Some Fejer and Hermite-Hadamard Type Inequalities Considering ϵ-Convex and (σ, ϵ)-Convex Functions

Muhammad Amer Latif
Department of Basic Sciences,
Deanship of Preparatory Year Program,
University of Hail,
Hail 2440, Saudi Arabia.
Email: m_amer_latif@hotmail.com

Wajeeha Irshad
Department of Mathematics,
University of Engineering and Technology,
Lahore, Pakistan.
Email: wchattha@hotmail.com

Received: 21 July, 2017 / Accepted: 22 November, 2017 / Published online: 10 April, 2018

Abstract. In current paper, new Hermite-Hadamard and Fejér type inequalities are proved by using the ϵ-convexity and (σ, ϵ)-convexity of differentiable functions and a positive function symmetric with respect to $\frac{\epsilon_j+\epsilon_k}{2}$. The results of the paper have been proved to contain previously established results related to differentiable convex functions.

1. Introduction

A function $\eta : U \subseteq \mathbb{R} \rightarrow \mathbb{R}$ forenamed as convex function, let

$$\eta(t \theta + (1-t) y) \leq t \eta(\theta) + (1-t) \eta(y)$$

holds for every $\theta, y \in I$ and $t \in [0, 1]$.

The subsequent double integral inequality

$$\eta \left(\frac{j + k}{2} \right) \leq \frac{1}{k - j} \int_j^k \eta(\theta) d\theta \leq \frac{\eta(j) + \eta(k)}{2}. \quad (1.1)$$

holds for convex functions and is notable in literature as the Hermite-Hadamard inequality. The inequalities in (1.1) holds in reversed order as η is concave function.

The inequality (1.1) has been a likely of extensive study insomuch as discovery. A number of papers have been written which provide noteworthy extensions, generalizations and refinements for the inequalities (1.1), see for example [1]-[19].
Dragonm and Agarwal [2], proved subsequent inequalities for differentiable functions which estimate the difference between the middle and rightmost terms in (1.1).

Theorem 1.1. [2] Suppose \(\eta : U \subseteq \mathbb{R} \rightarrow \mathbb{R} \) be a differentiable mapping at \(U^c \), and \(j, k \in U \) with \(j < k \), also \(\eta' \in L([j,k]) \). If \(|\eta|^\frac{1}{q} \) is convex function on \([j,k]\), so subsequent inequality holds:

\[
\left| \frac{\eta(j) + \eta(k)}{2} - \frac{1}{k-j} \int_j^k \eta(\theta)d\theta \right| \leq \frac{k-j}{8} \left[\left| \frac{\eta'}{p} \right| + \left| \frac{\eta'}{q} \right| \right]. \quad (1.2)
\]

Theorem 1.2. [2] Let \(\eta : U \subseteq \mathbb{R} \rightarrow \mathbb{R} \) is a differentiable mapping against \(I^a \), and \(j, k \in U \) with \(j < k \), including \(\eta' \in L([j,k]) \). Whenever \(\left| \eta' \right| \frac{1}{r} \) is a convex function supported \([j,k]\), the coming inequality holds:

\[
\left| \frac{\eta(j) + \eta(k)}{2} - \frac{1}{k-j} \int_j^k \eta(\theta)d\theta \right| \leq \frac{k-j}{2(p+1)} \left[\left| \frac{\eta'}{p} \right| + \left| \frac{\eta'}{q} \right| \right]. \quad (1.3)
\]

Consider that \(p > 1 \) furthermore \(\frac{1}{p} + \frac{1}{q} = 1 \).

In [17], Pearce attained enhanced and resolution of constant in Theorem 1.2 wherever strengthen this consequence by proving the successive theorem.

Theorem 1.3. [17] Consider \(\eta : U \subseteq \mathbb{R} \rightarrow \mathbb{R} \) is a differentiable mapping at \(I^a \), with \(j, k \in U \) and \(j < k \), together \(\eta' \in L([j,k]) \). If \(\left| \eta' \right| q \) is a convex function on \([j,k]\), also \(q \geq 1 \), then the subsequent inequality exists:

\[
\left| \frac{\eta(j) + \eta(k)}{2} - \frac{1}{k-j} \int_j^k \eta(\theta)d\theta \right| \leq \frac{k-j}{4} \left[\left| \frac{\eta'}{q} \right| + \left| \frac{\eta'}{q} \right| \right]. \quad (1.4)
\]

If \(\left| \eta' \right| q \) is concave on \([j,k]\), a bit \(q \geq 1 \). Formerly

\[
\left| \frac{\eta(j) + \eta(k)}{2} - \frac{1}{k-j} \int_j^k \eta(\theta)d\theta \right| \leq \frac{k-j}{4} \left| \eta' \left(\frac{j+k}{2} \right) \right|. \quad (1.5)
\]

In [6], Dah-Yan Hwang established the following results for convex which affords weighted consolation of results inclined in Theorem 1.1, Theorem 1.2 and the inequality (1.4) of Theorem1.3.

Theorem 1.4. [6] Authorize \(\eta : U \subseteq \mathbb{R} \rightarrow \mathbb{R} \) is a differentiable mapping on \(I^a \), with \(j, k \in U^c \) along \(j < k \) and allow \(\rho : [j,k] \rightarrow [0,\infty) \) be continuous positive mapping also symmetric to \(\frac{j+k}{2} \). Assume \(\left| \eta' \right| \) is convex function at \([j,k]\), succeeding inequality holds:

\[
\left| \frac{\eta(j) + \eta(k)}{2} \right| \int_j^k \rho(\theta)d\theta - \int_j^k \eta(x)\rho(\theta)d\theta \leq \frac{k-j}{4} \left[\left| \frac{\eta'}{\rho} \right| + \left| \frac{\eta'}{\rho} \right| \right] \int_0^1 \int_{L(j,k,t)} \rho(\theta)d\theta dt, \quad (1.6)
\]
where $U(j, k, t) = \frac{1+t}{2}j + \frac{1-t}{2}k$ and $L(j, k, t) = \frac{1+t}{2}j + \frac{1-t}{2}k$.

Theorem 1.5. [6] Confirming considerations of Theorem 1.4 are fulfilled along $q \geq 1$.

Assuming η^q is convex function on $[j, k]$, pursuing inequality grips:

$$
\left| \eta(j) + \eta(k) \right| \frac{k-j}{2} \int_{j}^{k} \rho(\theta) d\theta - \int_{j}^{k} \eta(\theta) \rho(\theta) d\theta \leq k-j \left(\left| \eta(j) \right|^q + \left| \eta(k) \right|^q \right) \frac{q}{2} \int_{0}^{1} U(j, k, t) \rho(\theta) d\theta dt,
$$

(1.7)

site $U(j, k, t)$ with $L(j, k, t)$ are decided in Theorem 1.4.

The classical convexity that is stated above was generalized as ϵ-convexity by G. Toader in [19] as follows:

Definition 1.6. Function $\eta : [0, k^*] \to \mathbb{R}$ named as ϵ-convex if

$$
\eta(t(\theta + \epsilon(1-t))y) \leq t\eta(\theta) + \epsilon(1-t)\eta(y)
$$

for $\theta, y \in [0, k^*], \epsilon \in [0, 1]$ and $t \in (0, 1)$, where $k^* > 0$. A function $\eta : [0, k^*] \to \mathbb{R}$ named as ϵ-concave if $-\eta$ is ϵ-convex.

Obviously, for $\epsilon = 1$ the Interpretation 1.6 recaptures perception of standard convex functions which construed on $[0, k^*]$.

Assumption of ϵ-convexity has been further generalized in [12] as declared in successive interpretation.

Definition 1.7. Function $\eta : [0, k^*] \to \mathbb{R}$ is known as (σ, ϵ)-convex assuming

$$
\eta(t(\theta + \epsilon(1-t))y) \leq t^\sigma \eta(\theta) + \epsilon(1-t^\sigma)\eta(y)
$$

exists being $\theta, y \in [0, k^*], (\sigma, \epsilon) \in [0, 1]^2$ with $t \in (0, 1]$, as $k^* > 0$. Function $\eta : [0, k^*] \to \mathbb{R}$ renamed as (σ, ϵ)-concave if $-\eta$ is (σ, ϵ)-convex.

It can easily be seen that for $\sigma = 1$, the class of ϵ-convex functions are derived from the above interpretation and for $\epsilon = \sigma = 1$ a class of convex functions are derived.

For several declarations concerning Hermite-Hadamard type inequalities for ϵ-convex and (σ, ϵ)-convex functions we specify the attentive reader to [1, 3, 4, 8, 13, 14, 15, 16, 10, 11, 18] and the references cited therein.

In Section 2, we prove some new Fejér and Harmine-Hadamard type inequalities by using the ϵ- and (σ, ϵ)-convexity of the differentiable mappings. The results of this paper contains some previously proved results for convex functions defined over the interval $[0, k^*]$ as special cases.

2. **FEJÈR TYPE INEQUALITIES FOR ϵ-CONVEX AND (σ, ϵ)-CONVEX FUNCTIONS**

Lemma 2.1. Consider $\eta : U \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping at U° with $\rho : [\epsilon j, k] \to [0, \infty)$ be continuous and symmetric considering $\frac{jk}{2}$ for settled $\epsilon \in (0, 1]$.
where $\epsilon_j, k \in U^\circ$ with $\epsilon_j < k$. If $\eta' \in L_1 [\epsilon_j, k]$, resulting expression exists

$$\frac{[\eta(\epsilon_j) + \eta(k)]}{2} \int_{\epsilon_j}^{k} \rho(\theta) d\theta - \int_{\epsilon_j}^{k} \rho(\theta) \eta(\theta) d\theta = k - \epsilon_j \frac{1}{4} \left[\int_{0}^{\frac{1}{2}} \left[\int_{U(t, \epsilon)}^{U(t, \epsilon)} \rho(\theta) d\theta \right] \left[\eta' (U(t, \epsilon)) - \eta' (L(t, \epsilon)) \right] dt \right] \quad (2.8)$$

along

$$U(t, \epsilon) = \epsilon \left(\frac{1-t}{2} \right) j + \left(\frac{1+t}{2} \right) k$$

furthermore

$$L(t, \epsilon) = \epsilon \left(\frac{1+t}{2} \right) j + \left(\frac{1-t}{2} \right) k.$$

Proof. By the integration by parts, we get

$$W_1 = \int_{0}^{1} \left[\int_{U(t, \epsilon)}^{U(t, \epsilon)} \rho(\theta) d\theta \right] \eta' (U(t, \epsilon)) dt$$

$$= \frac{2}{k - \epsilon_j} \left[\int_{0}^{1} \left[\int_{U(t, \epsilon)}^{U(t, \epsilon)} \rho(\theta) d\theta \right] \eta(U(t, \epsilon)) \right] - \int_{0}^{1} \left[\frac{\rho(U(t, \epsilon)) + \rho(L(t, \epsilon))}{\eta(U(t, \epsilon))} \right] \eta(U(t, \epsilon)) dt$$

$$= \frac{2}{k - \epsilon_j} \eta(k) \int_{\epsilon_j}^{k} \rho(\theta) d\theta - 2 \int_{0}^{1} \rho(U(t, \epsilon)) \eta(U(t, \epsilon)) dt$$

$$= \frac{2}{k - \epsilon_j} \eta(k) \int_{\epsilon_j}^{k} \rho(\theta) d\theta - \frac{4}{k - \epsilon_j} \int_{\epsilon_j}^{k} \rho(\theta) \eta(\theta) d\theta.$$

Similarly, we can observe that

$$W_2 = -\frac{2}{k - \epsilon_j} \eta(\epsilon_j) \int_{\epsilon_j}^{k} \rho(\theta) d\theta + \frac{4}{k - \epsilon_j} \int_{\epsilon_j}^{\epsilon_j+\frac{1}{2}} \rho(\theta) \eta(\theta) d\theta.$$
Hence

\[W_1 - W_2 = \frac{2}{k - \epsilon_j} [\eta(\epsilon_j) + \eta(k)] \int_{\epsilon_j}^{k} \rho(\theta) d\theta - \frac{4}{k - \epsilon_j} \int_{\epsilon_j}^{k} \rho(\theta) \eta(\theta) d\theta. \]

Multiplying the above result by \(\frac{k - \epsilon_j}{4} \), we get what is desired. \(\square \)

Remark 2.2. If we choose \(\epsilon = 1 \) in Lemma 2.1, we obtain the result proved in [3] [Lemma 2.1, page 9599].

Remark 2.3. If \(\rho(\theta) = \frac{1}{k - \epsilon_j}, \theta \in [\epsilon_j, k] \), then the subsequent equality holds

\[
\frac{\eta(\epsilon_j) + \eta(k)}{2} - \frac{1}{k - \epsilon_j} \int_{\epsilon_j}^{k} \eta(\theta) d\theta = \frac{k - \epsilon_j}{8} \int_{0}^{1} \left[\eta' \left(\epsilon \left(\frac{1}{2} - t \right) \epsilon_j + \left(\frac{1 + t}{2} \right) k \right) - \eta' \left(\epsilon \left(\frac{1}{2} \right) \epsilon_j + \left(\frac{1 - t}{2} \right) k \right) \right] dt.
\]

(2.9)

Now we present some Fejér type inequalities for \(\epsilon \)-convex functions.

Theorem 2.4. Let \(\eta : W \subseteq \mathbb{R} \rightarrow \mathbb{R} \) be a differentiable mapping on \(W^\circ \supseteq [0, \infty) \) and \(\rho : [\epsilon_j, k] \rightarrow [0, \infty) \) be continuous and symmetric considering \(\frac{\epsilon_j + k}{2} \) for settled \(\epsilon \in (0, 1] \), where \(\epsilon_j, k \in W^\circ \) with \(\epsilon_j < k \). Supposing \(\eta' \in L_1 [\epsilon_j, k] \) and \(\|\rho\|_1 \) is \(\epsilon \)-convex on \([0, k]\), ensuing inequality holds

\[
\left| \frac{\eta(\epsilon_j) + \eta(k)}{2} \right| \int_{\epsilon_j}^{k} \rho(\theta) d\theta - \int_{\epsilon_j}^{k} \rho(\theta) \eta(\theta) d\theta \leq \frac{k - \epsilon_j}{4} \left[\epsilon \left| \eta'(\epsilon_j) \right| + \left| \eta'(k) \right| \right] \int_{0}^{1} \rho(\theta) d\theta dt. \quad (2.10)
\]
Proof. Taking absolute value on both sides of (2.8) and employing ϵ-convexity on $[0, k]$, we have

$$
\left| \left[\frac{\eta(\epsilon_j) + \eta(k)}{2} \right] \int_{\epsilon_j}^{k} \rho(\theta) \, d\theta - \int_{\epsilon_j}^{k} \rho(\theta) \eta(\theta) \, d\theta \right|
$$

\[\leq \frac{k - \epsilon_j}{4} \int_{0}^{1} \left[\int_{U(t, \epsilon)}^{L(t, \epsilon)} \rho(\theta) \, d\theta \right] \left[\left| \eta'(U(t, \epsilon)) \right| + \left| \eta'(L(t, \epsilon)) \right| \right] \, dt
\]

\[\leq \frac{k - \epsilon_j}{4} \int_{0}^{1} \left[\int_{U(t, \epsilon)}^{L(t, \epsilon)} \rho(\theta) \, d\theta \right] \left[\epsilon \left(\frac{1 - t}{2} \right) \left| \eta'(j) \right| + \frac{1 + t}{2} \left| \eta'(k) \right| \right] \, dt
\]

\[+ \epsilon \left(\frac{1 + t}{2} \right) \left| \eta'(j) \right| + \frac{1 - t}{2} \left| \eta'(k) \right| \, dt
\]

\[= \frac{k - \epsilon_j}{4} \left[\epsilon \left| \eta'(j) \right| + \left| \eta'(k) \right| \right] \int_{0}^{1} \int_{U(t, \epsilon)}^{L(t, \epsilon)} \rho(\theta) \, d\theta \, dt.
\]

Hence argument of theorem is concluded. \[\square \]

Remark 2.5. The choice of $\epsilon = 1$, gives the result of Theorem 2.2 proved in [3] for convex functions defined on $[0, k]$.

Corollary 2.6. Under the assumptions of Theorem 2.4 and the choice of $\rho(\theta) = \frac{1}{\epsilon - \epsilon_j}$, subsequent inequality holds

$$
\left| \left[\frac{\eta(\epsilon_j) + \eta(k)}{2} \right] \int_{\epsilon_j}^{k} \rho(\theta) \, d\theta - \int_{\epsilon_j}^{k} \rho(\theta) \eta(\theta) \, d\theta \right|
$$

\[\leq \frac{k - \epsilon_j}{8} \left[\epsilon \left| \eta'(j) \right| + \left| \eta'(k) \right| \right]. \tag{2.11}
\]

Remark 2.7. Assuming $\epsilon = 1$ in Corollary 2.6, we get the result proved in [2, Theorem 2.2] for convex functions rationale on $[0, k]$.

Theorem 2.8. Let $\eta : W \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on $W^\circ \supseteq [0, \infty)$ and $\rho : [\epsilon_j, k] \to [0, \infty)$ be continuous and symmetric regarding $\frac{\epsilon_j + k}{2}$ for settled $\epsilon \in (0, 1]$, where $\epsilon_j, k \in W^\circ$ with $\epsilon_j < k$. If $\eta \in L_1[\epsilon_j, k]$ and $\left| \eta \right|$ is ϵ-convex on $[0, k]$ for $q \geq 1$, specified inequality is

$$
\left| \left[\frac{\eta(\epsilon_j) + \eta(k)}{2} \right] \int_{\epsilon_j}^{k} \rho(\theta) \, d\theta - \int_{\epsilon_j}^{k} \rho(\theta) \eta(\theta) \, d\theta \right|
$$

\[\leq \frac{k - \epsilon_j}{2} \left[\epsilon \left| \eta'(j) \right|^q + \frac{1}{2} \left| \eta'(k) \right|^q \right] \int_{0}^{1} \int_{U(t, \epsilon)}^{L(t, \epsilon)} \rho(\theta) \, d\theta \, dt. \tag{2.12}
\]
Proof. Applying Lemma 2.1 and usage of Hölder inequality, gives

\[
\left| \left[\frac{\eta(\epsilon_j) + \eta(k)}{2} \right] \int_{\epsilon_j}^{k} \rho(\theta) d\theta - \int_{\epsilon_j}^{k} \rho(\theta) \eta(\theta) d\theta \right| \leq \frac{k - \epsilon_j}{4}
\]

\[
\times \left\{ \left(\int_{0}^{1} \left[\int_{L(t,\epsilon)}^{U(t,\epsilon)} \rho(\theta) d\theta \right] \right)^{1 - \frac{q}{2}} \left(\int_{0}^{1} \left[\int_{L(t,\epsilon)}^{U(t,\epsilon)} \rho(\theta) d\theta \right] \eta' \left(U(t,\epsilon) \right) \right)^{q} dt \right\}^{\frac{1}{q}}
\]

\[
+ \left(\int_{0}^{1} \left[\int_{L(t,\epsilon)}^{U(t,\epsilon)} \rho(\theta) d\theta \right] \right)^{1 - \frac{q}{2}} \left(\int_{0}^{1} \left[\int_{L(t,\epsilon)}^{U(t,\epsilon)} \rho(\theta) d\theta \right] \eta' \left(U(t,\epsilon) \right) \right)^{q} dt \right\}^{\frac{1}{q}}.
\]

(2.13)

Employing power-mean inequality \(\theta^r + y^r \leq 2^{1-r} (\theta + y)^r \) for \(j, k > 0 \) with \(r < 1 \),

\[
\left(\int_{0}^{1} \left[\int_{L(t,\epsilon)}^{U(t,\epsilon)} \rho(\theta) d\theta \right] \eta' \left(U(t,\epsilon) \right) \right)^{q} dt \right)\right)^{\frac{1}{q}}
\]

\[
+ \left(\int_{0}^{1} \left[\int_{L(t,\epsilon)}^{U(t,\epsilon)} \rho(\theta) d\theta \right] \eta' \left(U(t,\epsilon) \right) \right)^{q} dt \right)\right)^{\frac{1}{q}}
\]

\[
\leq 2^{1 - \frac{q}{2}} \left(\int_{0}^{1} \left[\int_{L(t,\epsilon)}^{U(t,\epsilon)} \rho(\theta) d\theta \right] \eta' \left(U(t,\epsilon) \right) \right)^{q} dt \right)\right)^{\frac{1}{q}}
\]

(2.14)

Since \(\eta' \) is \(\epsilon \)-convex on \([0, b]\) for settled \(\epsilon \in (0, 1] \) and \(q \geq 1 \), we attained

\[
\int_{0}^{1} \left| \eta' \left(U(t,\epsilon) \right) \right|^{q} dt + \int_{0}^{1} \left| \eta' \left(U(t,\epsilon) \right) \right|^{q} dt
\]

\[
\leq \epsilon \left(\frac{1 - t}{2} \right) \left| \eta' \left(a \right) \right|^{q} + \left(\frac{1 + t}{2} \right) \left| \eta' \left(b \right) \right|^{q}
\]

\[
+ \epsilon \left(\frac{1 + t}{2} \right) \left| \eta' \left(a \right) \right|^{q} + \left(\frac{1 - t}{2} \right) \left| \eta' \left(b \right) \right|^{q} = \epsilon \left| \eta' \left(a \right) \right|^{q} + \left| \eta' \left(b \right) \right|^{q}
\]

(2.15)

Using (2.15) in (2.14) and then resulting inequality in (2.13), we grab which was desired. \(\square \)

Remark 2.9. Assuming \(\epsilon = 1 \), we accomplished result of Theorem 2.4 proved in [3].
Corollary 2.10. Under the assumptions of Theorem 2.8 and the choice of $g(\theta) = \frac{1}{k-\epsilon j}$, $x \in [\epsilon j, k]$, subsequent result exists

$$\left| \eta(\epsilon j) + \eta(k) \right| \leq \frac{k - \epsilon j}{4} \left[\epsilon \left(|\eta'(j)|^q + |\eta'(k)|^q \right)^{\frac{1}{q}} \right].$$

(2.16)

Remark 2.11. Consider $\epsilon = 1$ in Corollary 2.10, we draw the result proved in [17, Theorem 1].

Now we present some Fejér type inequalities for $$(\sigma, \epsilon)$$-convex functions.

Theorem 2.12. Endorse $\eta : W \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on $W^0 \supset [0, \infty)$ and $\rho : [\epsilon j, k] \to [0, \infty)$ be continuous and symmetric by k^2 for established $\epsilon \in (0, 1]$, where $\epsilon j, k \in W^0$ with $\epsilon j < k$. Wherever $\eta' \in L_1[\epsilon j, k]$ and $|\eta'|$ is $$(\sigma, \epsilon)$$-convex on $[0, k]$ for $$(\sigma, \epsilon) \in (0, 1] \times (0, 1]$$, resulting inequality is

$$\left| \frac{\eta(\epsilon j) + \eta(k)}{2} \int_{\epsilon j}^{k} \rho(\theta) d\theta - \int_{\epsilon j}^{k} \rho(\theta) \eta(\theta) d\theta \right| \leq \frac{(k - \epsilon j)^2}{4} \|\rho\|_{\infty} \left[\epsilon \chi(\sigma) \left| \eta'(j) \right| + (1 - \chi(\sigma)) \left| \eta'(k) \right| \right].$$

(2.17)

spot

$$\chi(\sigma) = \frac{2(2^{-\sigma} + \sigma)}{(\sigma + 2)(\sigma + 1)}$$ and $\|\rho\|_{\infty} = \sup_{\theta \in [\epsilon j, k]} |\rho(\theta)|$.

Proof. We observed the consequences of Lemma 2.1 can be drafted as

$$\left| \frac{\eta(\epsilon j) + \eta(k)}{2} \int_{\epsilon j}^{k} \rho(\theta) d\theta - \int_{\epsilon j}^{k} \rho(\theta) \eta(\theta) d\theta \right| = \frac{k - \epsilon j}{4} \int_{0}^{1} \left[\int_{\epsilon j}^{t} \rho(t, \epsilon) \rho(\theta) d\theta \right] \left[\eta'(U(t, \epsilon)) - \eta'(L(t, \epsilon)) \right] dt \leq \frac{(k - \epsilon j)^2}{4} \|\rho\|_{\infty} \int_{0}^{1} t \left[\eta'(U(t, \epsilon)) - \eta'(L(t, \epsilon)) \right] dt.$$

(2.18)
Applying the inequality (2.20) in (2.19), we scored the result given by (2.17). □

Taking the absolute value on both sides of (2.18), we gained

\[
\left| \frac{\eta(\epsilon j) + \eta(k)}{2} \right| \int_{\epsilon j}^{k} \rho(\theta) \, d\theta - \int_{\epsilon j}^{k} \rho(\theta) \eta(\theta) \, d\theta \leq \frac{(k - \epsilon j)^2}{4} \|\rho\|_{\infty} \int_{0}^{1} t \left[\left| \eta'(U(t, \epsilon)) \right| + \left| \eta'(L(t, \epsilon)) \right| \right] \, dt. \tag{2.19}
\]

Adopting \((\sigma, \epsilon)\)-convexity of \(\eta'\) on \([0, k]\), we have

\[
\int_{0}^{1} t \left[\left| \eta'(U(t, \epsilon)) \right| + \left| \eta'(L(t, \epsilon)) \right| \right] \, dt
\]

\[
\leq \int_{0}^{1} t \left\{ \left(\frac{1 + t}{2} \right)^{\sigma} \left| \eta'(b) \right| + \epsilon \left[1 - \left(\frac{1 + t}{2} \right)^{\sigma} \right] \left| \eta'(j) \right| + \left(\frac{1 - t}{2} \right)^{\sigma} \left| \eta'(k) \right| + \epsilon \left[1 - \left(\frac{1 - t}{2} \right)^{\sigma} \right] \left| \eta'(a) \right| \right\} \, dt
\]

\[
= \left| \eta'(k) \right| \int_{0}^{1} t \left[\left(\frac{1 + t}{2} \right)^{\sigma} + \left(\frac{1 - t}{2} \right)^{\sigma} \right] \, dt
\]

\[
+ \epsilon \left| \eta'(j) \right| \int_{0}^{1} t \left[2 - \left(\frac{1 - t}{2} \right)^{\sigma} - \left(\frac{1 + t}{2} \right)^{\sigma} \right] \, dt
\]

\[
= \left\{ \frac{2(2^{-\sigma} + \sigma)}{(\sigma + 2)(\sigma + 1)} \right\} \left| \eta'(k) \right| + \epsilon \left\{ 1 - \frac{2(2^{-\sigma} + \sigma)}{(\sigma + 2)(\sigma + 1)} \right\} \left| \eta'(j) \right|. \tag{2.20}
\]

Applying the inequality (2.20) in (2.19), we scored the result given by (2.17). □

Corollary 2.13. Presume conditions of Theorem 2.12 are fulfilled and \(\rho(\theta) = \frac{1}{\epsilon^{\sigma} - 1}, \theta \in [\epsilon j, k]\), subsequent inequality holds

\[
\left| \frac{\eta(\epsilon j) + \eta(k)}{2} \right| - \frac{1}{k - \epsilon j} \int_{\epsilon j}^{k} \eta(x) \, dx \leq \frac{k - \epsilon j}{4} \epsilon \chi(\sigma) \left| \eta'(j) \right| + \left(1 - \chi(\sigma) \right) \left| \eta'(k) \right|. \tag{2.21}
\]

Remark 2.14. If \(\sigma = \epsilon = 1\) in (2.21), we get the result proved in [2, Theorem 2.2] for convex functions defined on \([0, k]\).
Theorem 2.15. Let \(\eta : W \subseteq \mathbb{R} \to \mathbb{R} \) be a differentiable mapping on \(W^\circ \supset [0, \infty) \) and \(\rho : \epsilon j, k \to [0, \infty) \) be continuous and symmetric by \(\frac{\epsilon_j + k}{2} \), settle \(\epsilon \in (0, 1] \), where \(\epsilon j, k \in W^\circ \) with \(\epsilon j < k \). Granted \(\eta' \in L_1 \) [\(\epsilon j, k \)] and \(\left\| \eta' \right\|_q \) is \((\sigma, \epsilon)\)-convex on \([0, k] \) for \(q \geq 1 \), \((\sigma, \epsilon) \in (0, 1] \times (0, 1] \), coming inequality grips

\[
\left| \frac{\eta(\epsilon j) + \eta(k)}{2} \right| \int_{\epsilon j}^k \rho(\theta) d\theta - \int_{\epsilon j}^k \rho(\theta) \eta(\theta) d\theta \right|
\leq \frac{(k - \epsilon j)^2}{4} \left\| \rho \right\|_\infty \left[\epsilon \chi (\sigma) \left| \eta' (j) \right|^q + (1 - \chi (\sigma)) \left| \eta' (k) \right|^q \right]^{\frac{1}{q}}, \tag{2.22}
\]

where \(\chi (\sigma) \) and \(\left\| \rho \right\|_\infty \) are construe in Theorem 2.12.

Proof. Continuing from (2.19) and employing Hölder inequality, we achieved

\[
\left| \frac{\eta(\epsilon j) + \eta(k)}{2} \right| \int_{\epsilon j}^k \rho(\theta) d\theta - \int_{\epsilon j}^k \rho(\theta) \eta(\theta) d\theta \right|
\leq \frac{(k - \epsilon j)^2}{4} \left\| \rho \right\|_\infty \left(\frac{1}{0} t^\frac{1}{r} \right)^{1 - \frac{1}{r}}
\times \left\{ \left(\frac{1}{0} t \left| \eta' (U (t, \epsilon)) \right|^q dt \right)^\frac{1}{q} + \left(\frac{1}{0} t \left| \eta' (U (t, \epsilon)) \right|^q dt \right)^\frac{1}{q} \right\}. \tag{2.23}
\]

Accepting power-mean inequality \(\theta^r + y^r \leq 2^{1-r} (\theta + y)^r \) for \(j, k > 0 \) and \(r < 1 \), we attain

\[
\left(\frac{1}{0} t \left| \eta' (U (t, \epsilon)) \right|^q dt \right)^\frac{1}{q} + \left(\frac{1}{0} t \left| \eta' (U (t, \epsilon)) \right|^q dt \right)^\frac{1}{q}
\leq 2^{1-r} \left(\frac{1}{0} t \left| \eta' (U (t, \epsilon)) \right|^q dt + \frac{1}{0} t \left| \eta' (U (t, \epsilon)) \right|^q dt \right)^\frac{1}{q}. \tag{2.24}
\]
Since \(\eta' \) is \((\sigma, \epsilon)\)-convex on \([0, k]\) for \(q \geq 1\), \((\sigma, \epsilon) \in (0, 1] \times (0, 1]\), we have
\[
\int_0^t \left| \eta' (U(t, \epsilon)) \right|^q dt + \int_0^t \left| \eta' (U(t, \epsilon)) \right|^q dt \\
\leq \int_0^t \left\{ \left(\frac{1 + t}{2} \right) \sigma \left| \eta' (k) \right|^q + \epsilon \left[1 - \left(\frac{1 + t}{2} \right) \sigma \right] \left| \eta' (j) \right|^q \right\} dt \\
+ \left\{ \frac{2 (2^{-\sigma} + \sigma)}{(\sigma + 2) (\sigma + 1)} \right\} \left| \eta' (k) \right|^q + \epsilon \left\{ 1 - \frac{2 (2^{-\sigma} + \sigma)}{(\sigma + 2) (\sigma + 1)} \right\} \left| \eta' (j) \right|^q .
\] (2. 25)

Using (2. 25) in (2. 24) and then the resulting inequality in (2. 23), we get the appropriate inequality. \(\square\)

Corollary 2.16. Expect the conditions of Theorem 2.15 are convinced and \(\rho (\theta) = \frac{1}{k - \epsilon j}, \theta \in [\epsilon j, k], \) ensuing inequality grips
\[
\left| \eta (\epsilon j) + \eta (k) \right|
\leq \frac{k}{2} - \int_{\epsilon j}^k \eta (x) dx \\
\leq \frac{k - \epsilon j}{4} \left[\chi (\sigma) \left| \eta' (j) \right|^q + (1 - \chi (\sigma)) \left| \eta' (k) \right|^q \right]^{\frac{1}{q}} ,
\] (2. 26)

spot \(\chi (\alpha)\) is defined in Theorem 2.12.

Remark 2.17. Assuming \(\sigma = \epsilon = 1\) in (2. 26), we get the result craved in [17, Theorem 1] for convex functions decided on \([0, k].\)

REFERENCES

