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Abstract. Inthispaperaboundarydatacompletionproblemfor adiffusion-
reaction partial differential equations (PDESs) was considered in a 2D do-
main. In a first step, the classical KMF (Kozlov, Maz'ya, Fomin) algo-
rithm was used with spectral element method to find an approximate so-
lution to that problem. In a second step, an alternative way was proposed
by using conjugate gradient method where a symmetric positive definite
operator was designed. Obtained results are illustrated by some numerical
tests by using Matlab software.
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1. INTRODUCTION

Large engineering applications such as heat conduction, some chemical reaction etc. are
modelled by diffusion-reaction equations. Micro- and mini-channels, whose hydraulic di-
ameter varies from a few micrometers to several millimetres, are increasingly used in many
applications[[15, 16, 17]. Condensation in these channels is used in different applications,
in particular, the cooling of electronic components and the air conditioning in the auto-
mobile. The study of local heat transfer represent a real scientific key by considering its
effect on the lifetime and performance of energy systems such as fuel cells and miniature
coolers. In this paper, suppose that our domain is a channel filled up by a fluid and suppose
that on some part of the boundary (input), measurements can be done for both the temper-
ature and flux, however, on an other some part of the boundary (output), we suppose that
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we can't do this due to physical difficulties or inaccesdipheometric. Thus, the aim is to
reconstruct the temperature and the flux in an infinite lecgtimnel. We suppose that the
temperature is invariable on the vertical direction. So wedealing with a 2D-problem.
This phenomena can occur in several engineering processes.

Our aim is then to reconstruct the missing data on some paniedfoundary (the output:
where the knowledge of the temperature at the output is sapefor ensuring the safety
of the material) using the over available data on the adokessart of the boundary (input).
Such problem is known as a Cauchy problem, called also datgpletion problem. It is
difficult to resolve this kind of problems using direct meathimecause of its ill-posedness
in the sense of Hadamard [8, 9]. The existence of the soligi@ssured when the over
determined data at the input are compatible [10] and thelpnobdmits then at most one
solution [6]. Several iterative methods having the advgata allow the physical constraint
were proposed to resolve this problem([1, 2,13,/4, 5, 13].

In the present work, a data completion problem for a diffasieaction partial differen-
tial equations (PDEs) was considered in a 2D domain. In adieq, the classical KMF
(Kozlov, Maz'ya, Fomin) algorithm[[13] is used to find an appimate solution to that
problem. In a second step, we use an alternative way by usimiggate gradient method
where a symmetric positive definite operatbmwas designed. Obtained results are con-
firmed by some numerical tests under Matlab software.

2. DIRECT PROBLEM

Let Q be an open bounded set R?, with a smooth boundarg. We consider a
partition of this boundargQ) = ¥ U T wherex N T" = (), megX) # 0 and megl’) # 0.
The domain) represents a channel filled up by a moving fldidis a fixed wall and” is
the input and output of the channél.is taken to be straight and orthogonal to the axis of
the outlet (Figur&ll).

Si

FIGURE 1. The domain) represents the geometry of the considered
channelfilled up by a moving fluid. All vertices belongsio

We are looking for finding a functiom solution of the well-posed problem defined as
follows:

—V.(uVu)+ou = f in
u = g on X
o 1)

— = h on T
Man
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Wheref is the source functiony is the diffusivity constant ane is the reaction constant.
1 ando assumed to be positiver is the outward-pointing normal vector. This direct
problem is well-posed, it has a unique solution ugfitiE L?(Q2) and it can be solved by
direct method.
In order to outline the spectral element method, we first stéin the variational formu-
lation of the direct probleni{1). The solutianis searched i/ such that :
a(u,v) = 1(v), Yo eV (2)
where the solution spaéé and the test function spaééare given by
U={ueH(Q):u=gon¥%}, V={veH(Q):v=0onXx}

The bilinear form is
a(u,v) :/ (,uVu.VU —|—auv) dx,
Q
and the linear form is
llv) = fodx + /hv ds.
Q T

Denote byN the degree of interpolation anglandy;, i = 1,--- , N+1 are the associated
nodes, known as the Gauss-Lobatto Legendre points, whidhawzeros ofl —2?) L’y ()
and(1 — y?) L’y (y), respectively.

Weights for Legendre-Gauss-Lobatto numerical integnadiee given by:

2 1
N(N +1) L3 (z;)
Denote byu;; = u(x;,y;), and fi; = f(z;,y;), fori,j =1,--- N 4+ 1. Thenu is ex-
panded in terms of the Lagrange interpolants based on thendeg-Gauss-Lobatto points

N+1

un(z,y) = > wighi(x)h;(y)

ij=1

w; = =1, ,N+1

whereh; are the Lagrange interpolants.

The Galerkin approximation is to solve the discrete weakjem: Finduy € U~ such
that

aN(uN,vN) = DN(UN,’UN) —+ RN(UN,UN) = ZN(UN)

where the fOfm@N(uN,’UN) = (/LVUN, VUN)N, andRN(uN,vN) = (UUN,’UN)N
corresponding to the diffusion and the linear reactionaftthe problem, respectively.
The discrete inner produ¢t .) 5 is defined by

N+1

()N = Y W (T, Yn) ¥ (T, Yn).

m,n=1
In the rest of the paper, for simplicity and without loss ofigeality, we will takey = o =
1.
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3. INVERSE PROBLEM

Consider a partition of the part of the bounddry= 1, U ", wherel',, N T, =
(b, megT',,) # 0 and me€l',) # 0. As the domairt represents a channel filled up
by a moving fluid,X is a fixed wall,T",,, andT, is the input and output of the channel,
respectively which are taken to be straight and orthogantile axis of the outlet (Figure

D).

Si
St

FIGURE 2. The domaim represents a channel filled up by a moving
fluid. X is a fixed wall,I",,, is the input of the channel afidis the output

of the channell’,, andl",, are taken to be straight and orthogonal to the
axis of the outletsi is the outward-pointing normal vector. Note that all
vertices belongs t&.

Suppose that we have measurements of DiricAl@tand Neumann boundarp} condi-
tions on the input of the channdl'(,) and try to recover the missing data on the output of
the channell(,).

1

(Ty,)) x H=z(T',,), the inverse problem is

1

For (f,9,®,T) € L*(Q) x H3(X) x (H

=

given by :
—Au+u = f in Q
u = g on X
% = o on T, (3)
on
u = T on T,

Assuming that the dat@b, T') are compatible, i.e. this pair correspond exactly to theetra
and the normal trace of the same functiothat will be extended by a couple(t) onT',,
which complete the problerhl(3) to

—Au+u=f in Q
u=g on X
@:q),u:T on T, (4)
n
u
— u=t on I,
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4. THE CLASSICAL KMF ALGORITHM

Many performing numerical methods have been developeddome the ill-posed na-
ture of this kind of problem. In this paper, we revisit thesslizal KMF (Kozlov, Maz'ya,
Fomin) algorithm [[13] (some applications inl [7,]111,] 4] 18hown as an alternating
method by solving alternately two direct problems in orderlpproximate the missing
data on the boundary. The KMF algorithm used the followirggpst Letry € Hz (T'y) as
an initialisation for the Dirichlet boundary condition &y).

~Au® 44O = f in Q

w® = g on X

ou®)

Y = & on T,

on

u® = 71 on T,

ou®
Loop =

" on v

w1 = ¢ on X

w1 = T on T,

8u(2k71)
= on I,

on g

(2k)
_ ,,(2k—1) _3U
T=1U =
Ty n on |Fu
—AulR) 4R = f in Q

u?) = ¢ on X

(2k)

u = o on T,

on

w? = r on T,

Stopping tolerancep

FIGURE 3. The classical KMF algorithm.
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In many applications the error cannot be evaluated sincarthlytical solution is not known
and then a stopping tolerance is imposed such that

n+1) _u(n)”Lz(Fu) <p

wherep is a positive small enough constant.
If (®,7) are compatible then?*—1 = »2* when(n, 7) = (p, t).
The cost function is a norm for controlling?*—" — +(2%) on the hole domaife.

'

5. MINIMUM OF AN ENERGY FUNCTIONAL

To solve the probleni{4), ¢) will be characterized as the minimum of an energy func-
tional [2,[3,5/T[ 12, 14]. The approach is to consider, foivemy pair (7, 7), two mixed
problems where their solutions are denoted:byandus and satisfying:

—Aul +u = f in Q —AUQ +us = f in Q
uy = g on X Uy = ¢ on Y
= 5 0 6
N T on T,, (5 9w % on T, (6)
uy r on
a—n - n on u Us — T on Fu

and to construct an error functional based on the pair) through the comparison of
the fieldsu; andus. These fields coincide only if the couple, 7) coincide with the real
data (o, t) on the unmeasured bounddry. That's why we chosed to solve this Cauchy
problem as follows:

(¢,t) = argmin E(n, 7)
nT
B 7) =l — ualfp o = [ (Var = Ve + [ (a1 = ) ™
Q Q
uy,up are solution of system@l)and(@), respectively
Note thatFE(n, T) is a convex quadratic positive functional attenuating iisimum at
Uy = ug.

Now, sinceu; andus are solutions of{5) and(6), it is easy to derive a more sirepfges-
sion of the error functional:

Bovr) = = [ At = w) —u)+ [ (- G2 -

TR (-

Ous Ouy
/Fu( _8—n)(ul _T)+/rm(3—n — O)(T — u2)

The gradient of the error functional is then given by: For & pa 7)

oE(n,7) S dwy .
= [ -rv+ [ G- w

7 (8)

OE(n,7), " Ousy Juy
—%P—h—[ﬁsﬁ‘]h+ﬁm@‘éﬁm2

u
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forall (h,v) € HééQ(Fu) X H&)l/g(Fu), and wherev; andw, solve

—Awi+w; = 0 on —Awy+wy = 0 in Q)
wp = 0 on X wy = 0 on X
_ 9 10
w, = 0 on T, (9 w2 _ 4 on r. (10)
ow; r on
on ¢ oon I wy = h on T,

Problems[{P) and(10) depend on the directigrendh.

The components of the gradient can be given in a more simpie by applying the
adjoint state method, that the gradient will be evaluatednin direction using only the
determination of two adjoint fields, andwvs.

Proposition 1.

M¢:_2/ o and Mh:_Q/ gva

wherev; andv, solve

u

—Avy+v; = 0 in Q —Avg+vy = 0 in €
v, = 0 on X vo = 0 on X
= 11 12
V1 0 on I, ( ) % — 9 on T, ( )
8’!}1 _ (9’11,2 T on
3_’", - a_n —n on u vg = wu;—7 on I,

6. CONJUGATE GRADIENT ALGORITHM

In numerical analysis, the conjugate gradient method isgorighm for solving systems
of linear equations whose matrix is positive symmetric defirin numerical optimization,
the non-linear conjugate gradient method generalizes ¢ihgugate gradient method to
non-linear optimization. For a quadratic functidrz):

U(x) = %xtAa: — b
The minimum of? is obtained when the gradieW¥ () = Az — b is zero.

The idea is mainly based on subdividing the state fields ulsgstems as the following

0 0
up =ug +uy, Uz =us+ uj

whereu*, v, u9 andud are solutions of the following systems
1 2 1 2

—Auj+u; = 0 in Q —Aus+us = 0 in Q
uj = 0 on X uy; = 0 on X
- 13 5 14
up 0 on T, (13) % _ 4y on r, (14)
ui r on
o 1o lu usy = 7 on T,
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~Au+u) = f in Q —Aud+ud = f in Q
w) = g on X )y = g on X
w = T on T, (15) ouy ® T (16)
aul on ontm
—— = 0 on T, W = 0 on T
on 2 = u
Same, we sub-divise the adjoint fields into the followingstgbems :
vlzv?—i—vi“, vgzvg—i—v;
wherevt, v, v andvd in H1(Q) are solutions of
—Avi v = 0 in  Q —Avi vl = 0 in Q
vi = 0 on X v; = 0 on X
v = 0 on I,, (17) ovy 0 r (18)
vy ous o - on m
1 _ 2 T n
on  on on tu vy = ui—7 on T,
AW+ = 0 in  Q —Avd+0vd = 0 in Q
W o= 0 on ¥ vy = 0 on X
0 0
v = 0 on T,, (19) oy (20)
oY B ou T on. 0 on T,
n om0 v vy = u} on T,

Consider the linear operatdrdefined by

_1 1 . ovs(n, T T
Y(n.7) € Hog} (0u) x Hp(Tw). Al )" = —(vin, 7)., 28D )"

Proposition 2. (1) The energy-like functional is expressed as
V(n,7) € Hoy? (Tw) x HE(TW), E(n, 1) = (n,7)A(n,7)T = 2b(n, 7)T + C
0
with b = (v?|pu, %h) , andC) be a constant independent(f, 7).
n

(2) Ais a symmetric positive-definite operator

The Conjugate Gradient (CG) Algorithm

(1) Resolve systemp (1L5)-(16)-{19)-[20) for one time.
(2) Choose an initial guess = (ng, 7). Resolve system$§ (13)-(14)-{17)-[18) and
computerg = Axg — b.
(3) Setpo = —Ty.
(4) Fork=0,1,2,..., compute
T

T Tk
(652 =
T
pkApk
Tp+1 = Tk + QpPg
The1 = T+ apApy
T
Br+1 = Tha1 ki1
T%Tk

P+l = —Tk+1 + Bryibk
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(5) Resolve systempb (IL3)-(14)-{17)-(18) and compijig, ;.

until convergence stopping criterion is satisfieg £ 0).

— Y1
—)

L%Error

iteration y

(A) loglog plot of theL2-relative (B) Solution on the missed boundary.
errors on the missed boundary of
the reconstructed solutions.

FIGURE 4. This numerical experimentis performed on a rectanguar d
main[0, 1] x [0, w]. The number of nodes by each sidé\is= 18. Initial
conditionty is chosen randomly. As we can see on the figure, the KMF
algorithm converges exponentially for onlyt5 iterations and with an
error of order10—13,

7. NUMERICAL RESULTS

In this section we present some numerical tests which aredordance with the theo-
retical given results. The implementation of this data veconethod was carried out using
the spectral element method (SEM). All our numerical testsvalidated on a rectangular
domain[z,, zp] X [ya, ys] for p =0 = 1.

Recall that our idea consists in a minimization of an energgrdunctional using conju-
gate gradient method. It requires the resolution of fovectisystemd (15]-(16)-(1L9)-(20)
for one time and four direct systenis {1B)(14)}(17)} (18)dach iteration however KMF’s
algorithm resolve only two direct systems. In order to pritgg@erformance, we apply the
KMF-algorithm with £/ as a convergence criterion. It is seen that the number attioers
of the KMF algorithm is clearly smaller that the number ofdtiion needed by our method.
We provide the behaviour of the error between the recovardeégact data on the unmea-
sured boundary of the domain (output).

In our first numerical test, we used the harmonic functidm, y) = e”sin(y) on the
rectangular domaif? = [0,1] x [0, 7] where f(z,y) = e*sin(y), T (y) = esin(y) and
®(y) = —esin(y). Figures#(a) and 5(a) describe thé-error between exact solution and
the approximated one using both KMF method and the proposéiuod, respectively. Fig-
ured4(b) andl5(b) show the distribution of the reconstitgenperature and fluxes (using
both KMF method and our proposed method) on the unmeasurtedlboy,l',,, as well as
the exact ones. As it can be seen on all figures, the recotestiraclutions are close to the
exact ones. Eighteen nodesBp and Eighteen nodes dny,, are sufficient to recover the



34 Miled EL HAJJI and Fadhel JDAY

10? 10
Iterations y

(A) loglog plot of theL2-relative (B) Solution on the missed boundary.
errors on the missed boundary of
the reconstructed solutions.

FIGURE 5. L2-error for a randomly chosen initial conditiep using the
proposed Conjugate gradient method. The polynomial delyree 18.
The method converges exponentially for ab2&0 iterations and with
an error of orded 0.

trace and the normal trace with the same accuracy.

In a second numerical test, we used the function y) = (1 + z + z?) sin(y) on the rect-
angular domairf2 = [0, 1] x [0, 2x] wheref(z,y) = (22 + 22%)sin(y), T(y) = sin(y)
and®(y) = —sin(y). Figured8(a) and 9(a) describe thé-error between exact solution
and the approximated one using both KMF method and the peajrosthod, respectively.
Figured 8(b) an@19(b) show the distribution of the recomsad temperature and fluxes
(using both KMF method and our proposed method) on the unimed®¥oundaryt’,,, as
well as the exact ones. Note that the reconstructed fieldm alese agreement with the
exact ones. Gap between the exact and the reconstructeidsalsing KMF is presented
in Figure[10. The gap between the exact and the reconstractetionsu, andus using
the Conjugate gradient method is presented in Figure 12t dasibe seen on these figures,
the highest values are related the unmeasured bouiiggrjght side).

Eighteen nodes ofi,, and Eighteen nodes dn,, are enough to recover the temperature
and the flux with the same accuracy.

Here, we add a numerical test for the case wlrere 10 using the KMF algorithm.

8. CONCLUSION

We proposed in this work a data completion problem for a difo-reaction partial dif-
ferential equations (PDES) in a 2D domain based on the maaiticin of an energy error
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FIGURE 6. Gap between the exact and the reconstructed solutiog usin
KMF on [0, 1] x [0, 7] where the number of nodes by each sid¥is- 18.

As it can be seen on the gap that highest values are relataththea-
sured boundary,, (right side). Highest values are ab@uk 1012,

functional using the conjugate gradient method. This metthaindoubtedly versatile, ac-
curate and can be developed for other operators as well & sitiations. The peculiarity
of this method lies in the simultaneous treatment of rectutst traces and normal traces:
both are well recovered.
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APPENDIXA. APPENDIX
This appendix provides the mathematical proofs of Projowgli and Proposition] 2.

A.1. Proof of Proposition[dl.

aE_(n’T)¢ = 2/(Vu1 — Vug)Vun +2/(u1 — ug)wi
(977 Q Q

0 0
= —Q/Q(Aul — Aug)w; +2/Fu(% — %)wl +2/Q(u1 —U2)w1

8%1 8%2
2 /Ff% "B
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FIGURE 7. Gap between the exact and the reconstructed solutipns
anduz using the Conjugate gradient method[onl] x [0, 7] where the
number of nodes by each side& = 18. As it can be seen on the gap
that highest values are related the unmeasured bouhgainyght side).

Highest values are about 3.

u

T
= —2/ Vv1Vw1 —2/ Avlwl
Q Q

= —2/Vv1Vw1—2/v1w1
Q Q

= 2/Aw1v1—2
Q r

T
I 8’",

u

0
a —9

on

I

/ w101
Q
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L2-Error

10° 10" 10
iteration Y

(A) loglog plot of theL2-relative (8) Solution on the missed boundary.
errors on the missed boundary of
the reconstructed solutions.

FIGURE 8. This numerical experimentis performed on a rectanguard
main|0, 1] x [0, 27]. The number of nodes by each sidé\is= 18. Initial
conditionry is chosen randomly. As we can see on the figure, the KMF
algorithm converges exponentially for onlyt5 iterations and with an
error of order10—12,

10°

e TR A

Uy Yexact

U2 Yexact

10° 10 10 10° 10
Iterations y

(A) loglog plot of theL2-relative (B) Solution on the missed boundary.
errors on the missed boundary of
the reconstructed solutions.

FIGURE 9. L2-error for a randomly chosen initial conditiop on a rect-
angular domairf0, 1] x [0,2x]. The number of nodes by each side is
N = 18. The method converges exponentially for ab28a0 iterations
and with an error of order0—4.
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u 2k+1

FIGURE 10. Gap between the exact and the reconstructed solution us-
ing KMF on [0,1] x [0, 2x] where the number of nodes by each side
is N = 18. As it can be seen on the gap that highest values are re-

lated the unmeasured boundavy (right side). Highest values are about
+6 x 10712,

=107

-0.5

FIGURE 11. Gap between the exact and the reconstructed solutions
andus using the Conjugate gradient method[onl] x [0, 27] where the
number of nodes by each sidefs = 18. As it can be seen on the gap

that highest values are related the unmeasured bouhgainyght side).
Highest values are abott10~3.
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L2-Error
=
5

10-10 L

12

—¥—exact
—— 1
25¢ ¥

05F /

10°
10°

OE(n,

iteration y

(A) loglog plot of theL2-relative (B) Solution on the missed boundary.
errors on the missed boundary of
the reconstructed solutions.

FIGURE 12. L2-error foru(x,y) = e®sin(y) on the rectangular do-
mainQ = [0,1] x [0, 7] wherec = 10, f(z,y) = 10e®sin(y), T(y) =
esin(y) and®(y) = —esin(y). The number of nodes by each side is
N = 18. The KMF algorithm converges exponentially for ab6000
iterations and with an error of ordéd—12. Note that this case (large
value ofo) needs more number of iterations than the case whetel.

77)]1 - —2/(Vu1 — Vuy)Vwy — 2/Q<“1 — Ug)wa

or

ng

= 2/§ZﬂAw2(u1—uQ)—2 —(ul—uQ)—Q/Q(ul—uQ)wg

T 871

- 8w2
= 2/1—~u 87’1, (U1 UQ)

wa
= —2 —_—
/Fu on 2
= —Z/Aw2v2—2/ VwQva
Q Q

= 2/w2U2+2/w2Av22/ %U)Q
Q Q r, on
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A.2. Proof of Proposition[2.

E(n,7)

/(Vul — Vug)? + /(u1 — ug)?
Q Ja

- /Q(Am — Aug)(up — u2) + /F (% — %)(ul —ug) + /Q(ul — ug)?

8u1 8U2
S G G =+ [ (G = G )
(

/F (%—@)(T—mﬂ/ﬁ n

Oouy ouy Ous
/1;7"(8771 ®T+¢u2787nug)+/‘ru(7]78*77/)(711*7’)

~

Now, by applying Green formula to the ter%\%ug, one obtains

/ Aujusg +/ VuiVug — %uz - %

Q r. ﬁn s On

/ (uy — flus — / w1 Aug + / %ul + %ul 6u2u1 — / nT — %g
Q on I E3n

Tm v Tu
/(ul — f)?l,g 7/ 11,1('11,2 — / ﬂ?ll / ()7L2 / 07L2“1 7/ nT — ?9
Q Q Ty n

- /Qf(u]—uz)—o—/rm <I)T+/Fu(ﬁu1—m-)+ (%_%)
Thus, the energy functional becomes
E(p,7) = /Fm(%T OT + duy — Thuy) 4 N )y )
= —/Qf(ul—uzﬂ—/z(%—%)g—t—/rm(%T—Z@T—i-@uQ)
A IR R NUSS
= —/Qf(ul—uz)—k/z(%—%)g—&-/rm(% 2<I>T+%u2)
[ 0-F20a-n+ [ o= GEw)

0

0 0 .
As before, apply Green formula to ternﬁ%u? and %’Ug, one obtains

Our o
r (971,

ou3,
T 8n 2

ou? o Ouy 0
= /f —ui) /Fm%“/%‘%> ‘/Fm‘l

u

Ouy  Oud ou
_ 0_ pul 4+ [ (22 9wz / Ouy
/Qf(“2 “2)+/pm “”/z(an on " e, Tom
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Then
oul " Ou Ou Ouy  Ouy  Oud  Ou
_ 00 U 0 g Y2 T2 Yy Y1 91
Emr) = /Q Iz u1)+/Fm(anT 2<I)T+q>u2)+_/>:(8n on + on  On + on  On )9
0

) Buz : ) 8uQ ) %
+/ [CRe 77>+<nrfd—u1)fnuﬁran]

ouf oud  oul
= f(uru1 / (—IT 2<I>T+<I>u2)+/ (6—;—8—:)

E)uz ou Qus
+ /F [t =) (G = 5 — 25 0w

oul oul  oul oul
_ 0 .0 i 0 i Oug 2.0
LetCy = /Qf(u2 ul)—l—/rm(—anT 2<I>T+<I>u2)+/2(—an ol 2/Fu Sl
and using the fact that; = u} + u{ andus = u} + uJ, we obtain

ou? ol  oul
E(n,7) = /fu2—ul / (8 1T—2<I>T+<I>ug)+/2(a—nl—a—;)g

ou ous  ouy. 0
b [ 45 -0 S+

_ oud 0 ou§ o oy
= /fu2_u1 /(6nT_2q)T+q)u2)+/E(8_n_8_n)g_2_ o

ous aug N ous ous
/ru(—nul‘f‘—nul)‘i‘/ {7]u1+7'8—n—28—n 1:|

0 I
_ ' au2 0 8“8 * * 87”‘2 auQ *
= o2 [ (e g+ [ [ o 2]
[ 81}?/ ud

Quy o Y . Ovy L ous

Then by applying Green formula to ternﬁbs—vQ, —Ly 8; ut andvs 8712 ,
au; 0 _ % 0 avg 8’[)2
/Fu o 2= /S;AuQUQ / VusVo) = / usvd — /QUQAUQ + . an . T

—
Q| D
:\so

8 *
/ Adu; + / VVul = / duy — / o) Auj +/ ﬂv? :/ nvd
Q r, on I,
uy = | Avjui + [ VoiVul = [ viu] — | viAu] + v = vy
u Q Q Q Q r, on r

u

Ouj " Ovg ovs
2oi = | Auivi + | Vuivel = | wivi — | wiAvi + 2u T2

on 2 2V 2 VU 2V 2 AV ) 9
r, on Q Q Ja Q r, on Iy n

the final expression of the energy functional becomes

oS . ovs
Bnr) = Co=2 [ +752) = [ (i +752) = Co— 20077 + (n.1) A7)

I
S

Concerning the symmetry of, let (i, 7), (¢, h) € H&)% (Ty) % HO%O(FU). Itis easy to see
that
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(400", mT) = /Q (Vui(n,7) = Va3 (1, 7)) (Vi (4, h) = Vs (6, b))
+ [ i) = w3, 1) i (6.1) = w30, 1)
Q
= [ (Vuih) - Vs ) (Tai 1) - Vus(n.7)
+ [ ) = 1) i 0) = w3 07)
= ()", A n)T)

Now, in order to prove tha#l is a positive-definite operator, consider, 7) # (0,0)
then

(4.0 0. 1)7) = /Q (Vui — Vag)? + / (u —ul)? >0

Q
Suppose tha(A(n, T, (n, T)T) = 0 thenu} = u} which implies that

(u{(n,7)|pm, Whm) = (0,0) then by using Holmgren’s uniqueness theorem,

Mm) £ (0,0). Thus,

u} = uy = 0 which is impossible becaus(ef{(nmﬂpu, o

(A(n, 7), (n, T)T) > 0 and the proof is completed.
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