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Abstract. In this paper we give some geometric constructions of
variations of Newton’s method, based on ideas of 8dér, for the case

that roots are multiple. A straight line and a polynomial are used to
construct the iteration equation when the multiplicity of the root is known.
In the case that the multiplicity is unknown another straight line and a
rational function are used. Representative figures of an example are given.
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1. INTRODUCTION

Iterative methods are usually necessary for solving nonlinear equations. Several good
methods exist in the literature among which are the Newton, Halley and Chebyshev
methods ([8], [9] and [12]). In previous papers, geometric constructions of various
methods for simple roots have been presented, for example see [1], [2], [7] and [10]. The
classical methods for calculating multiple roots of nonlinear equations include the modified
Newton’s method, Newton's method for multiple roots (both given by Sdér [11]),
Chebyshev's method for multiple roots by Traub [12] and Halley's method for multiple
roots by Hansen and Patrick [3].

The author does not know of literature pertaining to geometric constructions of classical
methods for multiple roots. In this paper, we give geometric constructions of two variants
of Newton’s method for solving nonlinear equations with multiple roots.

In section 2 basic preliminaries of Newton's method whfehas multiple roots with
multiplicity m are shown. Section 3 describes geometric constructions whisrknown
and Section 4 whem is unknown. Conclusions are summarized in Section 5.

2. BASIC PRELIMINARIES

If f is continuously differentiable in some neighborhood of the zeraNewton’s
method can be obtained from the straight tangent to a cyrve f(x) at a given point
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FIGURE 1. First iteration of Newton’s method to solve the nonlinear
equationf(z) = (x — 1)?(x + 1) = 0, givenzg = 2.

P(z,, f(x,)). Inthe equation

y = f(zn)+ f’(xn)(x - Zn) (2.1)
replacer by z,,.; andy by 0 to obtain the iteration equation of Newton’s method:
f(@n) : with a givenzy. (2.2)

T )
n

This iteration equation can also be obtained using Taylor expansion.

In Figure 1 the first iteration of Newton’s method (2.2) is displayed to calculate an
approximation to the roat = 1 of f(x) = (z — 1)?(z + 1) (in blue color) whenry = 2 is
used. In this case the tangent line (2.1) (in red color) at2isy = 7z — 11. So, ify = 0
thenz; = 11/7.

When Newton’s method is used to approximate multiple roots, this does not work or at
best, the order of convergence is reduced from quadratic to linear. To avoid thisd&chr
generates two new methods. Prior to presenting them, we need to define multiple roots and
how to obtain from a given function with multiple roots, two related functions which have
simple roots.

Definition 2.1. « is a zero off with multiplicitym > 0if f(z) = (z — a)™g(x) where
lim g(z) # 0.

In the case thath = 1, we say thatv is a simple zero of .

If «is a zero off with multiplicity m, thena is a simple zero of; (z) = 3/ f(x). «
is also a simple zero oy (x) = 412

When the multiplicitym of a roota is greater than one, then Newton’s method (2.2) has
first order of convergence. To restore second order convergence, Newton’s method (2.2)

1—m

could be applied to the functiof (z) = %/ f(z). SinceF{(z) = L[f(z)] = we obtain
f(@n)
which is called the modified Newton’s method due to $clar [11].

Tptl = Tp — M ; with a givenzg. (2.3)
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Whenm is unknown, if we use in (2.2) the functiaf,(z) = f((g;) (see [11]) and its

derivative Fj(x) = 1 — Ly(x), whereL;(x) = JCE;”T)]Q (see [4]-[6]), the following
iteration equation is obtained

Tyl = Tn — f(an) 1
f'(n) (1= Lg(xn))
which is called Newton’s method for multiple roots due to Sdar [11]. In both methods
(2.3) and (2.4), second order of convergence is achieved.

(2.4)

3. GEOMETRIC CONSTRUCTIONS WITH m KNOWN

This section presents two geometric constructions to the modified Newton’s method.

3.1. Using straight line. Consider the straight line given by

f(zn
y— ) = T ) 35)
Iteration equation (2.3) can be obtained from this straight line whose slopeis-the
part of the derivative to the curve at the point whose abscissa i$he straight line (3.5) is
secant to the curvg = f(x). This result is stated more precisely in the following theorem.

Theorem 3.2. Let f : ® C R — D be sufficiently differentiable in an open intenal
and o a multiple zero off with multiplicity m. Then the iteration (2.3) can be built from

the curve defined by the equation (3.5) and this complies with the following two conditions:

y(xn) = f(z,) andy’(z,) = %

Proof. When evaluating: = z,, in (3.5),y(z,,) = f(z,) is obtained. On the other hand

deriving (3.5),y' = I (“") is obtained and thug'(x,,) = % Finally usingy = 0 and
T = Tp41 in (3.5), we obtam (2.3). O

In Figure 2 the first iteration of the modified Newton’s method (2.3) is shown to calculate
an approximation to the root = 1 of f(z) = (z —1)?(z +1) (in blue color) wheny = 2
is used. In this case the secant line (3.5) in red coler is 2z — 4. So, ify = 0 then
xr1 = 8/7

3.3. Using a polynomial of degreem. To obtain a curve that complies with the tangency
conditions, begin with the straight line equation
y = Fi(z,) + F{(zn)(x — z,) (3.6)

which is tangent inc = x,, to the curve whose equationg () = %/ f(z). Substituting
the values of; (z,,) andF{(z,,) in (3.6) we see that

’\"/ (@n) [ (@)

y= V) + T @ )

Now, we proceed to substituteby 1/y

L V@) f1(an) A (@) f (@)

W YV f(zn) mf( ) (f_xn)
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FIGURE 2. First iteration of Modified Newton’s method to solve the
nonlinear equatiorf (z) = (z — 1)?(z + 1) = 0, givenzy = 2. Case:
secantlingy = 1z — 4.

It remains to confirm that this equation satisfies the conditions of tangency given in the
following theorem:

Theorem 3.4. Let « be a multiple zero of with multiplicity m. Then the iteration (2.3)
can be built from the curve defined by the equation

y = f(zn) (1 + W)m (3.7)

and complies with the following two conditiong(z,,) = f(z,) andy’(z,) = f'(z,)

Proof. When evaluating: = x,, in (3.7),y(z,) = f(x,) is obtained. If we replace = z,,
in

/o pl f/(iljn)(.%’ — xn)>m1
theny'(z,,) = f'(xy).
Finally usingy = 0 andz = x,,4+1 in (3.7) we obtain (2.3). O

Note that ifm € N then (3.7) is a polynomial of degree.

In Figure 3 the parabola (in red coloB (z) = 1322 — 22 + 18 is that obtained
in the first iteration of the modified Newton’s method (2.3) when this is applied to
f(z) = (z — 1)*(z + 1) (in blue color) withzy = 2. Observe that the intersection of
Py (z) with the axisz is in z; = 8/7 and that the polynomiaP; is tangent tof at the point
T =2

4. GEOMETRIC CONSTRUCTIONS WITH m UNKNOWN

This section presents two geometric constructions of Newton’s method for multiple
roots (2.4) which does not require prior knowledgerof
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FIGURE 3. First iteration of Modified Newton’s method to solve the
nonlinear equatiorf (z) = (z — 1)?(z + 1) = 0, givenzy = 2. Case:
polynomialy = 1522 — 28 + 18,

4.1. Using straight line. The iteration equation (2.4) can be obtained from the straight
line defined by the equation

y = flzn) + f'(za)[1 - Ly(xn)|(z — 25) (4.8)
The slope of this line id — L(xz,) times the derivative of the curve at the point whose

abscissa iz:,. This implies that the straight line (4.8) is secant to the curve f(z).
More precisely:

Theorem 4.2. Let f : © C ;R — D be sufficiently differentiable in an open intenal
and o a multiple zero off with multiplicity m. Then the iteration (2.4) can be built from
the curve defined by the equation (4.8) and this complies with the following two conditions:
y(xn) = f(zn) andy,(zn) = f/<xn)[1 - Lf(xn)]

Proof. When evaluating: = x,, in (4.8) theny(z,) = f(z,) is obtained. On the other
hand deriving (4.8)' = f'(x,)[1— L¢(xy)] is constant, s@’(z,) = f'(xn)[1 — L (z,)].
Finally usingy = 0 andz = z,,41 in (4.8), we obtain (2.4). O

In Figure 4 the first iteration of Newton’s method for multiple roots (2.4) is shown to
approximate the roat = 1 of f(z) = (z — 1)?(z + 1) (in blue color) whenzy = 2 is
used. In this case the secant line (4.8) in red colgrds 1—791: - 1—77 in whichy = 0 implies
x = 17/19.

4.3. Using a rational function. To obtain a curve that complies with the tangency
conditions begin by substituting in the equation

Tpy1 =@ _f(xn) 1
ntl = T _ f@) (@)
Fan)1 - Hptss
the value ofy — f(z,,) for —f(z,,) andz for .41 (see [2]), giving
y— f(xn) 1

T=2Tn+ 7
W=f(@n)f"(zn))
f (mn) 1+ [F ()2
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FIGURE 4. Firstiteration of Newton’s method for multiple roots to solve
the nonlinear equatiofi(z) = (z —1)?(z+1) = 0, givenz, = 2. Case:
secant lingy = 2z — T

Here the following curve is obtained
[f'(xn)]z(x — Tn)
zn) = f"(@n)(x — )

It remains to confirm that this equation satisfies the conditions of tangency given in the
following:

y=f(zn) + I (4.9)

Theorem 44. Let f : ® C R — D sufficiently differentiable in an open interval
and « a multiple zero off with multiplicity .. Then the iteration (2.4) can be built from
the curve defined by the equation (4.9) which complies with the following two conditions:

Y(@n) = f(xn), ¥ (zn) = f'(2n) andy” (z,) = 2" (x,).
Proof. When evaluating: = z,, in (4.9),y(z,,) = f(x,) is obtained. As

P [f' ()]
[f/(xn) = f"(wp) (2 — x’rb)P
and ! 3 ¢
y// _ Q[f (xn)] f (xn)

[f"(@n) = f" (@) (x — 2n)]?
theny’'(x,,) = f/(x,) andy” (z,,) = 2f"(x,,). Finally, usingy = 0 andz = z,,41 in (4.9)
we obtain (2.4). d

In Figure 5 the first iteration of Newton’s method for multiple roots (2.4) is shown to
calculate an approximation to the raot= 1 of f(x) = (z—1)?(x+1) (in blue color) when
zo = 2is used. In this case the tangent rational function (4.9) ia 2 is y = 2207,
which is represented in red color. Soyit= 0 thenz, = 17/19.

5. CONCLUSION

In this paper we have presented a straight line (3.5) and a curve (3.7) to obtain the
iteration equation of the modified Newton’s method (2.3) wheg N is known and (3.7)
is a polynomial of degresn.
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FIGURES. Firstiteration of Newton’s method for multiple roots to solve
the nonlinear equatiofi(x) = (x — 1)?(z+1) = 0, givenz, = 2. Case:

tangent rational functiop = 2217,

We also presented when is unknown, a straight line (4.8) and an equilateral hyperbola
(4.9) to obtain the iteration equation (2.4).
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