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Abstract. In the present study, a collocation approach based on various
polynomial basis functions for solving the nonlinear Riccati differential
equation of fractional-order is presented. Indeed, to obtain approximate
solutions the fractional-order Bessel, Chelyshkov, and Legendre functions
are used. Using the collocation points, representing the solution and its
fractional derivative (in the Caputo sense) in matrix forms, and the matrix
operations, the proposed technique converts a solution of the initial-value
problem for the Riccati equation into a system of algebraic equations. The
efficiency and superiority of the presented method are examined through
some test problems and a comparison has been made with well-established
computational techniques as well as the analytical exact solutions. It is
shown that the proposed method with fractional functions can provide the
solution to the equation with better accuracy than its non-fractional coun-
terparts.
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1. INTRODUCTION

Differential equations are the milestone of many mathematical models for real-world 
phenomena arising in numerous field of science and engineering such as fluid mechanics, 
biology, physics, viscoelasticity, etc. To model many of these phenomena, it has turned 
out the use of fractional-order derivatives are more adequate rather than integer-order ones. 
That is due to the fact that fractional derivatives and integrals enable the description of the 
memory properties of various materials and processes [25]. Therefore, one needs to extend 
the concept of ordinary differentiation as well as integration to an arbitrary non-integer
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order. The resulting fractional-order equations can be rarely solved exactly or analyti-
cally. Consequently, approximate and numerical techniques are playing an important role
in identifying the solutions behaviour of such fractional equations. Recently, considerable
attention has been given to the establishment of techniques for the solution of the fractional
differential equations using orthogonal functions. The main characteristic of this technique
is that it reduces the solution of differential equations to the solution of a system of algebraic
equations. Historically this approach originated from the use of Fourier [24], Walsh [11]
and block-pulse functions [28] and was later extended to other classical orthogonal polyno-
mials such as Chebyshev, Legendre, Hermite, and Laguerre polynomials [33]. In most of
the presented works, the use of numerical techniques in conjunction with operational ma-
trices for differentiation and integration operators of some orthogonal polynomials, for the
solution of fractional differential equations on finite and infinite intervals, produced highly
accurate solutions for such equations, see [6] for a recent review.

The fractional Riccati model can be obtained by using the fractional derivative operator
on the classical Riccati equation. The mathematical theory of the classical Riccati differ-
ential equation along with some applications are considered in detail in the book [29]. This
equation as an important model has appeared in a number of areas of science and engineer-
ing. Among others, we emphasize in control system theory [3], optimal filtering [20], and
financial markets [7]. See also [14] for a recent survey on historical perspectives of the
Riccati equation.

In the current work, we consider the fractional-order Riccati model of the form
#

DpqqXptq “ aptqX2ptq ` bptqXptq ` cptq t ą 0,

Xp0q “ X0,
(1. 1)

where Dpqq is the standard Caputo fractional derivative operator and 0 ă q ď 1. There
has been significant interest in developing analytical as well as numerical schemes for
the solution of the fractional Riccati differential equation. The most significant analytical
schemes include Adomian’s decomposition method [21], modified homotopy perturbation
method [22, 17, 13], and He’s variational iteration method [1, 19]. On the other hand, com-
putational techniques such as polynomial approximations [35, 26], stochastic technique
based on particle swarm optimization and simulated annealing [27], a combination of finite
difference and Padé-variational iteration scheme [32], series solution [8], Legendre-wavelet
operational matrix [4], predictor-corrector approaches [12], Haar wavelet method [18],
fractional Chebyshev finite difference [16], and an iterative reproducing kernel Hilbert
space method [30], have been developed in the past to solve the nonlinear equation (1. 1 ).

In this note, we take a further step towards proposing approximation methods as exten-
sion of the previous works [36],[15], and [34] for solving (1. 1 ). We use the fractional-
order polynomials including the Bessel, Chelyshkov and shifted Legendre functions to ap-
proximate the solution of (1. 1 ) accurately. The main idea of the proposed technique based
on using these (orthogonal) functions along with collocation points is that it converts the
differential or integral operator involved in (1. 1 ) to an algebraic form, thus greatly reduc-
ing the computational effort.

The rest of this paper is divided into four sections: In Section 2, first definitions and
mathematical preliminaries of fractional calculus are presented. Then in subsequent sub-
sections a brief review of the properties of the Bessel, Chelyshkov, and (shifted) Legendre
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polynomials is outlined. Sections 3 is devoted to the presentation of the proposed colloca-
tion scheme applied to nonlinear Riccati initial value problem. The error analysis technique
based on the residual function is developed for the present method. In computational Sec-
tion 4, we apply the proposed method to the some test problems and report our numerical
findings. We end the paper with few concluding remarks in Section 5.

2. BASIC DEFINITIONS

In this section, first some properties of the fractional calculus theory are presented. Af-
terwards, the definitions of fractional Bessel, Chelyshkov as well as (shifted) Legendre
polynomials are recalled and some properties of them required for our subsequent sections
are reviewed.

2.1. Fractional calculus.

Definition 2.2. Suppose that fptq is m-times continuously differentiable. The fractional
derivative Dpqq of fptq of order q ą 0 in the Caputo’s sense is defined as

Dpqqfptq “

#

Im´qf pmqptq if m ´ 1 ă q ă m,

f pmqptq, if q “ m, m P N,
(2. 2)

where

Iqfptq “
1

Γpqq

ż t

0

fpsq

pt ´ sq1´q
ds, t ą 0.

The properties of the operator Dpqq can be found in [25]. We make use of the followings

DpqqpCq “ 0 pC is a constantq, (2. 3)

Dpqq tγ “

$

&

%

Γpγ ` 1q

Γpγ ` 1 ´ qq
tγ´q, for γ P N0 and γ ě rqs, or γ R N0 and γ ą tqu,

0, for γ P N0 and γ ă rqs.
(2. 4)

We have used the ceiling function rqs to denote the smallest integer greater than or equal to
q, and the floor function tqu to denote the largest integer less than or equal to q.

2.3. Bessel polynomials. Let N be a positive integer. For n “ 0, 1, . . . , N , the truncated
polynomial series Jn,N ptq defined by [5]

Jn,N ptq “

t N´n
2 u

ÿ

k“0

p´1qk

k!pn ` kq!

ˆ

t

2

˙2k`n

, 0 ď t ď 1. (2. 5)

The fractional-order Bessel functions can be defined by introducing the change of variable
t Ñ tα based on the Bessel polynomials (2. 5 ). Let these polynomials denoted by Jα

n,N ptq.
These generalization are obtained as (cf. [36])

Jα
n,N ptq “

t N´n
2 u

ÿ

k“0

p´1qk

k!pn ` kq!

ˆ

tα

ω

˙2k`n

, 0 ď t ď T, (2. 6)
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where the real parameter 0 ă α ă 1 and ω “ 2T . Our aim is to find an approximate
solution of model (1. 1 ) expressed in the truncated Bessel series form (2. 6 )

XN,αptq “

N
ÿ

n“0

an J
α
n,N ptq, 0 ď t ď T, (2. 7)

where T is a given final time and the unknown coefficients an, n “ 0, 1, . . . , N are sought.
To continue, we write Jα

n,N ptq in the matrix form as follows

JJJαptq “ TTTαptqDDDt ô JJJ t
αptq “ DDDTTT t

αptq, (2. 8)

here, a superscript t denotes the matrix transpose operation and

JJJαptq “
“

Jα
0,N ptq Jα

1,N ptq . . . Jα
N,N ptq

‰

, TTTαptq “
“

1 tα t2α . . . tNα
‰

.

Also if N is odd, the pN ` 1q ˆ pN ` 1q matrix DDD takes the form

DDD “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1

0! 0!ω0
0

´1

1! 1!ω2
. . .

p´1q
N´1

2

pN´1
2 q! pN´1

2 q!ωN´1
0

0
1

0! 1!ω1
0 . . . 0

p´1q
N´1

2

pN´1
2 q! pN`1

2 q!ωN

0 0
1

0! 2!ω2
. . .

p´1q
N´3

2

pN´3
2 q! pN`1

2 q!ωN´1
0

...
...

. . . . . . . . .
...

0 0 0 . . .
1

0! pN ´ 1q!ωN´1
0

0 0 0 . . . 0
1

0!N !ωN

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

while in the case of even N we have

DDD “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1

0! 0!ω0
0

´1

1! 1!ω2
. . . 0

p´1q
N
2

pN
2 q! pN

2 q!ωN

0
1

0! 1!ω1
0 . . .

p´1q
N´2

2

pN´2
2 q! pN

2 q!ωN´1
0

0 0
1

0! 2!ω2
. . . 0

p´1q
N´2

2

pN´2
2 q! pN`2

2 q!ωN

...
...

. . . . . . . . .
...

0 0 0 . . .
1

0! pN ´ 1q!ωN´1
0

0 0 0 . . . 0
1

0!N !ωN

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

By means of (2. 8 ) one can write the relation (2. 7 ) in the matrix form

XN,αptq “ TTTαptqDDDtAAA, (2. 9)

where the vector of unknown is AAA “ ra0 a1 . . . aN st.
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2.4. Chelyshkov polynomials. The Chelyshkov polynomials were originally introduced
by Chelyshkov [9, 10]. These polynomials are orthogonal over the interval r0, 1s with
respect to the weight function wpxq “ 1, and are explicitly defined by

Cn,N ptq “

N´n
ÿ

k“0

p´1qk
ˆ

N ´ n

k

˙ˆ

N ` n ` k ` 1

N ´ n

˙

tn`k, n “ 0, 1, . . . , N. (2. 10)

These polynomials satisfy the following orthogonality relation
ż 1

0

Cn,N ptqCm,N ptqdt “
δnm

n ` m ` 1
,

where δnm is the Kronecker delta. Moreover, they can be obtained through the Jacobi
polynomials Pα,β

m ptq, where α, β ą ´1, and m ě 0 as

Cn,N ptq “ p´1qN´n tn P 0,2n`1
N´n ptq.

Now, we construct the fractional-order version of (2. 10 ) by replacing t Ñ tα as fol-
lows [34]

Cα
n,N ptq “

N
ÿ

k“n

p´1qk´n

ˆ

N ´ n

k ´ n

˙ˆ

N ` k ` 1

N ´ n

˙

´ tα

T

¯k

, n “ 0, 1, . . . , N. (2. 11)

It also is not a difficult task to show that the set of fractional polynomial functions tCα
0,N , Cα

1,N , . . .u

is orthogonal on r0, T s with respect to the weight function wptq ” tα´1. This implies that
ż T

0

Cα
n,N ptqCα

m,N ptqwptqdt “
Tδnm

αp2n ` 1q
, n,m ě 0.

The Chelyshkov basis polynomials given by equation (2. 11 ) can be written in the matrix
form[23, 34]

CCCαptq “
“

Cα
0,N ptq Cα

1,N ptq . . . Cα
N,N ptq

‰

“ TTTαptqD, (2. 12)

where D is an pN ` 1q ˆ pN ` 1q matrix. Using τ “ 1{T , if N is odd, the matrix D
becomes

D “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

ˆ

N

0

˙ˆ

N ` 1

N

˙

0 . . . 0 0

´τ

ˆ

N

1

˙ˆ

N ` 2

N

˙

τ

ˆ

N ´ 1

0

˙ˆ

N ` 2

N ´ 1

˙

. . . 0 0

...
...

. . .
...

...

τN´1

ˆ

N

N ´ 1

˙ˆ

2N

N

˙

´τN´1

ˆ

N ´ 1

N ´ 2

˙ˆ

2N

N ´ 1

˙

. . . τN´1

ˆ

1

0

˙ˆ

2N

1

˙

0

´τN
ˆ

N

N

˙ˆ

2N ` 1

N

˙

τN
ˆ

N ´ 1

N ´ 1

˙ˆ

2N ` 1

N ´ 1

˙

. . . τN
ˆ

1

1

˙ˆ

2N ` 1

1

˙

τN

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,
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and if N is even we have

D “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

ˆ

N

0

˙ˆ

N ` 1

N

˙

0 . . . 0 0

´τ

ˆ

N

1

˙ˆ

N ` 2

N

˙

τ

ˆ

N ´ 1

0

˙ˆ

N ` 2

N ´ 1

˙

. . . 0 0

...
...

. . .
...

...

´τN´1

ˆ

N

N ´ 1

˙ˆ

2N

N

˙

τN´1

ˆ

N ´ 1

N ´ 2

˙ˆ

2N

N ´ 1

˙

. . . τN´1

ˆ

1

0

˙ˆ

2N

1

˙

0

τN
ˆ

N

N

˙ˆ

2N ` 1

N

˙

´τN
ˆ

N ´ 1

N ´ 1

˙ˆ

2N ` 1

N ´ 1

˙

. . . ´τN
ˆ

1

1

˙ˆ

2N ` 1

1

˙

τN

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

Our goal for model (1. 1 ) is to approximate Xptq as the truncated Chelyshkov series form
as XN,αptq “

řN
n“0 an C

α
n,N ptq. Using (2. 12 ) one may rewrite XN,αptq as follows

XN,αptq “ TTTαptqDAAA. (2. 13)

2.5. Legendre polynomials. The orthogonal Legendre polynomials are originally defined
on r´1, 1s. Using the change of variable x “ p 2t

T ´ 1q one can obtain the shifted Legendre
polynomials defined in r0, T s and satisfies in the following recurrence relation [2]

$

’

&

’

%

Pn`1ptq “
2n ` 1

n ` 1
p
2t

T
´ 1qPnptq ´

n

n ` 1
Pn´1ptq, n “ 1, 2, . . . ,

P0ptq “ 1, P1ptq “
2t

T
´ 1.

(2. 14)

The analytical form of Pnptq is explicitly defined for n “ 0, 1, . . .

Pnptq “

n
ÿ

k“0

pn,k t
k, pn,k “ p´1qn`k pn ` kq!

pn ´ kq!T k pk!q2
, k “ 0, 1, . . . , n. (2. 15)

Based on the shifted Legendre polynomials (2. 15 ) one generates an orthogonal set of
fractional-order Legendre functions by setting t Ñ tα for 0 ă α ď 1, see [15]. They take
the form

Pα
n ptq “

n
ÿ

k“0

pn,k t
kα, n “ 0, 1, . . . . (2. 16)

It is proved in [15] that the set of fractional polynomial functions tPα
0 , P

α
1 , . . .u is orthog-

onal on r0, T s with respect to the weight function wptq ” tα´1; i.e.
ż T

0

Pα
n ptqPα

mptqwptqdt “
T

αp2n ` 1q
δnm, n,m ě 0.

The main important properties of the fractional-order Legendre functions can be found
in [15] and [31]

Now, let us approximate the solution Xptq of (1. 1 ) in terms of fractional-order Le-
gendre functions. Thus one gets XN,αptq “

řN
n“0 an P

α
n ptq or equivalently

XN,αptq “ PPPαptqAAA, PPPαptq “ rPα
0 ptq Pα

1 ptq . . . Pα
N ptqs. (2. 17)
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In a similar way as the Bessel and Chelyshkov functions, we write Pα
n ptq in the matrix

form as follows
PPPαptq “ TTTαptqDt ô PPP t

αptq “ DTTT t
αptq, (2. 18)

where the monomial basis vector TTTαptq is previously defined in (2. 8 ). Moreover, the
matrix D in this case is a lower triangular matrix whose entries are obtained via (2. 15 )
and has the form

D “

»

—

—

—

—

—

—

—

–

p0,0 0 0 . . . . . . . . . 0
p1,0 p1,1 0 0 . . . . . . 0
p2,0 p2,1 p2,2 0 0 . . . 0

...
...

. . . . . . . . .
...

...
pN´1,0 pN´1,1 pN´1,2 . . . pN´1,N´2 pN´1,N´1 0
pN,0 pN,1 pN,2 . . . pN,N´2 pN,N´1 pN,N

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Therefore, an equivalent form of (2. 17 ) can be written as

XN,αptq “ TTTαptqDtAAA. (2. 19)

Ultimately, to obtain a solution in the form (2. 9 ), (2. 13 ), or (2. 19 ) of the prob-
lem (1. 1 ) on the interval 0 ă t ď T , we will use the collocation points defined by

tj “
T

N
j, j “ 0, 1, . . . , N. (2. 20)

3. DESCRIPTION OF THE METHOD

Now, suppose that we approximate the solution Xptq of the nonlinear Riccati equa-
tion (1. 1 ) in terms of pN ` 1q-terms Bessel, Chelyshkov or Legendre polynomials series
denoted by XN,αptq on the interval r0, T s. As previously stated, in the vector form one
may write

Xptq – XN,αptq “ TTTαptqQQQAAA, (3. 21)

where the matrix QQQ is either the matrix DDDt,D or Dt depending on which polynomial
basis function is selected in the approximation. These matrices are previously defined
in (2. 8 ), (2. 12 ) and (2. 18 ) respectively. Inserting the collocation points (2. 20 ) into (3. 21 ),
we arrive at a system of matrix equations

XN,αptjq “ TTTαptjqQQQAAA, j “ 0, 1, . . . , N.

These equation can be written in a single and compact representation as follows

XXX “ TTT QQQAAA, (3. 22)

where

XXX “

»

—

—

—

–

XN,αpt0q

XN,αpt1q
...

XN,αptN q

fi

ffi

ffi

ffi

fl

, TTT “

»

—

—

—

–

TTTαpt0q

TTTαpt1q
...

TTTαptN q

fi

ffi

ffi

ffi

fl

.

By taking the fractional derivative of order q from the both sides of (3. 21 ), we get

DpqqXN,αptq “ Dpqq TTTαptqQQQAAA. (3. 23)
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One can easily compute Dpqq TTTαptq by means of the property (2. 3 ) and (2. 4 ) as follows

TTT pqq
α ptq “ Dpqq TTTαptq “ r0 Dpqq tα . . . Dpqq tαN s.

In order to obtain a system of matrix equations for the fractional derivative, we put the
collocation points (2. 20 ) into (3. 23 ) to obtain

DpqqXN,αptjq “ TTT pqq
α ptjqQQQAAA, j “ 0, 1 . . . , N,

which can be written in the matrix form

XXXpqq “ TTT pqq QQQAAA, (3. 24)

where

XXXpqq “

»

—

—

—

–

DpqqXN,αpt0q

DpqqXN,αpt1q
...

DpqqXN,αptN q

fi

ffi

ffi

ffi

fl

, TTT pqq “

»

—

—

—

—

–

TTT
pqq
α pt0q

TTT
pqq
α pt1q

...
TTT

pqq
α ptN q

fi

ffi

ffi

ffi

ffi

fl

.

To proceed, we need to approximate the nonlinear term X2ptq. By substituting the
collocation points into X2

N,αptq we arrive at the following matrix representation

XXX2 “

»

—

—

—

–

X2
N,αpt0q

X2
N,αpt1q

...
X2

N,αptN q

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

XN,αpt0q 0 . . . 0
0 XN,αpt1q . . . 0
...

...
. . .

...
0 0 . . . XN,αptN q

fi

ffi

ffi

ffi

fl

»

—

—

—

–

XN,αpt0q

XN,αpt1q
...

XN,αptN q

fi

ffi

ffi

ffi

fl

“ rXXXXXX.

(3. 25)
Moreover, the matrix rXXX can be written as a product of three block diagonal matrices as

rXXX “ rTTT rQQQ rAAA, (3. 26)

where

rTTT “

»

—

—

—

–

TTTαpt0q 0 . . . 0
0 TTTαpt1q . . . 0
...

...
. . .

...
0 0 . . . TαptN q

fi

ffi

ffi

ffi

fl

, rQQQ “

»

—

—

—

–

QQQ 0 . . . 0
0 QQQ . . . 0
...

...
. . .

...
0 0 . . . QQQ

fi

ffi

ffi

ffi

fl

, rAAA “

»

—

—

—

–

AAA 0 . . . 0
0 AAA . . . 0
...

...
. . .

...
0 0 . . . AAA

fi

ffi

ffi

ffi

fl

.

Now, we are able to compute the Bessel, Chelyshkov, and Legendre solutions of (1. 1 ).
The collocation procedure is based on calculating these polynomial coefficients by means
of collocation points defined in (2. 20 ). To proceed, inserting the collocation points into
the fractional Riccati differential equation to get the system

Dpqq Xptjq “ aptjqX2ptjq ` bptjqXptjq ` cptjq, j “ 0, 1, . . . , N.

In the matrix form we may write the above equations as

XXXpqq ´RRRXXX2 ´BBBXXX “ CCC, (3. 27)
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where the coefficient matrices RRR,BBB of size pN ` 1q ˆ pN ` 1q and the vector CCC of size
pN ` 1q ˆ 1 have the following forms

RRR “

»

—

—

—

–

apt0q 0 . . . 0
0 apt1q . . . 0
...

...
. . .

...
0 0 . . . aptN q

fi

ffi

ffi

ffi

fl

, BBB “

»

—

—

—

–

bpt0q 0 . . . 0
0 bpt1q . . . 0
...

...
. . .

...
0 0 . . . bptN q

fi

ffi

ffi

ffi

fl

, CCC “

»

—

—

—

–

cpt0q

cpt1q
...

cptN q

fi

ffi

ffi

ffi

fl

.

By putting the relations (3. 22 ), (3. 24 ), and (3. 25 ) into (3. 27 ), the fundamental matrix
equation is obtained

WWW AAA “ CCC, WWW :“ TTT pqq QQQ ´RRR rTTT rQQQ rAAATTT QQQ ´BBBTTT QQQ. (3. 28)

Obviously, (3. 28 ) is a nonlinear matrix equation with an, n “ 0, 1, . . . , N , being the
unknowns Bessel, Chelyshkov, or Legendre coefficients. To take into account the initial
condition Xp0q “ X0, we tend t Ñ 0 in (3. 21 ) to get the following matrix representation

sX0AAA “ sX0, sX0 :“ TTTαp0qQQQ “ rx00 x01 . . . x0N st.

Consequently, by replacing the first row of the augmented matrix rWWW ;CCCs by the row matrix
r sX0;X0s, we arrive at the nonlinear algebraic system

xWWW AAA “ pCCC.

Thus, the unknown Bessel, Chelyshkov, or Legendre coefficients in (3. 21 ) will be calcu-
lated via solving this nonlinear system of equations. This task can be performed using for
instance the Newton’s iterative method.

3.1. Accuracy of solutions. In general, the exact explicit solution of the Riccati differ-
ential equation is only known for q “ 1. Therefore, we need to measure the accu-
racy of the proposed collocation scheme when 0 ă q ă 1. Since the truncated Bessel,
Chelyshkov, and Legendre series (2. 6 ), (2. 10 ), and (2. 15 ) are approximate solutions
of (1. 1 ), we expect that the residual obtained by inserting the computed approximated so-
lutions XN,αptq into the differential equation becomes approximately small. This implies
that for t “ ts P r0, T s, s “ 0, 1, . . .

EN,αptsq “ Dpqq XN,αptsq ´ aptsqX2
N,αptsq ´ bptsqXN,αptsq ´ cptsq – 0, (3. 29)

and EN,αptsq ď 10´ks (ks is positive integer). If max 10´ks ď 10´k (k positive integer)
is prescribed, then the truncation limit N is increased until the difference EN,αptsq at each
of the points becomes smaller than the prescribed 10´k, see [35, 36]. Here, we note that
the qth-order fractional derivative of the approximate solution (3. 29 ) is computed by using
the property (2. 4 ). As the error function is clearly zero at the collocation points (2. 20 ),
we expect that EN,αptq tend to zero as N increased. This says that the smallness of the
residual error function means that the approximate solutions are close to the exact solution.

4. TEST PROBLEMS

To illustrate the effectiveness of the proposed polynomials collocation methods, two test
examples are solved in this section.
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Test problem 4.1. We consider the nonlinear Riccati differential equation [4, 21, 22, 26]

Dpqq Xptq “ 1 ´ X2ptq, 0 ă q ď 1, (4. 30)

with the initial condition given by X0 “ 0. The exact analytical solution when q “ 1 is

Xptq “
e2t ´ 1

e2t ` 1
.

To begin the computations, we take q “ 1 in (4. 30 ) and set α “ 1 as the order
of basis functions. The approximate solutions XN ptq of this model problem using Bessel,
Chelyshkov, and Legendre basis functions for N “ 5 in the interval 0 ď t ď 1 are obtained
as follows, respectively:

XB
5 ptq “ ´0.0425208333486894 t5 ` 0.263393561049807 t4 ´ 0.511947952786299 t3

` 0.0628989648274941 t2 ` 0.989484942139681 t,

XC
5 ptq “ ´0.0425208131343566 t5 ` 0.263393514919765 t4 ´ 0.511947912623583 t3

` 0.0628989482627761 t2 ` 0.989484945229446 t ´ 3.2012155000427 ˆ 10´20,

XL
5 ptq “ ´0.0425208332627086 t5 ` 0.263393560841792 t4 ´ 0.51194795259138 t3

` 0.0628989647337824 t2 ` 0.989484942163854 t ´ 2.25514051876985 ˆ 10´17.

In Table 1, we report the numerical results correspond to XN p1q obtained by the Bessel,
Chelyshkov, and Legendre-collocation procedures using different choice of the number of
basis functions N “ 2, 4, . . . , 16 and q “ 1. All calculations are reported with 15 decimal
places of accuracy. Note that the exact value up to 32 digits is

Xp1q “ 0.76159415595576485102924380043987.

It can be seen from Table 1 that by increasing the number of basis functions N , more

TABLE 1. Comparison of numerical approximations for test prob-
lem (4. 30 ) using Bessel, Chelyshkov, and Legendre-collocation meth-
ods for q “ 1 and different number of N .

N XB
N p1q XC

N p1q XL
N p1q

2 0.771769772367609 0.771769772265604 0.771769772170532
4 0.761772997737468 0.761772998309460 0.761772997642195
6 0.761548003560260 0.761548003548052 0.761548003548681
8 0.761597630707855 0.761597568464948 0.761597568465396
10 0.760452998932030 0.761593991848573 0.761593991789546
12 0.760598176921084 0.761594160240097 0.761594160785043
14 0.738266020081461 0.924036516298884 0.761594155975480
16 0.742191938572435 0.412541261646161 0.761594155947834

accurate results are obtained using these three basis functions. The best results in the
Bessel-collocation method is obtained up to N “ 8 while in the Chelyshkov-collocation
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scheme is achieved up to N “ 12. However, a more reliable result is obtained via the
Legendre-collocation method.

In the next experiment, we set q, α “ 1{2. In this case, we first consider the approximate
solutions X8ptq obtained via (3. 28 ) of the model (1. 1 ) for different polynomials in the
interval r0, 1s. These polynomials of fractional order α “ 1{2 are obtained as follows

XB
8, 12

ptq “ 0.223384938281968 t ` 2.07746816156096 t2 ´ 0.109555476113683 t3

´ 0.0574991063918645 t4 ` 1.10511540696442 t1{2 ´ 1.89648537368994 t3{2

´ 0.867368413136722 t5{2 ` 0.223654174001963 t7{2,

XC
8, 12

ptq “ 0.224032864807523 t ` 2.08206405196646 t2 ´ 0.106092430634112 t3

´ 0.0573500972260452 t4 ` 1.10503683117717 t1{2 ´ 1.89881407585456 t3{2

´ 0.872646352740204 t5{2 ` 0.222483411690925 t7{2 ` 2.13713937852323 ˆ 10´21,

XL
8, 12

ptq “ 0.224039710764838 t ` 2.08212578315359 t2 ´ 0.106024811403993 t3

´ 0.0573443996836568 t4 ` 1.10503606899795 t1{2 ´ 1.89884146690467 t3{2

´ 0.872729959985898 t5{2 ` 0.222453277371297 t7{2 ` 8.20613989629439 ˆ 10´17.

Note that using the integer-order versions of theses polynomials, i.e., q “ 1{2 and α “ 1
yield

XB
8 ptq “ ´22.6148147092024 t8 ` 108.448175575276 t7 ´ 221.79963969032 t6

` 252.94388627954 t5 ´ 176.7204056547 t4 ` 78.552429771116 t3

´ 22.6768503632544 t2 ` 4.56352530569598 t,

XC
8 ptq “ ´22.6148147225516 t8 ` 108.448175652689 t7 ´ 221.799639848434 t6

` 252.943886440175 t5 ´ 176.720405744409 t4 ` 78.5524297988918 t3

´ 22.6768503677063 t2 ` 4.56352530598814 t ´ 4.94320058517937 ˆ 10´23,

XL
8 ptq “ ´22.6148147053515 t8 ` 108.448175585942 t7 ´ 221.799639741515 t6

` 252.943886348675 t5 ´ 176.720405699346 t4 ` 78.5524297861592 t3

´ 22.676850365792 t2 ` 4.5635253058676 t ` 2.68882138776405 ˆ 10´17.

The above approximated solutions X8ptq and X8, 12
ptq are compared in Fig. 1. It can be

seen Fig. 1, left plot, that a more accurate result is achieved by using the fractional basis
functions rather than non-fractional ones. To further justify this fact, we plot the estimated
errors obtained by the relations (3. 29 ). The graphs of E8,αptq for α “ 1, and α “ 1{2 on
the interval r0, 1s correspond to q “ 1{2 are visualized in Fig. 1, right plot. Referring to
Fig. 1, it is clearly seen that using a fixed value of q “ 1{2 almost the same performance is
observed with each value of α “ 1 and α “ 1{2.

Due to the fact that the exact solution for fractional order case is not available for the
test problem (4. 30 ), we made a comparison between the approximate solutions given by
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FIGURE 1. comparison of numerical solutions (left) and the correspond-
ing error functions using Bessel, Chelyshkov, and Legendre functions
(right) with q “ 1{2, α “ 1, 1{2, and N “ 8.

our proposed approaches and reported numerical results of other approaches. First, in Ta-
ble 2 we use N “ 8 and q, α “ 1{2 and report our numerical results obtained by the three
collocation schemes at points t “ j{10 for j “ 1, 2, . . . , 10. A comparison in this table is
made with the fractional Bernoulli polynomials approach from [26]. Furthermore, in the
next Table 3 we compare our results with existing computational procedures available in
the standard literature such as a predictor-corrector approach based on Adams-Bashforth-
Moultton Method (ABFMM) [12] with h “ 0.001, Legendre wavelet operational matrix
method (LWM) [4], stochastic solver based on swarm intelligence optimization (PSO) al-
gorithm [27], fractional variational iteration method (FVIM) [19], and a modification of
He’s homotopy perturbation method (HPM) [22]. From the presented results in Table 2
and 3 we can identify that guarantee of convergence of the proposed collocation schemes
is very high compared to other schemes.

In Fig. 1 we have seen that using the fractional order polynomials lead to a more accurate
result compared to the corresponding integer ones. Next, to see the effect of using various
values of α ě q, we fix N “ 7 and q “ 1{2. Hence, we vary α starting from α “ q to
α “ 1 and see the behaviour of error functions E7,αptq defined in (3. 29 ) on the interval
r0, 1s. The results are shown in Fig. 2 while using the Legendre basis functions. As one
can see from Fig. 2 that the smallest error is achieved when α “ q and the largest error is
obtained if one uses α “ 1. Therefore, in the next experiments we only consider this case.
To be more precise, the numerical approximations utilizing the same q and α both equal
to 3{4 with N “ 8 evaluated at various points t “ j{10 for j “ 1, 2, . . . , 10 are given in
Table 4. To validate our results and as in Table 2, the last column is devoted to the results
obtained via Bernoulli polynomials [26]. A more complete comparison is done in Table 5
for these values of q and α.

Finally, we make a comparison between Bessel, Chelyshkov, and Legendre-collocation
methods in terms of error functions defined in (3. 29 ) for a fixed N “ 9 but employ
different values of q equals to α “ 1{3, 2{3. Table 6 demonstrates the numerical values
of these error functions at the points t “ 0, 1{10, 2{10, . . . , 1. The comparison between
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TABLE 2. Comparison of numerical approximations in fractional
Bessel, Chelyshkov, and Legendre-collocation methods for N “ 8 and
q, α “ 1{2 in test problem (4. 30 ).

t Bessel Chelyshkov Legendre Bernoulli

0.1 0.329821778995450 0.329821685183483 0.329820449061496 0.330101

0.2 0.436687309406414 0.436687277316919 0.436686638490342 0.436844

0.3 0.504786726382638 0.504786701429466 0.504786267243779 0.504894

0.4 0.553706012096569 0.553705997020231 0.553705676894624 0.553776

0.5 0.591135046252850 0.591135041914654 0.591134793189228 0.591188

0.6 0.620965973154147 0.620965968681406 0.620965767331645 0.621017

0.7 0.645445930748345 0.645445917428470 0.645445751307430 0.645494

0.8 0.665985381080626 0.665985363965563 0.665985224802811 0.666018

0.9 0.683523576703947 0.683523569692847 0.683523448508664 0.683542

1.0 0.698714311477103 0.698714308834321 0.698714202309494 0.698768

TABLE 3. Comparison of numerical results for test problem (4. 30 ) for
N “ 8 and q, α “ 1{2.

t Bes/Chel/Leg ABFMM LWM PSO FVIM MHP

0.1 0.329820 0.330108 0.273600 0.289667 0.086513 0.273875

0.2 0.436687 0.436839 0.386358 0.386489 0.161584 0.454125

0.3 0.504786 0.504889 0.441104 0.441120 0.238256 0.573932

0.4 0.553706 0.553782 0.482304 0.482348 0.321523 0.644422

0.5 0.591135 0.591194 0.520664 0.516379 0.413682 0.674137

0.6 0.620966 0.621014 0.533287 0.544872 0.515445 0.671987

0.7 0.645446 0.645485 0.558743 0.568545 0.626403 0.648003

0.8 0.665985 0.666019 0.587812 0.587895 0.745278 0.613306

0.9 0.683523 0.683552 0.596234 0.603344 0.870074 0.579641

1.0 0.698714 0.698739 0.610642 0.615268 0.998176 0.558557

E9,αptq using the same q as α shows that the performance of the fractional Legendre-
collocation is a slightly better rather than the Bessel and Chelyshkov-collocation schemes.

Test problem 4.2. As a second test example, we consider the following differential [17]

Dpqq Xptq “ ´Xptq ` X2ptq, 0 ă q ď 1, (4. 31)
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FIGURE 2. Comparison of error functions using Legendre-collocation
method for q “ 1{2, N “ 7 and various values of α.

TABLE 4. Comparison of numerical approximations in fractional
Bessel, Chelyshkov, and Legendre-collocation methods for N “ 8 and
q, α “ 3{4 in test problem (4. 30 ).

t Bessel Chelyshkov Legendre Bernoulli [26]

0.1 0.190133343182368 0.190133342156594 0.190133340742126 0.190102

0.2 0.309998925381054 0.309998924666591 0.309998923662126 0.309975

0.3 0.404633663354412 0.404633662791810 0.404633661990896 0.404615

0.4 0.481647038110234 0.481647037650133 0.481647036997255 0.481633

0.5 0.545101987075590 0.545101986702863 0.545101986166129 0.545090

0.6 0.597793180460225 0.597793180157799 0.597793179713331 0.597781

0.7 0.641829114200803 0.641829113951715 0.641829113586379 0.641821

0.8 0.678856897919783 0.678856897708743 0.678856897423021 0.678851

0.9 0.710181243784475 0.710181243598305 0.710181243534913 0.710173

1.0 0.736842125584433 0.736842125449495 0.736842126390755 0.736843

with the initial condition given by X0 “ 1{2. The exact analytical solution for q “ 1 is

Xptq “
e´t

e´t ` 1
.

If one tends t Ñ 8 then Xptq Ñ 0.
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TABLE 5. Comparison of numerical results for test problem (4. 30 ) for
N “ 8 and q, α “ 3{4.

t Bes/Chel/Leg ABFMM LWM PSO FVIM MHP

0.1 0.190133 0.190101 0.165056 0.165087 0.190102 0.184795

0.2 0.309999 0.309975 0.276332 0.276350 0.310033 0.313795

0.3 0.404634 0.404615 0.356115 0.356196 0.405062 0.414562

0.4 0.481647 0.481632 0.416817 0.416916 0.483479 0.492889

0.5 0.545102 0.545089 0.465480 0.465520 0.550470 0.462117

0.6 0.597793 0.597783 0.505894 0.506004 0.610344 0.597393

0.7 0.641829 0.641820 0.540606 0.540629 0.666961 0.631772

0.8 0.678857 0.678849 0.569998 0.570632 0.723760 0.660412

0.9 0.710181 0.710175 0.596600 0.596636 0.783638 0.687960

1.0 0.736842 0.736837 0.618824 0.618873 0.848783 0.718260

TABLE 6. Comparison of error functions in Bessel, Chelyshkov,
Legendre-collocation methods for test problem (4. 30 ) with N “ 9 and
different q, α “ 1{3, 2{3.

Bessel Chelyshkov Legendre

t q, α “ 1
3 q, α “ 2

3 q, α “ 1
3 q, α “ 2

3 q, α “ 1
3 q, α “ 2

3

0.0 2.49006´02 2.65171´03 1.49519`00 2.76535´03 2.85781´02 2.73314´03

0.1 1.04354´07 3.93847´06 1.06758´04 4.26056´06 6.92585´07 4.16496´06

0.2 1.26538´08 3.39413´07 8.64592´06 4.01378´07 3.42935´08 3.92513´07

0.3 2.06293´08 4.50240´08 2.07218´06 7.55739´08 4.40458´09 6.98377´08

0.4 1.36572´07 7.07511´08 3.33390´07 1.93124´08 1.01481´09 1.89277´08

0.5 2.25715´07 1.26052´07 7.93911´07 7.87744´09 3.62729´10 7.06264´09

0.6 3.71601´07 2.33313´07 7.85713´08 7.41092´09 1.87083´10 3.31482´09

0.7 5.07439´07 4.00319´07 1.42057´07 3.45699´09 1.33715´10 2.27165´09

0.8 5.27986´07 7.08723´07 8.93911´07 4.45683´09 1.28061´10 1.65876´09

0.9 5.65955´07 1.11019´06 6.13107´07 3.98801´08 1.49493´10 1.25466´08

1.0 1.24536´06 1.77359´06 1.34617´07 1.43248´08 2.42745´13 5.04853´08

We first calculate the approximate solutions XN ptq of (4. 31 ) using Bessel, Chelyshkov,
and Legendre functions for N “ 8 in the interval r0, 1s. Using q, α “ 1, these solutions at
some points t P r0, 1s are presented in Table 7. In the last column of this table the results
of a new homotopy perturbation method (NHPM) [17], which depends only on two com-
ponents of the homotopy series are reported for comparison. Note that we only evaluate
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the 21 terms analytical solution obtained by the NHPM at the corresponding points. Obvi-
ously, the results of the proposed collocation schemes are in excellent agreement with the
exact solutions.

TABLE 7. Comparison of error functions in Bessel, Chelyshkov,
Legendre-collocation methods for test problem 4. 30 with N “ 8 and
different q, α “ 1.

t Exact Bessel Chelyshkov Legendre NHPM

0.0 0.500000000000000 0.5000000000 0.5000000000 0.5000000000 0.5000000000

0.1 0.475020812521060 0.4750208175 0.4750208125 0.4750208125 0.4210088076

0.2 0.450166002687522 0.4501660075 0.4501660027 0.4501660027 0.3885663037

0.3 0.425557483188341 0.4255574880 0.4255574832 0.4255574832 0.3640779382

0.4 0.401312339887548 0.4013123445 0.4013123399 0.4013123399 0.3439273776

0.5 0.377540668798145 0.3775406731 0.3775406688 0.3775406688 0.3267242818

0.6 0.354343693774205 0.3543436980 0.3543436938 0.3543436938 0.3117493761

0.7 0.331812227831834 0.3318122323 0.3318122278 0.3318122278 0.2985586586

0.8 0.310025518872388 0.3100255231 0.3100255189 0.3100255189 0.2868388286

0.9 0.289050497374996 0.2890505012 0.2890504974 0.2890504974 0.2763429687

1.0 0.268941421369995 0.2689414255 0.2689414215 0.2689414215 0.2668580880

In the next simulation we consider a large interval r0, 5s and plot the approximate
solutions obtained via various collocation schemes with different values of q equals to
α “ 1{4, 1{2, {3{4, and α “ 1. Figure 3 shows the numerical solutions obtained by us-
ing the Bessel-collocation method using N “ 6. It can be seen from this figure that the
solution correspond to q “ 1 are very close to the exact solution and are not distinguish-
able. We emphasize that using the Chelyshkov and Legendre functions the behaviour of
solutions are very similar and therefore we omit them for clarity. To confirm this fact and
to see the difference between different polynomials functions more closely, we present the
approximate analytical solutions correspond to q, α “ 1{4 using the Bessel, Chelyshkov,
and Legendre polynomials as follow

XB
6, 14

ptq “ 0.12385747459 t3{4 ´ 0.0146104086107 t1{2 ´ 0.274438507289 t1{4

´ 0.00292497911335 t3{2 ´ 0.0816353287686 t ` 0.0243906029891 t5{4 ` 0.5,

XC
6, 14

ptq “ 0.123928236755 t3{4 ´ 0.0146563501743 t1{2 ´ 0.274426515138 t1{4

´ 0.00292822252168 t3{2 ´ 0.0816899188965 t ` 0.0244116558345 t5{4 ` 0.5,
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FIGURE 3. The approximated Bessel series solution using q, α “

1{4, 1{2, 3{4, 1 for N “ 6.

and

XL
6, 14

ptq “ 0.0902540962280 t3{4 ` 0.00692825008568 t1{2 ´ 0.279991322087 t1{4

´ 0.00132142729136 t3{2 ´ 0.0553675802012 t ` 0.0141229781199 t5{4

` 0.500000011116336.

In the next experiments, we report the results obtained by the three collocation schemes
more closely at the points t “ j{2 for j “ 0, 1, . . . , 10. We use N “ 8 for the Bessel,
Chelyshkov and Legendre-collocation procedures. In all schemes we consider q equals to
α “ 1{2. For each method the corresponding residual error function evaluated at these
points via relation (3. 29 ) is presented. Obviously, a slightly more accurate result in terms
of residual is obtained via the Legendre-collocation scheme compared to two other meth-
ods. However, for each point the numerical solutions for all three schemes are the same up
to four to five digits.

5. CONCLUSIONS

In this note, a collocation method based upon well-known (orthogonal) polynomials is
developed for numerical solutions of fractional-order Riccati differential equation arising
in optimal control theory. Using the fractional version of the Bessel, Chelyshkov, and
Legendre functions along with the collocation points we convert the differential equation
into an algebraic system of nonlinear equations. Numerical test problems are given to
demonstrate efficiency and accuracy of the proposed method. Moreover, the performance



140 Mohammad Izadi

TABLE 8. Comparison of numerical and error functions in Bessel,
Chelyshkov, Legendre-collocation methods for test problem (4. 31 ) with
N “ 8 and q, α “ 1{2.

Bessel Chelyshkov Legendre

t q, α “ 1
2 E8, 12

ptq q, α “ 1
2 E8, 12

ptq q, α “ 1
2 E8, 12

ptq

0.0 0.5000000000 1.04559´2 0.5000000000 8.50992´3 0.5000000000 8.46430´03

0.5 0.3189674611 1.66283´5 0.3189046014 1.21728´5 0.3189031198 1.20616´05

1.0 0.2631436497 1.56105´6 0.2631121635 1.01634´6 0.2631114186 1.00995´06

1.5 0.2286775558 4.83678´8 0.2286568533 1.47289´7 0.2286563610 1.45046´07

2.0 0.2044747325 3.06997´7 0.2044598605 2.35118´8 0.2044595049 2.34672´08

2.5 0.1862714944 1.14639´7 0.1862600018 7.77197´9 0.1862597260 5.15070´11

3.0 0.1719553961 1.56326´7 0.1719461331 1.07596´8 0.1719459114 6.08827´09

3.5 0.1603306465 4.70888´7 0.1603232439 2.55769´8 0.1603230700 8.56536´09

4.0 0.1506602009 9.01897´7 0.1506543363 2.38558´8 0.1506542044 1.22332´08

4.5 0.1424611579 3.22795´7 0.1424561468 3.84763´8 0.1424560387 1.55650´08

5.0 0.1354015090 4.91217´7 0.1353967963 2.10580´8 0.1353966875 1.47722´10

of these three basis functions has assessed and a comparison between them and other well-
established computational methods is made when applied to the Riccati model problem.
Furthermore, the reliability of the proposed technique is checked through defining the resid-
ual error functions. Referring to graphs and tables we conclude that using fractional basis
functions and in particular taking α “ q produces a more accurate result rather than the
corresponding integer-order basis functions. This shows the applicability of this approach
for engineering problems that have fractional solutions.
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