Abbas
Department of Mathematics,
Faculty of Science, Jazan University, Saudi Arabia
Email: sabbas73@yahoo.com

M. A. Hebeshi and I. M. Taha*
Department of Mathematics,
Faculty of Science, Sohag University, Egypt
Email: imtaha2010@yahoo.com*

Received: 10 November, 2014 / Accepted: 27 March, 2015 / Published online: 24 April, 2015

Abstract. This paper is devoted to the concepts of fuzzy upper and fuzzy lower contra-continuous, contra-irresolute and contra semi-continuous multifunctions. Several characterizations and properties of these multifunctions along with their mutual relationships are established in L-fuzzy topological spaces. Later, composition and union between these multifunctions have been studied.

AMS (MOS) Subject Classification Codes: 54A40; 54C08; 54C60
Key Words: L-Fuzzy topology, fuzzy multifunction, fuzzy upper and fuzzy lower contra-continuous, contra semi-continuous, contra-irresolute, composition, union

1. INTRODUCTION AND PRELIMINARIES

Kubiak [17] and Sostak [28] introduced the notion of (L-)fuzzy topological space as a generalization of L-topological spaces (originally called (L-)fuzzy topological spaces by Chang [8] and Goguen [10]). It is the grade of openness of an L-fuzzy set. A general approach to the study of topological type structures on fuzzy powersets was developed in [11-13,17,18,28-30].

Berge [7] introduced the concept multimapping $F : X \rightarrow Y$ where X and Y are topological spaces and Popa [24,25] introduced the notion of irresolute multimapping. After Chang introduced the concept of fuzzy topology [8], continuity of multifunctions in fuzzy topological spaces have been defined and studied by many authors from different view points (e.g. see [3,4,21-23]). Tsiporkova et. al., [31,32] introduced the Continuity of fuzzy multivalued mappings in the Chang's fuzzy topology [8]. Later, Abbas et al., [1] introduced the concepts of fuzzy upper and fuzzy lower semi-continuous multifunctions in L-fuzzy topological spaces.
Throughout this paper, nonempty sets will be denoted by X, Y etc.. Let a complete lattice $L = (L, \leq, \lor, \land)$ be a complete distributive complete lattice with an order-reversing involution on it, and with a smallest element \bot and largest element \top. The family of all L-fuzzy sets in X is denoted by L^X and $L_0 = L - \{0\}$. For $\alpha \in L$, $\alpha(x) = \alpha$ for all $x \in X$. The complement of an L-fuzzy set λ is denoted by λ^c. This symbol \circ for a multifunction. All other notations are standard notations of L-fuzzy set theory.

Definition 1.1. [1] Let $F : X \rightharpoonup Y$, then F is called a fuzzy multifunction (FM, for short) iff $F(x) \in L^Y$ for each $x \in X$. The degree of membership of y in $F(x)$ is denoted by $F(x)(y) = G_F(x, y)$ for any $(x, y) \in X \times Y$.

The domain of F, denoted by dom(F) and the range of F, denoted by rng(F), for any $x \in X$ and $y \in Y$, are defined by:

$$\text{dom}(F)(x) = \bigvee_{y \in Y} G_F(x, y) \quad \text{and} \quad \text{rng}(F)(y) = \bigvee_{x \in X} G_F(x, y).$$

Definition 1.2. [1] Let $F : X \rightharpoonup Y$ be a FM. Then F is called:

1. Normalized iff for each $x \in X$, there exists $y_0 \in Y$ such that $G_F(x, y_0) = \top$.
2. A crisp iff $G_F(x, y) = \top$ for each $x \in X$ and $y \in Y$.

Definition 1.3. [1] Let $F : X \rightharpoonup Y$ be a FM. Then,

1. The image of $\lambda \in L^X$ is an L-fuzzy set $F(\lambda) \in L^Y$ defined by:

$$F(\lambda)(y) = \bigvee_{x \in X} [G_F(x, y) \land \lambda(x)].$$

2. The lower inverse of $\mu \in L^Y$ is an L-fuzzy set $F^l(\mu) \in L^X$ defined by:

$$F^l(\mu)(x) = \bigvee_{y \in Y} [G_F(x, y) \land \mu(y)].$$

3. The upper inverse of $\mu \in L^Y$ is an L-fuzzy set $F^u(\mu) \in L^X$ defined by:

$$F^u(\mu)(x) = \bigwedge_{y \in Y} [G_F(x, y) \lor \mu(y)].$$

Theorem 1.4. [1] Let $F : X \rightharpoonup Y$ be a FM. Then,

1. $F(\lambda_1) \leq F(\lambda_2)$ if $\lambda_1 \leq \lambda_2$.
2. $F^l(\mu_1) \leq F^l(\mu_2)$ and $F^u(\mu_1) \leq F^u(\mu_2)$ if $\mu_1 \leq \mu_2$.
3. $F^l(\mu) = (F^u(\mu))^c$.
4. $F^u(\mu) = (F^l(\mu))^c$.
5. $F(F^u(\mu)) \leq \mu$ if F is a crisp.
6. $F(F(\lambda)) \geq \lambda$ if F is a crisp.

Definition 1.5. [1] Let $F : X \rightharpoonup Y$ and $H : Y \rightharpoonup Z$ be two FM s. Then the composition $H \circ F$ is defined by: $((H \circ F)(x))(z) = \bigvee_{y \in Y}[G_F(x, y) \land G_H(y, z)]$.

Theorem 1.6. [1] Let $F : X \rightharpoonup Y$ and $H : Y \rightharpoonup Z$ be two FM s. Then we have the following:

1. $(H \circ F) = F(H)$.
2. $(H \circ F)^u = F^u(H^u)$.
3. $(H \circ F)^l = F^l(H^l)$.

Theorem 1.7. [1] Let \(F_i : X \rightarrow Y \) be a FM. Then,
\begin{enumerate}
 \item \((\bigcup_{i \in I} F_i)(\lambda) = \bigvee_{i \in I} F_i(\lambda) \).
 \item \((\bigcup_{i \in I} F_i)^{\prime}(\mu) = \bigvee_{i \in I} F_i^{\prime}(\mu) \).
 \item \((\bigcup_{i \in I} F_i)^{\prime\prime}(\mu) = \bigwedge_{i \in I} F_i^{\prime\prime}(\mu) \).
\end{enumerate}

Definition 1.8. [13,17,20,28] An \(L \)-fuzzy topological space (\(L \)-fts, in short) is a pair \((X, \tau)\), where \(X \) is a nonempty set and \(\tau : L^X \rightarrow L \) is a mapping satisfying the following properties:
\begin{enumerate}
 \item \(\tau(\emptyset) = \tau(\top) = \top \).
 \item \(\tau(\lambda \land \lambda_2) \geq \tau(\lambda_1) \land \tau(\lambda_2) \), for any \(\lambda_1, \lambda_2 \in L^X \).
 \item \(\tau(\bigvee_{i \in I} \tau(\lambda_i)) \geq \bigwedge_{i \in I} \tau(\lambda_i) \), for any \(\{\lambda_i\}_{i \in I} \subseteq L^X \).
\end{enumerate}
Then \(\tau \) is called an \(L \)-fuzzy topology on \(X \). For every \(\lambda \in L^X \), \(\tau(\lambda) \) is called the degree of openness of the \(L \)-fuzzy set \(\lambda \).

A mapping \(f : (X, \tau) \rightarrow (Y, \eta) \) is said to be continuous with respect to \(L \)-fuzzy topologies \(\tau \) and \(\eta \) if \(f^{-1}(\mu) \geq \eta(\mu) \) for each \(\mu \in L^Y \).

Theorem 1.9. [9,14,16,20] Let \((X, \tau)\) be an \(L \)-fts. Then for each \(\lambda \in L^X \), \(r \in L_0 \) we define \(L \)-fuzzy operators \(C_\tau \) and \(I_\tau : L^X \times L_0 \rightarrow L^X \) as follows:
\[
 C_\tau(\lambda, r) = \bigwedge\{\mu \in L^X : \lambda \leq \mu, \tau(\mu) \geq r\},
\]
\[
 I_\tau(\lambda, r) = \bigvee\{\mu \in L^X : \mu \leq \lambda, \tau(\mu) \geq r\}.
\]
For \(\lambda, \mu \in L^X \) and \(r, s \in L_0 \) the operator \(C_\tau \) satisfies the following statements:
\begin{enumerate}
 \item \(C_\tau(\bot, r) = \bot \).
 \item \(\lambda \leq C_\tau(\lambda, r) \).
 \item \(C_\tau(\lambda, r) \lor C_\tau(\mu, r) = C_\tau(\lambda \lor \mu, r) \).
 \item \(C_\tau(C_\tau(\lambda, r), r) = C_\tau(\lambda, r) \).
 \item \(C_\tau(\lambda, r) = \lambda \iff \tau(\lambda^c) \geq r \).
 \item \(C_\tau(\lambda^c, r) = (I_\tau(\lambda, r))^c \) and \(I_\tau(\lambda^c, r) = (C_\tau(\lambda, r))^c \).
\end{enumerate}

Definition 1.10. [6,14,27] Let \((X, \tau)\) be an \(L \)-fts. Then for each \(\lambda, \mu \in L^X \) and \(r \in L_0 \), \(\lambda \) is called:
\begin{enumerate}
 \item \(r \)-fuzzy semi-open (\(r \)-fso, in short) iff \(\lambda \leq C_\tau(I_\tau(\lambda, r), r) \).
 \item \(r \)-fuzzy semi-closed (\(r \)-fsc, in short) iff \(I_\tau(C_\tau(\lambda, r), r) \leq \lambda \).
\end{enumerate}

Theorem 1.11. [14] Let \((X, \tau)\) be an \(L \)-fts. Then for each \(\lambda \in L^X \), \(r \in L_0 \) we define \(L \)-fuzzy operators \(SC_\tau \) and \(SI_\tau : L^X \times L_0 \rightarrow L^X \) as follows:
\[
 SC_\tau(\lambda, r) = \bigwedge\{\mu \in L^X : \lambda \leq \mu, \mu \text{ is } r \text{-fsc}\},
\]
\[
 SI_\tau(\lambda, r) = \bigvee\{\mu \in L^X : \mu \leq \lambda, \mu \text{ is } r \text{-fso}\}.
\]

Theorem 1.12. [11] Let \(F : X \rightarrow Y \) be a FM between two \(L \)-fts \(X, (X, \tau), (Y, \eta) \) and \(\mu \in L^Y \). Then we have the following:
\begin{enumerate}
 \item \(F \) is FLS-continuous iff \(\tau(F^l(\mu)) \geq \eta(\mu) \).
 \item \(F \) is normalized, then \(F \) is FUS-continuous iff \(\tau(F^u(\mu)) \geq \eta(\mu) \).
 \item \(F \) is FLS-continuous iff \(\tau((F^u(\mu))^c) \geq \eta(\mu^c) \).
\end{enumerate}
(4) If F is normalized, then F is FUS-continuous iff $\tau((F^l(\mu))^c) \geq \eta(\mu^c)$.

Definition 1.13. [2] Let $F : X \rightarrow Y$ be a FM between two L-f ts $(X, \tau), (Y, \eta)$ and $r \in L_0$. Then F is called:

1. FUW-continuous (resp. FLW-continuous) at an L-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^u(\mu)$ (resp. $x_t \in F^l(\mu)$) for each $\mu \in L_Y$ and $\eta(\mu) \geq r$ there exists $\lambda \in L_X, \tau(\lambda) \geq r$ and $x_t \in \lambda$ such that $\lambda \land dom(F) \leq F^u(C_\eta(\mu, r))$ (resp. $\lambda \leq F^l(C_\eta(\mu, r))$).

2. FUW-continuous (resp. FLW-continuous) if it is FUW-continuous (resp. FLW-continuous) at every $x_t \in dom(F)$.

Proposition 1.14. [2] If F is normalized implies F is FUW-continuous at an L-fuzzy point $x_t \in dom(F)$ if $x_t \in F^u(\mu)$ for each $\mu \in L_Y$ and $\eta(\mu) \geq r$ there exists $\lambda \in L_X, \tau(\lambda) \geq r$ and $x_t \in \lambda$ such that $\lambda \leq F^u(C_\eta(\mu, r))$.

2. **Fuzzy Upper and Lower Contra-Continuous Multifunctions**

Definition 2.1. Let $F : X \rightarrow Y$ be a FM between two L-f ts $(X, \tau), (Y, \eta)$ and $r \in L_0$. Then F is called:

1. Fuzzy upper contra-continuous (FUC-continuous, in short) at an L-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^u(\mu)$ for each $\mu \in L_Y$ and $\eta(\mu) \geq r$ there exists $\lambda \in L_X, \tau(\lambda) \geq r$ and $x_t \in \lambda$ such that $\lambda \land dom(F) \leq F^u(\mu)$.

2. Fuzzy lower contra-continuous (FLC-continuous, in short) at an L-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^l(\mu)$ for each $\mu \in L_Y$ and $\eta(\mu^c) \geq r$ there exists $\lambda \in L_X, \tau(\lambda) \geq r$ and $x_t \in \lambda$ such that $\lambda \leq F^l(\mu)$.

3. FUC-continuous (resp. FLC-continuous) if it is FUC-continuous (resp. FLC-continuous) at every $x_t \in dom(F)$.

Proposition 2.2. If F is normalized implies F is FUC-continuous at an L-fuzzy point $x_t \in dom(F)$ if $x_t \in F^u(\mu)$ for each $\mu \in L_Y$ and $\eta(\mu) \geq r$ there exists $\lambda \in L_X, \tau(\lambda) \geq r$ and $x_t \in \lambda$ such that $\lambda \leq F^u(\mu)$.

Remark 2.3. The notions of FUC-continuous multifunctions and FUS-continuous multifunctions are independent as shown in the following Examples 2.6 and 2.7.

Theorem 2.4. Let $F : X \rightarrow Y$ be a FM between two L-f ts $(X, \tau), (Y, \eta)$ and $\mu \in L_Y$, then the following are equivalent:

1. F is FLC-continuous.
2. $\tau(F^l(\mu)) \geq r$, if $\eta(\mu^c) \geq r$.
3. $\tau(F^u(\mu))^c \geq r$, if $\eta(\mu) \geq r$.

Proof. (1) \Rightarrow (2) Let $x_t \in dom(F), \mu \in L_Y, \eta(\mu^c) \geq r$ and $x_t \in F^l(\mu)$ then, there exists $\lambda \in L_X, \tau(\lambda) \geq r$ and $x_t \in \lambda$ such that $\lambda \leq F^l(\mu)$ and hence $x_t \in I_r(F^l(\mu), r)$. Therefore, we obtain $F^l(\mu) \leq I_r(F^l(\mu), r)$. Thus $\tau(F^l(\mu)) \geq r$.

(2) \Rightarrow (3) Let $\mu \in L_Y$ and $\eta(\mu) \geq r$ hence by (2),

$$\tau(F^l(\mu^c)) = \tau((F^u(\mu))^c) \geq r.$$

(3) \Rightarrow (2) It is similar to that of (2) \Rightarrow (3).
(2) ⇒ (1) Let \(x_t \in \text{dom}(F), \mu \in L^Y, \eta(\mu^c) \geq r \) with \(x_t \in F^d(\mu) \) we have by (2), \(\tau(F^d(\mu)) \geq r \). Let \(F^d(\mu) = \lambda \) (say) then, there exists \(\lambda \in L^X, \tau(\lambda) \geq r \) and \(x_t \in \lambda \) such that \(\lambda \leq F^d(\mu) \). Thus \(F \) is FLC-continuous.

We state the following result without proof in view of above theorem.

Theorem 2.5. Let \(F : X \rightarrow Y \) be a FM and normalized between two L-fts's \((X, \tau), (Y, \eta)\) and \(\mu \in L^Y \), then the following are equivalent:

1. \(F \) is FUC-continuous.
2. \(\tau(F^u(\mu)) \geq r \), if \(\eta(\mu^c) \geq r \).
3. \(\tau((F^d(\mu))^c) \geq r \), if \(\eta(\mu) \geq r \).

Example 2.6. Let \(X = \{x_1, x_2\}, \ Y = \{y_1, y_2, y_3\} \) and \(F : X \rightarrow Y \) be a FM defined by \(G_F(x_1, y_1) = 0.1, \ G_F(x_1, y_2) = \top, \ G_F(x_1, y_3) = \bot, \ G_F(x_2, y_1) = 0.5, \ G_F(x_2, y_2) = \bot \) and \(G_F(x_2, y_3) = \top \). We assume that \(\top = 1 \) and \(\bot = 0 \). Define \(L \)-fuzzy topologies \(\tau : L^X \rightarrow L \) and \(\eta : L^Y \rightarrow L \) as follows:

\[
\tau(\lambda) = \begin{cases}
\top, & \text{if } \lambda \in \{\bot, \top\}, \\
\frac{1}{2}, & \text{if } \lambda \in (0.5, 0.6), \\
\bot, & \text{otherwise},
\end{cases}
\]

\[
\eta(\mu) = \begin{cases}
\top, & \text{if } \mu \in \{\bot, \top\}, \\
\frac{1}{2}, & \text{if } \mu = 0.5, \\
\bot, & \text{otherwise}.
\end{cases}
\]

(1) \(F \) is FUC-continuous but not FUS-continuous because \(\eta(0.4) = \frac{1}{3} \) in \((Y, \eta)\), \(F^u(0.4) = 0.4 \) and \(\tau(F^u(0.4)) = \bot \). Hence, \(\tau(F^u(0.4)) \not\geq \eta(0.4) \).

(2) \(F \) is FLC-continuous but not FLS-continuous because \(\eta(0.4) = \frac{1}{3} \) in \((Y, \eta)\), \(F^l(0.4) = 0.4 \) and \(\tau(F^l(0.4)) = \bot \). Hence, \(\tau(F^l(0.4)) \not\geq \eta(0.4) \).

Example 2.7. Let \(X = \{x_1, x_2\}, \ Y = \{y_1, y_2, y_3\} \) and \(F : X \rightarrow Y \) be a FM defined by \(G_F(x_1, y_1) = 0.1, \ G_F(x_1, y_2) = \top, \ G_F(x_1, y_3) = \bot, \ G_F(x_2, y_1) = 0.5, \ G_F(x_2, y_2) = \bot \) and \(G_F(x_2, y_3) = \top \). We assume that \(\top = 1 \) and \(\bot = 0 \). Define \(L \)-fuzzy topologies \(\tau : L^X \rightarrow L \) and \(\eta : L^Y \rightarrow L \) as follows:

\[
\tau(\lambda) = \begin{cases}
\top, & \text{if } \lambda \in \{\bot, \top\}, \\
\frac{1}{2}, & \text{if } \lambda \in (0.4, 0.5), \\
\bot, & \text{otherwise},
\end{cases}
\]

\[
\eta(\mu) = \begin{cases}
\top, & \text{if } \mu \in \{\bot, \top\}, \\
\frac{1}{2}, & \text{if } \mu = 0.5, \\
\bot, & \text{otherwise}.
\end{cases}
\]

(1) \(F \) is FUS-continuous but not FUC-continuous because \(\eta(0.4) = \frac{1}{3} \) in \((Y, \eta)\), \(F^u(0.4) = 0.4 \) and \(\tau((F^u(0.4))^c) = \bot \). Thus, \(\tau((F^u(0.4))^c) \not\geq \frac{1}{3} \).

(2) \(F \) is FLS-continuous but not FLC-continuous because \(\eta(0.4) = \frac{1}{3} \) in \((Y, \eta)\), \(F^l(0.4) = 0.4 \) and \(\tau(F^l(0.4))^c) = \bot \). Thus, \(\tau(F^l(0.4))^c) \not\geq \frac{1}{3} \).
Definition 2.8. Let \((X, \tau)\) be an \(L\)-fts. Then for each \(\lambda \in L^X\) and \(r \in L_0\) we define \(L\)-fuzzy operator \(\text{Ker}_\tau : L^X \times L_0 \rightarrow L^X\) as follows:

\[
\text{Ker}_\tau(\lambda, r) = \bigwedge \{ \mu \in L^X : \lambda \leq \mu, \tau(\mu) \geq r \}.
\]

Lemma 2.9. For \(\lambda\) in an \(L\)-fts \((X, \tau)\), if \(\tau(\lambda) \geq r\) then \(\lambda = \text{Ker}_\tau(\lambda, r)\).

Theorem 2.10. Let \(F : X \rightarrow Y\) be a \(FM\) between two \(L\)-fts \((X, \tau)\) and \((Y, \eta)\). If \(C_\tau(F^u(\mu), r) \leq F^u(\text{Ker}_\eta(\mu, r))\) for any \(\mu \in L^Y\), then \(F\) is \(FLC\)-continuous.

Proof. Suppose that \(C_\tau(F^u(\mu), r) \leq F^u(\text{Ker}_\eta(\mu, r))\) for any \(\mu \in L^Y\). Let \(\nu \in L^Y\) and \(\eta(\nu) \geq r\) by Lemma 2.9, we have \(C_\tau(F^u(\nu), r) \leq F^u(\text{Ker}_\eta(\nu, r)) = F^u(\nu)\). This implies that \(C_\tau(F^u(\nu), r) = F^u(\nu)\) and hence \(\tau((F^u(\nu))^\circ) \geq r\). Thus, by Theorem 2.4(3), \(F\) is \(FLC\)-continuous.

Theorem 2.11. Let \(F : X \rightarrow Y\) be a \(FM\) and normalized between two \(L\)-fts \((X, \tau)\) and \((Y, \eta)\). If \(C_\tau(F^l(\mu), r) \leq F^l(\text{Ker}_\eta(\mu, r))\) for any \(\mu \in L^Y\), then \(F\) is \(FUC\)-continuous.

Proof. Suppose that \(C_\tau(F^l(\mu), r) \leq F^l(\text{Ker}_\eta(\mu, r))\) for any \(\mu \in L^Y\) and \(\eta(\nu) \geq r\) by Lemma 2.9, we have \(C_\tau(F^l(\nu), r) \leq F^l(\text{Ker}_\eta(\nu, r)) = F^l(\nu)\). This implies that \(C_\tau(F^l(\nu), r) = F^l(\nu)\) and hence \(\tau((F^l(\nu))^\circ) \geq r\). Thus, by Theorem 2.5(3), \(F\) is \(FUC\)-continuous.

Theorem 2.12. Let \(\{F_i\}_{i \in \Gamma}\) be a family of \(FLC\)-continuous between two \(L\)-fts \((X, \tau)\) and \((Y, \eta)\). Then \(\bigcup_{i \in \Gamma} F_i\) is \(FLC\)-continuous.

Proof. Let \(\mu \in L^Y\) and \(\eta(\mu^c) \geq r\) then \((\bigcup_{i \in \Gamma} F_i)^l(\mu) = \bigvee_{i \in \Gamma} (F_i^l(\mu))\) by Theorem 1.7(2). Since \(\{F_i\}_{i \in \Gamma}\) is a family of \(FLC\)-continuous between two \(L\)-fts \((X, \tau)\) and \((Y, \eta)\), then \(\tau(F_i^l(\mu)) \geq r\) for each \(i \in \Gamma\). Then for each \(\mu \in L^Y\) and \(\eta(\mu^c) \geq r\), we have \(\tau((\bigcup_{i \in \Gamma} F_i)^l(\mu)) = \tau(\bigvee_{i \in \Gamma} F_i^l(\mu)) \geq \bigwedge_{i \in \Gamma} \tau(F_i^l(\mu)) \geq r\). Hence \(\bigcup_{i \in \Gamma} F_i\) is \(FLC\)-continuous.

Theorem 2.13. Let \(F_1\) and \(F_2\) be two normalized \(FUC\)-continuous between two \(L\)-fts \((X, \tau)\) and \((Y, \eta)\). Then \(F_1 \cup F_2\) is \(FUC\)-continuous.

Proof. Let \(\mu \in L^Y\) and \(\eta(\mu^c) \geq r\) then \((F_1 \cup F_2)^u(\mu) = F_1^u(\mu) \wedge F_2^u(\mu)\) by Theorem 1.7(3). Since \(F_1\) and \(F_2\) be two normalized \(FUC\)-continuous between two \(L\)-fts \((X, \tau)\) and \((Y, \eta)\), then \(\tau(F_i^u(\mu)) \geq r\) for each \(i \in \{1, 2\}\). Then for each \(\mu \in L^Y\) and \(\eta(\mu^c) \geq r\), we have \(\tau((F_1 \cup F_2)^u(\mu)) = \tau(F_1^u(\mu) \wedge F_2^u(\mu)) \geq \tau(F_1^u(\mu)) \wedge \tau(F_2^u(\mu)) \geq r\). Hence \(F_1 \cup F_2\) is \(FUC\)-continuous.

Theorem 2.14. Let \(F : X \rightarrow Y\) and \(H : Y \rightarrow Z\) be two \(FM\)s and let \((X, \tau), (Y, \eta)\) and \((Z, \delta)\) be three \(L\)-fts. If \(F\) is \(FLS\)-continuous and \(H\) is \(FLC\)-continuous, then \(H \circ F\) is \(FLC\)-continuous.
Proof. Let F be FLS-continuous, H be FLC-continuous and $\gamma \in L^Z$, $\delta(\gamma) \geq r$. Then from Theorem 1.12(1) and Theorem 2.4(2), we have $(\gamma \circ F)(\gamma) = F^\gamma(\gamma)$ and $\tau(F^\gamma(\gamma)) \geq \eta(\gamma)$ r. Thus $H \circ F$ is FLC-continuous.

We state the following result without proof in view of above theorem.

Theorem 2.15. Let $F : X \rightarrow Y$ and $H : Y \rightarrow Z$ be two FMS and let (X, τ), (Y, η) and (Z, δ) be three L-fts. If F and H are normalized, F is FUS-continuous and H is FUC-continuous, then $H \circ F$ is FUC-continuous.

Theorem 2.16. Let $F : X \rightarrow Y$ and $H : Y \rightarrow Z$ be two FMS and let (X, τ), (Y, η) and (Z, δ) be three L-fts. If H is normalized, H is FUS-continuous and F is FLC-continuous, then $H \circ F$ is FLC-continuous.

Proof. Let F be FLC-continuous, H be FUS-continuous and $\gamma \in L^Z$, $\delta(\gamma) \geq r$. Then from Theorem 1.12(2) and Theorem 2.4(3), we have $(\gamma \circ F)(\gamma) = F^\gamma(\gamma)$ and $\tau(F^\gamma(\gamma)) \geq \eta(\gamma)$ r. Thus $H \circ F$ is FUC-continuous.

We state the following result without proof in view of above theorem.

Theorem 2.17. Let $F : X \rightarrow Y$ and $H : Y \rightarrow Z$ be two FMS and let (X, τ), (Y, η) and (Z, δ) be three L-fts. If F is normalized, F is FUS-continuous and H is FLS-continuous, then $H \circ F$ is FUC-continuous.

Definition 2.18. [5,15,19,26] An L-fuzzy set λ in an L-fts (X, τ) is called r-fuzzy compact iff every family in $\{\mu : \tau(\mu) > r, \mu \in L^X\}$, where $r \in L_s$ covering λ has a finite subcover.

Definition 2.19. An L-fuzzy set λ in an L-fts (X, τ) is called r-fuzzy strongly S-closed iff every family in $\{\mu : \tau(\mu) > r, \mu \in L^X\}$, where $r \in L_s$ covering λ has a finite subcover.

Theorem 2.20. Let $F : X \rightarrow Y$ be a crisp FUC-continuous between two L-fts (X, τ) and (Y, η). Suppose that $F(x_t)$ is r-fuzzy strongly S-closed for each $x_t \in dom(F)$. If an L-fuzzy set λ in an L-fts (X, τ) is r-fuzzy compact, then $F(\lambda)$ is r-fuzzy strongly S-closed.

Proof. Let λ be r-fuzzy compact set in X and $\{\gamma_i : \eta(\gamma_i) \geq r, i \in I\}$ be a family covering of $F(\lambda)$ i.e., $F(\lambda) \leq \bigvee_{i \in I} \gamma_i$. Since $\lambda = \bigvee_{x_t \in \lambda} x_t$, we have

$$F(\lambda) = F\left(\bigvee_{x_t \in \lambda} x_t\right) = \bigvee_{x_t \in \lambda} F(x_t) \leq \bigvee_{i \in I} \gamma_i.$$

It follows that for each $x_t \in \lambda$, $F(x_t) \leq \bigvee_{i \in I} \gamma_i$. Since $F(x_t)$ is r-fuzzy strongly S-closed for each $x_t \in dom(F)$, then there exists finite subset I_{x_t} of I such that $F(x_t) \leq \bigvee_{i \in I_{x_t}} \gamma_i = \gamma_{x_t}$. By Theorem 1.4(6), we have $x_t \leq F^\gamma(\gamma_{x_t}) \leq F^\gamma(\gamma_{x_t})$ and

$$\lambda = \bigvee_{x_t \in \lambda} x_t \leq \bigvee_{x_t \in \lambda} F^\gamma(\gamma_{x_t}).$$
From Theorem 2.5(2), we have \(\tau(F^u(\gamma_x)) \geq r \). Hence \(\{F^u(\gamma_x) : \tau(F^u(\gamma_x)) \geq r, x_t \in \lambda \} \) is a family covering the set \(\lambda \). Since \(\lambda \) is compact, there exists finite index set \(N \) such that \(\lambda \leq \bigvee_{n \in N} F^u(\gamma_{x_{tn}}) \). From Theorem 1.4(5), we have

\[
F(\lambda) \leq F(\bigvee_{n \in N} F^u(\gamma_{x_{tn}})) = \bigvee_{n \in N} F(F^u(\gamma_{x_{tn}})) \leq \bigvee_{n \in N} \gamma_{x_{tn}}.
\]

Then, \(F(\lambda) \) is \(r \)-fuzzy strongly \(S \)-closed.

Theorem 2.21. Let \(F : X \rightarrow Y \) be a \(FM \) between two \(L \)-fts \((X, \tau), (Y, \eta)\). If \(F \) is \(FLC \)-continuous then, \(F \) is \(FLW \)-continuous.

Proof. Let \(x_t \in \text{dom}(F), \mu \in L^Y, \eta(\mu) \geq r \) and \(x_t \in F^l(\mu) \). Since \(F \) is \(FLC \)-continuous, \(\eta([C_\eta(\mu, r)]^c) \geq r \) and \(x_t \in F^l[C_\eta(\mu, r)] \) then, there exists \(\lambda \in L^X, \tau(\lambda) \geq r \) and \(x_t \in \lambda \) such that \(\lambda \leq F^l[C_\eta(\mu, r)] \). Hence \(FLW \)-continuous.

We state the following result without proof in view of above theorem.

Theorem 2.22. Let \(F : X \rightarrow Y \) be a \(FM \) and normalized between two \(L \)-fts \((X, \tau), (Y, \eta)\). If \(F \) is \(FUC \)-continuous then, \(F \) is \(FUW \)-continuous.

Remark 2.23. [4,33] Let \((X, \tau) \) and \((Y, \eta) \) be an \(L \)-fts \(s \). An \(L \)-fuzzy sets of the form \(\lambda \times \mu \) with \(\tau(\lambda) \geq r \) and \(\eta(\mu) \geq r \) form a basis for the product \(L \)-fuzzy topology \(\tau \times \eta \) on \(X \times Y \), where for any \((x, y) \in X \times Y, (\lambda \times \mu)(x, y) = \min\{\lambda(x), \mu(y)\} \).

Theorem 2.24. Let \((X, \tau)\) and \((X, \tau_i)\) be \(L \)-fts \(s \). If a \(FM \) \(F : X \rightarrow \prod_{i \in I} X_i \) is \(FLC \)-continuous (where \(\prod_{i \in I} X_i \) is the product space), then \(F \circ I \) is \(FLC \)-continuous for each \(i \in I \), where \(P_i : \prod_{i \in I} X_i \rightarrow X_i \) is the projection multifunction which is defined by \(P_k((x_i)) = \{x_i\} \) for each \(k \in I \).

Proof. Let \(\mu_{i_0} \in L_{X_{i_0}}^1 \) and \(\tau_{i_0}(\mu_{i_0}^c) \geq r \). Then \((P_{i_0} \circ F)^l(\mu_{i_0}) = F^l(P_{i_0}^l(\mu_{i_0})) = F^l(\mu_{i_0} \times \prod_{i \neq i_0} X_i) \). Since \(F \) is \(FLC \)-continuous and \(\tau_i((\mu_{i_0} \times \prod_{i \neq i_0} X_i))^c \geq r \), it follows that \(\tau(F^l(\mu_{i_0} \times \prod_{i \neq i_0} X_i)) \geq r \). Then \(F \circ I \) is an \(FLC \)-continuous.

We state the following result without proof in view of above theorem.

Theorem 2.25. Let \((X, \tau)\) and \((X, \tau_i)\) be \(L \)-fts \(s \). If a \(FM \) \(F : X \rightarrow \prod_{i \in I} X_i \) is \(FUC \)-continuous (where \(\prod_{i \in I} X_i \) is the product space), then \(F \circ I \) is \(FUC \)-continuous for each \(i \in I \), where \(P_i : \prod_{i \in I} X_i \rightarrow X_i \) is the projection multifunction which is defined by \(P_k((x_i)) = \{x_i\} \) for each \(k \in I \).

Theorem 2.26. Let \((X, \tau_i)\) and \((Y, \eta_i)\) be \(L \)-fts \(s \) and \(F_i : X_i \rightarrow Y_i \) be a \(FM \) for each \(i \in I \). Suppose that \(F : \prod_{i \in I} X_i \rightarrow \prod_{i \in I} Y_i \) is defined by \(F((x_i)) = \prod_{i \in I} F_i(x_i) \). If \(F \) is \(FLC \)-continuous, then \(F_i \) is \(FLC \)-continuous for each \(i \in I \).

Proof. Let \(\mu_i \in L_{Y_i}^1 \) and \(\eta_i(\mu_i^c) \geq r \). Then \(\eta_i((\mu_i \times \prod_{i \neq j} Y_j)^c) \geq r \). Since \(F \) is \(FLC \)-continuous, it follows that \(\tau_i(F^l(\mu_i \times \prod_{i \neq j} Y_j)) \geq r \) and \(F^l(\mu_i \times \prod_{i \neq j} Y_j) = F^l(\mu_i) \times \prod_{i \neq j} X_j \). Consequently, we obtain that \(\tau_i(F^l(\mu_i)) \geq r \) for each \(i \in I \).

Thus, \(F_i \) is \(FLC \)-continuous.
We state the following result without proof in view of above theorem.

Theorem 3.5. Let \((X_i, \tau_i)\) and \((Y_i, \eta_i)\) be \(L\)-fts and \(F_i : X_i \rightarrow Y_i\) be a \(FM\) for each \(i \in I\). Suppose that \(F : \prod_{i \in I} X_i \rightarrow \prod_{i \in I} Y_i\) is defined by \(F((x_i)) = \prod_{i \in I} F_i(x_i)\). If \(F\) is \(FUC\)-continuous, then \(F_i\) is \(FUC\)-continuous for each \(i \in I\).

3. Fuzzy Upper and Lower Contra-Semi-Continuous Multifunctions

Definition 3.1. Let \(F : X \rightarrow Y\) be a \(FM\) between two \(L\)-fts \((X, \tau), (Y, \eta)\) and \(r \in L_0\). Then \(F\) is called:

1. Fuzzy upper contra-semi-continuous (\(\text{FUCS}\)-continuous, in short) at an \(L\)-fuzzy point \(x_t \in \text{dom}(F)\) iff \(x_t \in F^u(\mu)\) for each \(\mu \in L^Y\) and \(\eta(\mu^r) \geq r\) there exists \(r\)-fso set \(\lambda \in L^X\) and \(x_t \in \lambda\) such that \(\lambda \wedge \text{dom}(F) \leq F^u(\mu)\).

2. Fuzzy lower contra-semi-continuous (\(\text{FLCS}\)-continuous, in short) at an \(L\)-fuzzy point \(x_t \in \text{dom}(F)\) iff \(x_t \in F^l(\mu)\) for each \(\mu \in L^Y\) and \(\eta(\mu^r) \geq r\) there exists \(r\)-fso set \(\lambda \in L^X\) and \(x_t \in \lambda\) such that \(\lambda \leq F^l(\mu)\).

3. \(\text{FUCS}\)-continuous (resp. \(\text{FLCS}\)-continuous) iff it is \(\text{FUCS}\)-continuous (resp. \(\text{FLCS}\)-continuous) at every \(x_t \in \text{dom}(F)\).

Definition 3.2. Let \(F : X \rightarrow Y\) be a \(FM\) between two \(L\)-fts \((X, \tau), (Y, \eta)\) and \(r \in L_0\). Then \(F\) is called:

1. Fuzzy upper contra-irresolute (\(\text{FUC}\)-irresolute, in short) at an \(L\)-fuzzy point \(x_t \in \text{dom}(F)\) iff \(x_t \in F^u(\mu)\) for each \(\mu \in L^Y\) is \(r\)-fsc there exists \(r\)-fso set \(\lambda \in L^X\) and \(x_t \in \lambda\) such that \(\lambda \wedge \text{dom}(F) \leq F^u(\mu)\).

2. Fuzzy lower contra-irresolute (\(\text{FLC}\)-irresolute, in short) at an \(L\)-fuzzy point \(x_t \in \text{dom}(F)\) iff \(x_t \in F^l(\mu)\) for each \(\mu \in L^Y\) is \(r\)-fsc there exists \(r\)-fso set \(\lambda \in L^X\) and \(x_t \in \lambda\) such that \(\lambda \leq F^l(\mu)\).

3. \(\text{FUC}\)-irresolute (resp. \(\text{FLC}\)-irresolute) iff it is \(\text{FUC}\)-irresolute (resp. \(\text{FLC}\)-irresolute) at every \(x_t \in \text{dom}(F)\).

Proposition 3.3. \(F\) is normalized implies \(F\) is \(\text{FUCS}\)-continuous (resp. \(\text{FUC}\)-irresolute) at \(x_t \in \text{dom}(F)\) iff \(x_t \in F^u(\mu)\) for each \(\mu \in L^Y\) and \(\eta(\mu^r) \geq r\) (resp. \(\mu \) is \(r\)-fsc) there exists \(r\)-fso set \(\lambda \in L^X\) and \(x_t \in \lambda\) such that \(\lambda \leq F^u(\mu)\).

Remark 3.4. The notions of \(\text{FUC}\)-continuous multifunctions and \(\text{FUC}\)-irresolute multifunctions are independent as shown in the following Examples 3.9 and 3.10.

The following implications hold:
1. \(\text{FUC}\)-continuous \(\Rightarrow\) \(\text{FUCS}\)-continuous \(\Rightarrow\) \(\text{FUC}\)-irresolute.
2. \(\text{FLC}\)-continuous \(\Rightarrow\) \(\text{FLCS}\)-continuous \(\Rightarrow\) \(\text{FLC}\)-irresolute.

In general the converses are not true.

Theorem 3.5. Let \(F : X \rightarrow Y\) be a \(FM\) between two \(L\)-fts \((X, \tau), (Y, \eta)\) and \(\mu \in L^Y\), then the following are equivalent:

1. \(F\) is \(\text{FLCS}\)-continuous.
2. \(F^l(\mu)\) is \(r\)-fso, if \(\eta(\mu^r) \geq r\).
3. \(F^u(\mu)\) is \(r\)-fsc, if \(\eta(\mu) \geq r\).
Proof. (1) ⇒ (2) Let \(x_t \in \text{dom}(F) \), \(\mu \in L^Y \), \(\eta(\mu^c) \geq r \) and \(x_t \in F^l(\mu) \) then, there exists \(r \)-fo set \(\lambda \in L^X \) and \(x_t \in \lambda \) such that \(\lambda \leq F^l(\mu) \) and hence \(x_t \in SI_r(F^l(\mu), r) \).
Therefore, we obtain \(F^l(\mu) \leq SI_r(F^l(\mu), r) \). Thus, \(F^l(\mu) \) is \(r \)-fo.

(2) ⇒ (3) Let \(\mu \in L^Y \) and \(\eta(\mu) \geq r \) hence by (1), \((F^l(\mu))^c = (F^l(\mu))^c\) is \(r \)-fo. Then, \(F^l(\mu) \) is \(r \)-fo.

(3) ⇒ (2) It is similar to that of (2) ⇒ (3).

(2) ⇒ (1) Let \(x_t \in \text{dom}(F) \), \(\mu \in L^Y \), \(\eta(\mu^c) \geq r \) with \(x_t \in F^l(\mu) \) we have by (2), \(F^l(\mu) = \lambda \) (say) is \(r \)-fo then, there exists \(r \)-fo set \(\lambda \in L^X \) and \(x_t \in \lambda \) such that \(\lambda \leq F^l(\mu) \). Thus, \(F \) is \(FLC \)-isolates.

Theorem 3.6. Let \(F : X \rightarrow Y \) be a \(FM \) between two \(L \)-fts \(s (X, \tau), (Y, \eta) \) and \(\mu \in L^Y \), then the following are equivalent:

1. \(F \) is \(FLC \)-isolates.
2. \(F^l(\mu) \) is \(r \)-fo, for any \(\mu \) is \(r \)-fo.
3. \(F^u(\mu) \) is \(r \)-fo, for any \(\mu \) is \(r \)-fo.

Proof. (1) ⇒ (2) Let \(x_t \in \text{dom}(F) \), \(\mu \in L^Y \), \(\mu \) be \(r \)-fo and \(x_t \in F^l(\mu) \) then, there exists \(r \)-fo set \(\lambda \in L^X \) and \(x_t \in \lambda \) such that \(\lambda \leq F^l(\mu) \) and hence \(x_t \in SI_r(F^l(\mu), r) \).
Therefore, we obtain \(F^l(\mu) \leq SI_r(F^l(\mu), r) \). Thus, \(F^l(\mu) \) is \(r \)-fo.

(2) ⇒ (3) Let \(\mu \in L^Y \) and \(\mu \) be \(r \)-fo hence by (1), \((F^l(\mu))^c = (F^u(\mu))^c\) is \(r \)-fo. Then, \(F^u(\mu) \) is \(r \)-fo.

(3) ⇒ (2) It is similar to that of (2) ⇒ (3).

(2) ⇒ (1) Let \(x_t \in \text{dom}(F) \), \(\mu \in L^Y \), \(\mu \) be \(r \)-fo with \(x_t \in F^l(\mu) \) we have by (2), \(F^l(\mu) = \lambda \) (say) is \(r \)-fo then, there exists \(r \)-fo set \(\lambda \in L^X \) and \(x_t \in \lambda \) such that \(\lambda \leq F^l(\mu) \). Thus, \(F \) is \(FLC \)-isolates.

We state the following results without proof in view of above theorems.

Theorem 3.7. Let \(F : X \rightarrow Y \) be a \(FM \) and normalized between two \(L \)-fts \(s (X, \tau), (Y, \eta) \) and \(\mu \in L^Y \), then the following are equivalent:

1. \(F \) is \(FUCS \)-continuous.
2. \(F^l(\mu) \) is \(r \)-fo, if \(\eta(\mu^c) \geq r \).
3. \(F^l(\mu) \) is \(r \)-fo, if \(\eta(\mu) \geq r \).

Theorem 3.8. Let \(F : X \rightarrow Y \) be a \(FM \) and normalized between two \(L \)-fts \(s (X, \tau), (Y, \eta) \) and \(\mu \in L^Y \), then the following are equivalent:

1. \(F \) is \(FUC \)-isolates.
2. \(F^u(\mu) \) is \(r \)-fo, for any \(\mu \) is \(r \)-fo.
3. \(F^l(\mu) \) is \(r \)-fo, for any \(\mu \) is \(r \)-fo.

Example 3.9. Let \(X = \{x_1, x_2\} \), \(Y = \{y_1, y_2, y_3\} \) and \(F : X \rightarrow Y \) be a \(FM \) defined by \(G_F(x_1, y_1) = 0.1, G_F(x_1, y_2) = \top, G_F(x_1, y_3) = \bot, G_F(x_2, y_1) = 0.5, G_F(x_2, y_2) = \bot \) and \(G_F(x_2, y_3) = \top \). We assume that \(\top = 1 \) and \(\bot = 0 \). Define \(L \)-fuzzy topologies \(\tau : L^X \rightarrow L \) and \(\eta : L^Y \rightarrow L \) as follows:

\[
\tau(\lambda) = \begin{cases}
\top, & \text{if } \lambda \in \{\bot, \top\}, \\
\frac{1}{2}, & \text{if } \lambda \in \{0.5, 0.6\}, \\
\bot, & \text{otherwise}.
\end{cases}
\]
\[\eta(\mu) = \begin{cases} \top, & \text{if } \mu \in \{\frac{1}{2}, 1\}, \\ \frac{1}{2}, & \text{if } \mu = 0.5, \\ \frac{1}{2}, & \text{if } \mu = 0.4, \\ \bot, & \text{otherwise}. \end{cases} \]

(1) \(F \) is FUCS-continuous (resp. FUC-irresolute) but not FUC-irresolute because \(0.45 \) is \(\frac{1}{2} \)-fts in \((Y, \eta)\) and \(F^\lambda(0.45) = 0.45 \) is not \(\frac{1}{2} \)-fts.

(2) \(F \) is FLCS-continuous (resp. FLC-irresolute) but not FLC-irresolute because \(0.45 \) is \(\frac{1}{2} \)-fts in \((Y, \eta)\) and \(F^\mu(0.45) = 0.45 \) is not \(\frac{1}{2} \)-fts.

Example 3.10. Let \(X = \{x_1, x_2\} \), \(Y = \{y_1, y_2, y_3\} \) and \(F : X \rightarrow Y \) be a FM defined by \(G_F(x_1, y_1) = 0.2 \), \(G_F(x_1, y_2) = \top \), \(G_F(x_1, y_3) = 0.3 \), \(G_F(x_2, y_1) = 0.5 \), \(G_F(x_2, y_2) = 0.3 \) and \(G_F(x_2, y_3) = \top \). We assume that \(\top = 1 \) and \(\bot = 0 \). Define \(L \)-fuzzy topologies \(\tau : L^X \rightarrow L \) and \(\eta : L^Y \rightarrow L \) as follows:

\[
\tau(\lambda) = \begin{cases} \top, & \text{if } \lambda \in \{\frac{1}{2}, 1\}, \\ \frac{1}{2}, & \text{if } \lambda = 0.3, \\ \bot, & \text{otherwise}, \end{cases}
\]

\[
\eta(\mu) = \begin{cases} \top, & \text{if } \mu \in \{\frac{1}{2}, 1\}, \\ \frac{1}{2}, & \text{if } \mu = 0.4, \\ \bot, & \text{otherwise}. \end{cases}
\]

We can obtain the followings:

\[
SC_{\tau}(\lambda, r) = \begin{cases} \bot, & \text{if } \lambda = \bot, \ r \in L_\emptyset, \\ \frac{1}{2}, & \text{if } 0.3 \leq \lambda \leq 0.7, \ \bot < r \leq \frac{1}{2}, \\ \top, & \text{otherwise}, \end{cases}
\]

\[
SC_{\eta}(\lambda, r) = \begin{cases} \bot, & \text{if } \lambda = \bot, \ r \in L_\emptyset, \\ \frac{1}{2}, & \text{if } 0.4 \leq \lambda \leq 0.6, \ \bot < r \leq \frac{1}{2}, \\ \top, & \text{otherwise}. \end{cases}
\]

(1) \(F \) is FUCS-continuous (resp. FUC-irresolute) but not FUC-continuous because \(\eta(0.4) = \frac{1}{2} \) in \((Y, \eta)\), \(F^\lambda(0.4) = 0.4 \) and \(\tau([F^\lambda(0.4)]^\epsilon) \nsubseteq \frac{1}{2} \).

(2) \(F \) is FLCS-continuous (resp. FLC-irresolute) but not FLC-continuous because \(\eta(0.4) = \frac{1}{2} \) in \((Y, \eta)\), \(F^\mu(0.4) = 0.4 \) and \(\tau([F^\mu(0.4)]^\epsilon) \nsubseteq \frac{1}{2} \).

Theorem 3.11. Let \(F : X \rightarrow Y \) be a FM between two \(L \)-fts \((X, \tau), (Y, \eta)\) and \(\mu \in L^Y \). Suppose that one of the following properties hold:

(1) \(SC_{\tau}(F^\lambda(\mu), r) \leq F^\lambda(I_\eta(\mu(\mu), r)) \).

(2) \(F^\lambda(C_\eta(\mu), r) \leq SI_{\tau}(F^\lambda(\mu), r) \).

Then \(F \) is FLCS-continuous.

Proof. (1) \(\Rightarrow \) (2) Let \(\mu \in L^Y \) hence by (1), we obtain \([SI_{\tau}(F^\lambda(\mu), r)]^\epsilon = SC_{\tau}([F^\lambda(\mu)]^\epsilon, r) = SC_{\tau}(F^\lambda(\mu^\epsilon), r) \leq F^\lambda(I_\eta(\mu^\epsilon, r)) = [F^\lambda(C_\eta(\mu, r))]^\epsilon \). Then, we obtain \(F^\lambda(C_\eta(\mu, r)) \leq SI_{\tau}(F^\lambda(\mu), r) \).

Suppose that (2) holds. Let \(\mu \in L^Y \) and \(\eta(\mu^\epsilon) \geq r \) then by (2), we have \(F^\lambda(\mu) \leq SI_{\tau}(F^\lambda(\mu), r) \). Thus \(F^\lambda(\mu) \) is \(f.r.s.o. \). Then from Theorem 3.5(2), \(F \) is FLCS-continuous.
Theorem 3.12. Let \(F : X \rightarrow Y \) be a \(FM \) between two \(L \)-fts’s \((X, \tau), (Y, \eta)\) and \(\mu \in L^Y \). Suppose that one of the following properties hold:
1. \(SC^r(I^c_\eta(\mu), r) \leq F^c(I^c_\eta(\mu), r) \).
2. \(F^c(SC^r(\mu, r)) \leq SI_r(F^c(\mu), r) \).

Then \(F \) is \(FLC \)-irresolute.

Proof. \((1) \Rightarrow (2)\) Let \(\mu \in L^Y \) hence by (1), we obtain \([SI_r(F^c(\mu), r)]^c = SC^r([F^c(\mu)]^c, r) = SC^r(F^c(\mu^c), r) \leq F^c(SI^c_\eta(\mu^c, r)) = [F^c(SC^r_\eta(\mu, r))]^c \). Then, we obtain

\[
F^c(SC^r_\eta(\mu, r)) \leq SI_r(F^c(\mu), r).
\]

Suppose that (2) holds. Let \(\mu \in L^Y \) and \(\mu \) be \(r-fsc \) then by (2), we have \(F^c(\mu) \leq SI_r(F^c(\mu), r) \). Thus \(F^c(\mu) \) is \(r-fso \). Then from Theorem 3.6(2), \(F \) is \(FLC \)-irresolute.

We state the following results without proof in view of above theorems.

Theorem 3.13. Let \(F : X \rightarrow Y \) be a \(FM \) and normalized between two \(L \)-fts’s \((X, \tau), (Y, \eta)\) and \(\mu \in L^Y \). Suppose that one of the following properties hold:
1. \(SC^r(F^c(\mu), r) \leq F^c(I^c_\eta(\mu), r) \).
2. \(F^c(SC^r(\mu, r)) \leq SI_r(F^c(\mu), r) \).

Then \(F \) is \(FUCS \)-continuous.

Theorem 3.14. Let \(F : X \rightarrow Y \) be a \(FM \) and normalized between two \(L \)-fts’s \((X, \tau), (Y, \eta)\) and \(\mu \in L^Y \). Suppose that one of the following properties hold:
1. \(SC^r(F^c(\mu), r) \leq F^c(I^c_\eta(\mu), r) \).
2. \(F^c(SC^r(\mu, r)) \leq SI_r(F^c(\mu), r) \).

Then \(F \) is \(FUC \)-irresolute.

Theorem 3.15. Let \(F : X \rightarrow Y \) and \(H : Y \rightarrow Z \) be two \(FM \)-s and let \((X, \tau), (Y, \eta)\) and \((Z, \delta)\) be three \(L \)-fts-s. If \(H \) is normalized, \(H \) is \(FUS \)-continuous and \(F \) is \(FLCS \)-continuous, then \(H \circ F \) is \(FLCS \)-continuous.

Proof. Let \(F \) be \(FLCS \)-continuous, \(H \) be \(FUS \)-continuous and \(\gamma \in L^Z, \delta(\gamma^c) \geq r \). Then from Theorem 1.12(4) and Theorem 3.5(2), we have \((H \circ F)^c(\gamma) = F^c(H^c(\gamma)) \) and \(F^c(H^c(\gamma)) \) is \(r-fso \) with \(\eta((H^c(\gamma))^c) \geq r \). Thus, \(H \circ F \) is \(FLCS \)-continuous.

We state the following result without proof in view of above theorem.

Theorem 3.16. Let \(F : X \rightarrow Y \) and \(H : Y \rightarrow Z \) be two \(FM \)-s and let \((X, \tau), (Y, \eta)\) and \((Z, \delta)\) be three \(L \)-fts-s. If \(F \) is normalized, \(F \) is \(FUCS \)-continuous and \(H \) is \(FLS \)-continuous, then \(H \circ F \) is \(FUCS \)-continuous.

Acknowledgements. The authors would like to express their sincere thanks to the editor and referees for their helpful suggestions which improved the presentation of the paper.
REFERENCES