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Abstract. In this paper, we extend the idea of pseudo spectral method
to approximate solution of time fractional order three-dimensional heat
conduction equations on a cubic domain. We study shifted Jacobi poly-
nomials and provide a simple scheme to approximate function of multi
variables in terms of these polynomials. We develop new operational ma-
trices for arbitrary order integrations as well as for arbitrary order deriv-
atives. Based on these new matrices, we develop simple technique to
obtain numerical solution of fractional order heat conduction equations.
The new scheme is simple and can be easily simulated with any compu-
tational software. We develop codes for our results using MatLab. The
results are displayed graphically.
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1. INTRODUCTION

In literature, diffusion equations play basic and important role in mathematical model-
ing of large variety of engineering problems. Some of the important problems in which
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diffusion equation plays a basic role are: cyclic heating of the cylindrical surface of in-
ternal combustion engines, heating and cooling of building structures, heating lakes and
water reservoirs by radiation, the heating of solid surfaces in materials processing, the
cyclic heating of laminated steel during pickling, heating and cooling of vials contained
DNA for polimerise-chain-reaction activation, the heating of electronics and many more
see for example [13, 11, 1, 30, 3, 31]. In this study we consider the following generalized
time fractional heat conduction problem

GLutt oy ) Sultny,2) +Ay32U(t,x,y,Z)+
ote Ox? Oy (1. 1)
ult, x,y, z) '
)\ZT+I(taxay7z)a U(07$7ya2):f($7ya2)7

wherey; is the volumetric heat capacity and, A, and A, are the thermal conductivities
in thex, y andz directions0 < ¢ < 1 is the order of the derivative,c [0, 7], z € [0, a],

y € [0,b] andz € [0, c|. I(¢,z,y, 2) is the internal source term arfdz, y, 2) is the initial
heat distribution in the space.

Exact analytical solution of time fractional order diffusion equations are generally very
difficult to obtain. The reason behind this difficulty is the higher computational complex-
ities of fractional calculus involved in solving diffusion equations. This phenomena is
recently been reported by many authors. We refer to Poulikakos [34], Arpaci [4], O zisik
[32], Kakac and Yener [15], and Carslaw and Jaeger [5] for some of the renowned results
in this aspect. Different aspects of solution of the problem such as existence and unique-
ness of positive solutions, analytical properties of solution and the correctness of initial
and boundary conditions have already been studied by many authors. We refer to study
[38, 29, 22, 23, 14, 12, 9, 21].

In the literature, many attempts were made to approximate solution of fractional diffu-
sion equations. V. V. Kulish [20] provide a very efficient way for approximate solution of
such problems using laplace transform. M. Akbarzade [2] studied approximate solution
of integer order three dimensional transient state heat conduction equation by Homotopy
analysis method. However, for fractional order equations, the method used in [2] will re-
sults very complex algorithms. Ting-Hui Ning [24] provided some results based on spheri-
cal coordinates and the method of separation of variables for approximate solution of such
type of problems. Y. Z. Povstenko [35] provided axisymmetric solutions to time-fractional
heat conduction equation in a half-space subject to Robin boundary conditions by the use
of integral transform method. Recently G.C. Wu [36, 37] studied approximate solution to
fractional diffusion equation by variational iteration technique.

One of the most powerful method for numerical solutions of differential equations is the
well known spectral method. This method has already been extensively used for numerical
solutions of fractional order differential equations and partial differential equations with
different types of boundary conditions, see for example [27, 33, 25, 26]. However, no
generalized version of this method is available in the literature which can be used to deal
with higher dimensional problems.

We provide generalized version of the method to find numerical solutions of higher
dimensional fractional order partial differential equations. The methods is based on oper-
ational matrices of integrations and differentiations. Operational matrices in case of single
variable are available for different orthogonal polynomials such as Sine-Cosine, Legendre,
Jacobi, Lagurree and hermite polynomials, we refer to [28, 6, 7, 10, 8, 16, 17, 18].
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In this paper we use two parametric shifted Jacobi polynomials and generalize the op-
erational matrices of fractional order integrations and differentiations. We use these opera-
tional matrices to reduce the differential equation under consideration to a system of easily
solvable algebraic equations.

The rest of the paper is organized as follow, in secfiame provide some basic prop-
erties of fractional calculus and orthogonal polynomials and some relations for approx-
imation of multivariate function. In sectioB, we develop new operational matrices of
integrations and differentiations, in sectibthese operational matrices are used to convert
the corresponding differential equation to a system of algebraic equations. In settteon
proposed algorithms are applied to several test problems and finally in sécimort
conclusion is made.

2. PRELIMINARIES

For convenience, this section summarizes some concepts, definitions and basic results
from fractional calculus in the sequel.

DerINITION 1. Given an interval0,a] C R, the Riemann-Liouville fractional order
integral of orders € R of a functiong € (L'[0, a], R) is defined by

1 t
I3, H(t :—/ t — )7 Lp(s)ds,
Bt = gy | (E= 977 00)
provided that the integral on right hand side exists.

DEFINITION 2. For a given functionp(t) € C™[0,a], the Caputo fractional order
derivative of ordew is defined as

1 T pm(1)
D7¢(t) = f n 1< N
0= J, G S0 <nnen

provided that the right side is pointwise defined(6noo), wheren = [o] + 1.
Hence, it follows that
T(1+ k)
I'l+k—-o)

(1 + k)

tk—o‘ Iotk _
’ I'l+k+o)

t*+7 and D C = 0, for a constant’.
2. 2)

Datk _

2.1. The shifted Jacobi polynomials: [19] The well known two parametric Jacobi poly-
nomials defined ofD, 7] with parametet, ¢ is given by the following relation

TES O = Y 0Tt i = 0.1.2,5... @3
=0

whereUy, ;) is defined by

()" T+ ¢+ DI+ 1+ E+C+1)

Fl+C¢+DIGE+E+C+ 1)@ — Dt

These polynomials are orthogonal with respect to the weight function
W& (t) = (1 — t)5¢°,

The orthogonality condition of these polynomials are given as under

2. 4)

O, =

[ O =2 @9
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whered; ; is the Kroncker delta amyl((f’]q.)) is defined as
Jeo _ TG EADIG D
) (2 +E+CH DTG+ DG +E+C+ 1)

The orthogonality relation allows us to approximate) € C([0, 7] in the form of Jacobi
series as follows

. 6)

Z a5 (), @.7)
wherec; can be easily calculated by using the orthogonality relation, that is,

1 T
¢ = u(t)w@’o(t)J(&’o (t)dt.
NG) T (74)
fY(T;])
Itis clear from Lemma&.2.1 in [19] that the coefficients; decay faster. In practice, we are
concerned with the truncated series of (2. 7). Theerms truncated series can be written

in vector form as

u(t) = K{Aw(t), (2.8)
whereM = m + 1, K is the coefficient column vector anfdy, (¢) is M terms column
vector function defined by

A =[ 1590 TEQw o I - S]] @9

—~
3
(=]

=

2.2. Error Estimate. For sufficiently smooth functiom(t) € A, whereA = [q, ], the
maximum amount of error in the approximation of a function withterms of Jacobi
polynomials is given as

lg(z) — gan (@)[|2 < (Cy MA14+1) (2. 10)

where

1 8M+1

1 e [ (@)l
For the proof of this relation, we refer the reader to study [19]. In our current paper, we are
concerned with four dimensional problems. Therefore, we must first establish a suitable
approximation method of a function of four variable with Jacobi polynomials. Using the
same procedure as developed in [16], we extend the notion to three-dimensional space and
define three-dimensional Jacobi polynomials of otdeon the domair0, a] x [0, b] x [0, ¢|

as a product function of three Jacobi polynomials

a,b,c s s
T = J &9 @) I W) IS (). (2.12)

C) = (2. 11)

The orthogonality condition of(“’f_’;)) is found to be

Jlabe) glabe)  (£,0)
/ / / (g,7,8) (q r 5" %a.b, cdzdydz
(6,0 (&0 (€0

= 0(4.0)0(r)0(5,5) V(a.) V(b.r) Vcrs)

Wherewfl’fc) = w® C)( Jw IEE’C) (y)wff’o(z) is the weight function regarding three dimen-

sional Jacobi polynomials. Hence, ai, y, z) € C([0,a] x [0,b] x [0,¢]) can be easily
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approximated with three dimensional Jacobi polynorrﬂzéfs ) as follows

moom m

u(@,y,2) =D D> cqrad 00, (2. 13)

q=0r=0 s=0

wherec,,, can be obtained by using the following relation

_ (€.0) f(abo)
Cars = €0) 5<> G0 G0 &0 / / / W, Y, 2w b0 (g ) Ay dz. (2.14)
Vo) Vo) Views)

For simplicity, use the notatios, = ¢4, Wheren = M2q + Mr + s + 1, and rewrite
(2. 13) in vector notation, as follows

ule,y, » chﬂ“’“) (2..2) = ClpuA ™) (@, y, 2).

WhereCs is coefficient column vector of ordér andA (@9 (z, y, z) is column vector
of functions defined by
T
a,b,c o (a,b,c) (a,b,c) (a,b,c) (a,b,c)

AP gy, 2) = [ G0 G gl g [T (215
2.3. Four-dimensional Jacobi polynomials. Now, extend the idea to four dimensional
space defined on domaj, 7| x [0,a] x [0,b] x [0, c] by the product function of Jacobi
polynomials of ordeM as

T,a,b, R
T = T O 0 @ I W)IES) (). (2. 16)
The orthogonality condition QY(T;‘:’SC) is found to be

(T a,b,c) J(T ,a,b,c) (5 ¢) dtdedud
T, s T,a,b,c yaz
A /0 A A (p.a.rs) (0’ s") YT 0.b,

(0, (€0 (€0 (€0)
= 0(p,p)0(0,0) 0(r,) O(5,5) V(rp) Vaa) Yo Vcos) *

wherew®9) = L& C)( t)w 55"4)(:5)%(,5’0 (y)wgg’@(z) is the weight function regarding

T,a,b,c

four-dimensional Jacobi polynomials. Amyt, z,y, z) € C([0, 7] x [0,a] x [0,b] x [0, ¢])
can be easily approximated with four dimensional Jacobi polynorﬁfélgf’f)) as follows

ult, ,5,2) = > D3> dpgrs, ;;f;% (2.17)

p=0 q=0 r=0 s=0

whered,,,s can be obtained by the relation

dpgrs = ult,z,y, 2w IO dtdadydz.
(§ Q) (&, C o Jo ,a, (p,q,7,s)
Virp) Vaa) 7 br) Wc s)

For simplicity, we use the notatiod, , = d,,s Wheren = M?q + Mr + s + 1, and
rewrite (2. 17 ) as follows

m M3

u(t,z,y, z) ZdenJT ()T (2, y, z)

p=0n=1

= AM( )DM><M3A( (x Y, 2),
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where A%, (¢) is the function vector related to variableand is as defined in (2. 9) and
Al@b) (2 4. 2) is the function vector related to variabtey, » and is defined in (2. 15).

3. OPERATIONAL MATRICES OFINTEGRATION AND DIFFERENTIATIONS

The operational matrices of derivatives and integrations play the role of building blocks
in the establishment of the new pseudo spectral method. In literature, these are used only
for solutions of differential equations including fractional differential with only one vari-
able and partial differential equations with two and three variables [16]. Here we construct
new operational matrices for three variables and use them to convert a generalized class of
PDEs with four variable to a system of easily solvable algebraic equations.

LEMMA 3.1 Let A(®*) (2,4, 2) be the function vector as defined (. 15 ) then the
fractional order partial derivative of ordes of A(®%)(z, v, z) w.rt z is given by

80 a,b,c x g,a, b c a,b,c
9o A @y, 2) = TATED A 2,y 2),
xr
whereIASZbe]&s is the operational matrix of differentiation of order and is defined as
i 1 Qi - Qi - Q4 e ]
Qa1 Qoo -+ Qo - Qs
IAaabc): : : : : : : (3 18)
M3x M3 Qs Quo o Q0 Qs ’ .
L QM371 QM372 M QM37n/ AR QM37M3 i
where
n =M*h+Mi+j+1,n=Mq+Mr+s+1,
i, 5, k,q,r,s=0,1,2,....om
and

Qg =t = DE3 = Z hfj,j & (3. 19)
=[o]

pars d(j, 7‘) Z 5 Tl +¢+1l—o+ 1€+ 1)a(l’+<+lfa+§+1)
b= @) T/ +C+l—o+E+1) ’

(a,i)

/—;\ @ . .
(Lo = O andU |s as defined irf2. 4).

(1,q) 1+l o’

Proof. Consider the general term of the function vector (2. 15). Then, in view of (2. 12),
we can write

07 (a,b,c) 0° (a,b,c)
@J(n) ( Y, 2 ) 8 o (q,ms)? (3 20)
wheren = M?q + Mr + s + 1. After expansion of the left side we get
0° a,b,c s 0°
s o @ 2) = TG )T ()5 T (@), (3. 21)
Using (2. 2) and (2. 3), and after simplification, we obtain
97 (abe) (0 1+l 1o
9z J(n) (r,y,2) = J(b ,«) (( s) Z U(l,q) 1+1— ) (3. 22)

I=[o]
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which can be written in the following form

0° a,b,c —0o
%J( (2,9, 2 Z Olt.q) J((lfr )J((ff)( )z, (3.23)
I=[0o]
~ =
whereU{, ) = U ) - ApproximatingJ((lff (y )J((ff)( )x!= with three dimen-
sional Jacobi polynomials as follows
(&:¢) (5C Sk s g (a,b,c)
T Wy ()2l =D 0% Y RIS (3. 24)

=0 j=0 k=0

The Coeﬁicientslz‘?f,f can be easily calculated by using relation (2. 14 ), that is,

ars _ 69169 (1) 769 (a0 J0)
P €D (go © <)/ / / Wabed ) W) gy ()27 ;50 dwdydz,

Vai) V6.5 Vieh)
which after simplification yields
rs 5 4,7‘ 5 ]C,S @ —0
hiy = e / W&o 7 &) (2)da. (3. 25)
Vay 70
Now, we obtain
/ &0 gl= i, 5 C) x)dx = Z Oy, l)/ a—x)sat T4y, (3. 26)
0 '=0

By the convolution theorem of Laplace transform, we have

a ey F'l'+¢+l—o+1)I(E+1)
_ U HCHl—o _
£(/o (a—z)°z dx) = s CH—0+E+2) ’

and by taking the inverse Laplace transform, we obtain

a e D'+ ¢ +1— 0+ 1)T(E + 1)+ttt
— )ttt = 3.27
/O(C‘ @)fe v Tl +C+l—o+E+1) 3.27)
Using the equation (3. 27)and (3. 26)in (3. 25), we get
55Ok, D' 4+ ¢ 41— 0+ 1D + 1)l +etHi-oté+1)
hqrs _ %G ( s) U2 > (3 28)
ik &9 ZX:O (@9 Tl'+(+l—0+&+1)
Also by using (3. 24)in (3. 23 ) we get
o7 (a,b,c) R L TS (a,b,c)
axo‘] (f”vy’z):z;z;z Zh?ﬂe (lq Juk)
SO (3. 29)
_ ’\qrs (a,b,c)
= hij (i gigy
i=0 j=0 k=0

qrs qrs

/-’\\ . . 9
whereh”k 21101 Mk Ol1,q)- Now using the notatiom = M?q + Mr + s + 1,
n’ = M?*i + Mj + k + 1, we have
toxd

@J(a > C)(x’:%z) Z hn J((Z;;)’C)($7y’z>. (3 30)
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which in view of the notatiorf2,, ,,, = — A"

desired result.

for i?j’ k?q?

n’

r,s = 0,1,2,3,..m, yields the

O

LEMMA 3.2 Let A% (2,9, ) be the function vector as defined (2. 15 ) then the
fractional order partial derivative of ordes of A(*%¢) (z,y, z) W.r.ty is given by

y A(o.a.b.c)
wherev A} 501 s

9

gy M @y 2) = PATESRA (@, 2),

(3. 31)

is the operational matrix of differentiation of ordet and is given by

Qi Qi Qq Qs |
Qo1 Qoo Qg Qo a3
y g(o,a,b,c)
AM5><]M3 Qn,l an Qn,n’ Qn,M3 ) (3.32)
L QMS)]‘ QM3)2 QM:i)n/ QM3)]\43 h
where
n=M*h+Mi+j+1,n=Mqg+Mr+s+1,
i, 5, k,q,r,s=0,1,2,....om
and
QnW-J%__wﬁ::E:;ﬁfOZﬂ, (3. 33)
I=[o]
hq"‘S o (z q) (k,s) Z 6 l -+ C —+ l—0o —+ 1) (5 + 1)b(l'+<+lfo'+§+1)
R T = Tl +CHl—o+E+1) ’
J
/—/\
B = U}, ) T4 andy}_, is as defined irf2. 4).

Proof. The proof of this lemma is similar to that of the above lemma.

O

LEMMA 3.3, Let A% (2,9, ) be the function vector as defined (2. 15 ) then the
fractional order partial derivative of ordes of A(®%)(z,y, z) W.L.t z is given by

(o,a,b,c)

Z
where* A} 50 s

ZAcrabc)

M3x M3 —

where

(3. 34)

, (3. 35)

aa a,b,c z o,a,b,c a,b,c
ﬁA( b )(x,y,z) =“A pxjw?sA( 2 )(xaywz)?
is the operational matrix of differentiation of ordet and is defined by
[ 1 Qe Qqne Qa8
Q2,1 Q2,2 QQ,n/ QQ,MB
Qn,l Qn,2 Qn,n/ Qn,M3
| Q31 Qs o O VERY, Qs s |

n'=M>*h+Mi+j+1,n=Mq+Mr+s+1,
7;7j7k7q,7‘,820,1727,_,7m
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and
TS - ’I‘SA
Qo = h =03 = " RIZUE ), (3. 36)
I=[o]
mwz5W1J”§:U, D+ ¢ +1 =0+ DI(E+ DelHHmorerD
éiﬁ)’ =R T+ CHi—oretD) |
U6 = Uf, ndUC | defined irf2. 4
(,s) = O, )1+l —a s as defined it )
Proof. The proof of this Iemma is similar to that of the above lemma. O

LEMMA 3.4. Let A, (t) be the function vector as defined(x 9 )then they order inte-
gration of Ay, (t) is given by

(A (t) = HiP A (1), (3.37)

whereH | ,, is the operational matrix of integration of orderand is defined as

O00% ©01k - OO0k 0 Oomk
Oi10r ©11%6 - Oijk - Oimy;

Hifow = (3.38)

Oior Ok - Oijk o Oimik

L ®m,0,k Gm,l,k T @m,j,k e @m,m,k ]
where

Oijk = Z Ni kS5 (3.39)

(1) *PE+ ¢+ DTG+ k+E+C+ DI(L + k)
Tk+¢+DPE+E+C+ 1) — kKT + k4 Enk

Aigry = (3. 40)

and

z”: PTG+ 14+ E+C+ DIk +E+1+C+1)
T+ CH DG - DUT(k+y+1+C+E+2)

o I EFCH DG+ DI(E+ Dy
LG+&+1) '
Proof. For the proof of this lemma we refer to [19]. O

=0

4. APPLICATION OF THE OPERATIONAL MATRICES OF INTEGRATIONS AND
DERIVATIVES TO HEAT CONDUCTION PROBLEM
Consider the following heat conduction problem posed on a cubic region
N ult,x,y,z) \ Ou(t,x,y,2) L Qult,x,y,2)
¢ ote T Ox? v oy?

u(t, x,y, 2
z%—}_j(tvxvyaz)? U(Oa%yaz):f(l'»yaz),

(4. 41)
+A
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wherey is the volumetric heat capacity/(m*K)), A., A, A, are thermal conductivities
(W/m.K) in z,y andz direction respectively) < o < 1,¢ € [0,7], z € [0,a], y € [0, D]
andz € [0, c]. We seek solution of this problem in terms of shifted Jacobi polynomials
such that the following relation holds

agu(t7 x7 y? Z)
ote

By the application of fractional integration of ordewith respect to variableon equation
(4. 42 ) and making use of Lemma 3.4, we have

= At ()T Kppoenrs M@0 (a2, y, 2). (4. 42)

Jo 7ult, 2y, 2)
ote
which implies that

= AM(t)T(H;\-/,[l;M)TKMXM:’A(a’b’C) (337 Y, Z):

U(t, x,Y, Z) —C1 = AM(t)T(H]C[i]\/[)TKMXMsA(a7b70) (.I', Y, Z) (4 43)
The initial condition yields:;; = u(0, z,y, z). Hence, we have
U(t, z,Y, Z) = AM(t)T(H;\-/,[iM)TK]\/IXAfsA(aybﬁc) (I‘, Y, Z) + f(xv Y, Z)7 (4 44)
which can be rewritten as
u(t,z,y,2) = A ()" {(H % 0) " Knrems + Fapsars YA (2, 2). (4. 45)
Using this value oti(¢, x, y, z), we obtain
O%ult,z,y, 2 o z 4(0,a,b,¢) s (a,b,c
% = AM(t)T{(H]\/}xM)TKMxAﬁ + Frrxms} Agxﬁffw)‘é[\( > )(x,y,z),
(4. 46)
82ut,x, , 2 .o o,a,b,c a,b,c
(6y2 B2) Aar (DT { (G )T Kngsoars + Fagsars } AR A (2, 2)
(4. 47)
and
82Ut7x7 aZ T,0 z o,a,0,c a.b.c
% = A () {H ) Knaxrs + Farsens } Agw’sgbfw)SA( P (@,y,2).

(4. 48)
Using (4. 42), (4. 46), (4. 47 ) and (4. 48) in (4. 41), we get
XeAar ()T Kppsnps AP (2,0, 2)) = N Aar ()T {(H T an) Knrsears + Farns } wAE\Z’sa;bj\?s
+ Ay M (O {(H L 0 " Knrenrs + Farrs ) yA(A‘}’B“;bA’?SA(“"”C) (v,y,2)
+ A )T H 0 " Ko + Farsous } ZAS\Z’sa;bj\;)sA(a’b’c)(Iv Y, %)

+ Ay (t)TF](\’/[XM3A(“’b’C)(:L‘, Y, ),
(4. 49)

whereAy ()T EFS, s A9 (2,y,2) = I(t,x,y,2). The above equations can be sim-
plified as

7,0 x o,a,b,
Apr ()T (e Knrsears = Al (H3 S 0r) " Knrrs + Farxars} Agwsaxjvcf)s_
T,0 o,a,b,c
MAHT ) K + FMxM3}yA§wst)a,—

NAHT S an) " Knrsears + Farsars } ZASZéa;bj\;)s — F s A9 (2 g, 2) = 0.
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which implies that

7,0 x o,a,b,
(Xt K arsnrs — A (H 35 ar) " Karsears + Farars } A‘Mﬁm?s—
T,0 o,a,b,c
MAH )" Knrsenrs + Farsas } yAﬁngMl—

Az{(Hva}UxM)TKMxM3 + FMxMS} zAg\l/yfﬁaibﬂ)‘d - FJ@IxMS} =0.

In generalized form we can write it as

At Knrsrs Bigsars — Knrxars + Carxrs = 0. (4. 50)
Where
)\w )\y )\z e T
Apscn = (— Iy + =Ty + —Ineen) (HyPooag) s
Xt Xt Xt
B]q;{3><]\/13 — IAE\Z’;;Z)]’\;)?# + yAS\?:;Z\Z)S + ZAS\?[?S],&)S?
and

A 2,a,b,c A 2abc) A 2,a,b,c
Crxms = FMxM«%{f ""/’Aﬁw’é‘;]\}l + ;y yASV[;X;[)a + sz ZAM?’XA})S} + Frrs-
¢ ! ¢

The resulting equation (4. 50) is an algebraic equation of Sylvester type and can be
easily solved for the unknown matrix ;. 5,3 by using the MatLab commantlyap. By
using the value of K in (4. 45 ) we can easily obtain the approximate solution of the prob-
lem.

5. ILLUSTRATIVE EXAMPLES

The method mentioned above is the extension of pseudo spectral method. The basic
property of such method is that the accuracy of the solutions depend on the smoothness
of the solutions. If the exact solution of the problem is smooth then the method will yield
more accurate solution at small scale level. However, if the solution is not smooth, it
will be needed to simulate the algorithm at relatively higher scales. As experiment, we
approximate the solution of two different problems. In the first problem the source term is
zero. However for the second problem, we select a suitable source term such that the exact
solution of the problem is known.

ExAMPLE 1. Consider the following time fractional heat conduction problem

" agu(gﬁy,z) _a, a2u(gj2,y,z) Y 8%(2;%2)
5.51
Pult,z,3,%) 50
+>‘ZT+I(t7$7yaz)a u(O,x,y,z):f(:E,y,z).

Choosex; = Ay = Ay = A, =1,0< 0 <1,tel0l1],z €01,y € [01]

andz € [0, 1] and the initial conditionu(0, z, v, z) = e(**¥+2), Taking the source term
I(t,z,y,z) = 0, then the exact solution of the problem for fix= 1 is u(t,z,y,z) =
elztyt+2+3t) To check the accuracy of the scheme we fix 1(because the exact solution

at o = 1 is known) and simulate the algorithm at different scale level. We observe that
the accuracy of the solution increases as the scale level increase. At scaldllexel0,

we observe that the approximate solution is equal to the exact solution with difference less
than10—3. We compare the exact solution with the approximate solution for different val-
ues oft. In Fig (1), we fixt = 0.3 and compare the exact solution with the approximate
solution for values of, that is,z = [0.1,0.3,0.7,0.9]. The surfaces in the Figl) rep-
resents the approximate solution at somezfixvhile the color dots represents the exact
solution at the corresponding valuesofFig (2) and Fig(3) shows the same phenomena
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at some other values df that is,t = 0.5 andt = 0.9 respectively. The most inter-
esting property of fractional differential equation is that the solution at fractional values
approaches to the solution at integer values as the order of derivative approaches from
fractional to integer simultaneously. We use this property to show that the method provide
accurate solution at fractional values. For this purpose, we approximate the solution at
different value ot and observe that as — 1 the solution approaches to the exact solu-
tion. In Fig (4) and Fig (5), we show this behavior of the solution at two different points
of yz-plane. One can easily note that the approximate solution approaches to the exact
solution( color dots). We observe that for the current problem the method provide much
more accurate results. We approximate the absolute error at two different points of the
yz-plane, as shown in the Fi@) and Fig (7) the absolute error is less thar)—> which

is relatively accepted number for such complicated problems. The simulations of this ex-
ample is carried out with selecting the parameter of the Jacobi polynorfials( = 1.

ApprozimateU at z = 0.1
FractUatz=0.1
ApprozimateUat z = 0.3
HractUatz = 0.3
Approzimate U at z = 0.7

FractUatz = 0.7
ApprozimateU at z = 0.9
zactUatz = 0.9

0.5

Fig. 1 : The comparison of the exact and approximate solution of exairglé = 0.3
E=(¢(=1,M=10,a=1,b=1,c=1,7 =1 and the order of derivative = 1.

Approzimate U atz = 0.1
zactUatz =0.1
ApprozimateU at z = 0.3
JractUatz = 0.3
ApprozimateUat z = 0.7
wactUatz = 0.7
ApprozimateU at z = 0.9
FractUatz = 0.9

Fig. 2 The comparison of the exact and approximate solution of example % &t5,
E=(=1,M=10,a=1,b=1,c=1,7 = 1 and the order of derivative = 1.
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Approximate U at z = 0.1
'-' zactUatz = 0.1
ApprozimateU at z = 0.3
A “AbzactUatz=0.3
ApprozimateU at z = 0.7
V!V ractUat z = 0.7
'_ Approximate U at z = 0.9
y!v zactUatz = 0.9

Fig. 3 The comparison of the exact and approximate solution of examplé & @t9
E=(¢(=1,M=10,a=1,b=1,¢c= 1,7 =1 and the order of derivative = 1.

ApprozimateU ato = 0.6
- ApprozimateU ato = 0.7
- ApprozimateU ato = 0.8
- ApproximateU ato = 0.9
ApprozimateU ato = 1.0
100 wactUato = 1.0 i

120

Fig. 4 The approximate solution of example 1 at fractional value (Surface). We fix
2=03,y=03, M =10,a=1,b=1,c=1,7=1.

ApprozimateU at o = 0.6
700 PP

ApproximateU ato = 0.7

600 Approzimate U at o = 0.8
500 - Approzimate U at o = 0.9

ApprozimateU at o = 1.0

400 wactUato = 1.0

300

200

y

Fig. 5: The approximate solution of example 1 at fractional value dhe blue dots
represents the exact solutionat= 1.
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10° ‘ |:|Absolute Errorat M =10, z = 0.3, t = 0.3|
X

1.5+ 11’1’ i)
WS
T HHIIH)
)
TTHHTFHIH)
77

X

Fig. 6 : The absolute error of example 1 &f = 10.Here we fixx = 0.3,¢ = 0.3, 0 = 1,
a=1,b=1c=1,7=1.

x10°

25

‘ -Absolute errorinUat M =10,t= 0.7, z = 0.7|

2

15

Fig. 7 : The absolute error of example 1 &f = 10.Here we fix: = 0.7, ¢ = 0.7, 0 = 1,
a=1b=1c=17=1.

ExAamMPLE 2. Consider the time fractional heat conduction problem

0%u(t,z,y,2) O%u(t,x,y,2) Ou(t,x,y,z) Ou(t,x,y,2)
XN g T AT g T T g T AT
u(0,2,y,2) = f(x,y, 2).

+ I(t7 x7 y7 Z)7

(5. 52)

Alsochoose;; = A\, = Ay =X, =1,0<0<1,t€[0,1],z2 € [0,1],y € [0,1] and
z € [0, 1].1f we let the initial condition

u(0,z,y,2) = 2% y* 22 — 22 +y+2
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and take the source term

I(t,z,y,2) =2xy (t:cy+xyz)—2(tx+xz)2—2(ty+yz)2—2x2y2—6t3xz3—

6t32% 2 + 3122323 —12¢4 22yt 2t — 120 2t y? 2t — 1240 2ty 22 A 2ttt
then the exact solution of the problem for= 1 is
u(t,z,y,z) =y—2x+ 2+ (txy+:ryz)2 + 3 2% 23 -ttty 2t

We approximate the solution of this problem with the new technique and as expected we
get a high accuracy of the approximate solution. We observe that at scaleMevel 6
(' which is much more small scale for such problem) the approximate solution is equal to
the exact solution with maximum difference less th@n'® which is highly negligible. We
compare the approximate solution with the exact solution at three different valudloé
comparison at = 0.3 is displayed in Fig.(8), while att = 0.5 and¢ = 0.9 is shown in
Fig. (9) and Fig(10).0One can easily note that the exact solution matches very well with the
approximate solution.Note that the dots in these figures represents the exact solution and
the surface in these figures represents the approximate solution.We also approximate the
solution for fractional value ofr, and as expected, the approximate solution approaches
the exact solution as the order of derivative— 1.Fig (11) and Fig (12) shows this
phenomena at some fixed points of the yz-plane. The absolute amount of error is displayed
in Fig (13) and Fig(14) at some point of the yz-plane.One can see that the absolute amount
of error is less thari0~'6. This example is analyzed with choosing the parameters of the
Jacobi polynomials ag§ = ¢ = 0.

ApprozimateU at z = 0.8

277 \ \ \ \ \ \ \ \ \ \
0 0.2 0.4 0.6 0.8 0] 0.2 0.4 0.6 0.8 1

Fig. 8 The comparison of the exact and approximate solution example 2 &3,
E=(¢C=0,M=6,a=1,b=1,c=1,7 = 1 and the order of derivative = 1.
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2 P- zactUatz = 0.2 S
Wl Approxvimate U at z = 0.2
5—a  aPractUatz =04

W ApprozimateUat z = 0.4
L TrzactUatz = 0.6

ApprozimateU at z = 0.6~
5L TRractUatz = 0.8
Approzimate U at z = 0.8\

I I I I I I I
1
0 01 02 03 04 05 06 07 08 09 o2 02 04 06 08

Fig. 9 The comparison of the exact and approximate solution example 2 &5,
E=(=0,M=6,a=1,b=1,c=1,7 =1 and the order of derivative = 1.

L IFzactUatz =02
Approzimate U at z = 0.2
vactUatz = 0.4
ApprozimateU at z = 0.4
zactUatz = 0.6
ApprozimateU at z = 0.6
zactUatz = 0.8

0 01 02 03 04 05 06 07 08 09 @ 0.2 0.4 06 08 1
x

Fig. 10 The comparison of the exact and approximate solution example 2 &9,
§E=(¢(=0,M =6,a=1,b=1,c=1,7 =1 and the order of derivative = 1.

ApprozimateU ato = 0.8
ApprozimateU ato = 0.85
ApprozimateU ato = 0.9
- ApprozimateU at o = 0.95
ApprozimateU ato = 1.0
zactUato = 1.0

y

Fig. 11 The approximate solution of example 2 at fractional value (gurface). Here we
fixx =0.3,t=03, M =6a=1,b=1,¢c=1,7=1.
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- ApprozimateU ato = 0.8
-Approzimate Uato = 0.85
- ApprozimateU ato = 0.9
- Approzimate U at o = 0.95
ApprozimateU ato = 1.0

Fig. 12 The approximate solution of example 2 at fractional value (gurface). Here we
fixx =0.7,t =07, M =6a=1,b=1,¢c=1,7=1.

‘ - Absolute Error at M = 6

Fig. 13 The absolute error of example 2 &f = 6, we fixz = 0.4, ¢ = 0.4.

‘ B Absolute Error at M = 6 ‘

Fig. 14 The absolute error of example 2 &f = 6, we fixz = 0.8, ¢ = 0.8
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ExamPLE 3. Consider the following integer order heat conduction problem

oU(t,x,y,z) Ut x,y,2) N Q*U(t,x,y, ) N Q*U(t,x,y,2)
ot N 0x2 dy? 022 (5. 53)
u(0,2,y,2) = f(z,y,2).

wheret € [0,1], z € [0,1] ,y € [0,1] and z € [0,1].If we let the initial condition
U(0,z,y,2) = (1 —y)e*+*) then the exact solution of the problem is

Ult,z,y,2) = (1 - y)e =20,

This problem is also solved {2] using homotopy analysis method and variational it-
eration method. We approximate the solution of this problem with our new technique.And
as expected we found that the approximate solution matches very well with the exact so-
lution. The comparison of exact and approximate solution at some fixed valiie o=
0.3,0.6,0.9 and at each value dfthe solution is displayed at fix valueaf'ig(15),Fig(16)
andFig(17) shows the comparison of exact and approximate solutior=a.3, 0.6 and 0.9
respectively. Note that here we fix the scale lévek 9. We observe that the method yields
a very high accurate estimate of the solution. And the error of approximation (absolute er-
ror) decreases significantly by the increase of the scale 1&¥eln order to compare the
accuracy of the method we compare our results with the analytic solution obtaifigd in
We calculate the absolute difference of the exact and approximate solution using the cur-
rent method. We also calculate the difference of exact solution and n-th order analytic
solution reported if2]. We observe that the error obtained with this new method in much
more less than that reported [8]. Fig(18) and F'ig(19) shows comparison of absolute
error at two different points of the space.

EzxactUatz =0.2

:::Appromimate Uatz =102

FExactUatz =04

:::Appm:imate Uatz =04

B EzactUatz=0.6

:::Approximte Uatz=0.6

B EractUatz =08
g:gApproximatc Uatz=0.8
~

e -

oo P N W A O O N © ©

Fig. 15 The approximate solution of example 3 at different valuewhereos = 1,
M =9,t=0.3.
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Fig. 16 The approximate solution of example 3 at
M =9t =0.6.

EractUatz=0.2

different valuewhereo = 1,

S=—

Fig. 17 The approximate solution of example 3 at
M =9t =0.9.

Errorreportedin [21]atn =7

Error using thismethodat M = 7.

- EzactUatz=0.2

| EzactU at z = 0.6

2 5 :::Azlpruwimatn Uatz=0.8

:::Appmximate Uatz=0.2

B ExactUatz =04

:::Approzimate Uatz =04
::#pprozimate Uatz =06

EzactUatz =038

different valuewhereo = 1,

Fig.

18 Comparison of absolute error of example(at y, z) = (0.5,0.5,0.5) at M = 7.
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Errorreportedin [21]at n = 10

0 / Errorusing newmethodat M = 10

107+

0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Fig. 19 Comparison of absolute error &t y, z) = (0.9,0.9,0.9) at M = 10.

6. CONCLUSION

From the above analysis and calculation we concluded that the method provide a very
good approximation to the problems under consideration.This method can efficiently solve
partial differential equation in four variables.The main advantage of the method is its high
accuracy.The method can be easily extended to solve more complicated problems.We be-
lieve that one may obtain a more accurate solution by using some other kinds of orthogonal
polynomials like Bernstein or Laguerre.Our future work is related to the extension of the
method to solve such problems under different kinds of boundary conditions.We expect
that the reader may find the work interesting and useful.

Acknowledgments: The authors are extremely thankful to the reviewers
for their useful comments that improves the quality of the manuscript.
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