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Pattern Formation in the Brusselator Model Using Numerical Bifurcation Analysis
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Abstract. Pattern formation is one of the most surprising natural phenom-
ena in real life. Analysis of spatiotemporal reaction-diffusion system can
lead to understanding the pattern dynamics. However, the periodic travel-
ing wave solutions resulting from the reaction-diffusion system can play
an important role to explain the pattern dynamics. In this study, we ana-
lyze a system of nonlinear reaction-diffusion equations called the Brusse-
lator model. We establish a parameter plane to investigate the existence of
periodic traveling waves as well as stability results of the model using the
method of continuation. We also find an Eckhaus type stability boundary
where we confirm the stability change by calculating the essential spectra
of the solutions of the model. As a result, we obtain a pattern transition
from stripe pattern to spot pattern of the model in the two spatial dimen-
sions numerically.
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1. INTRODUCTION

In excitable media [8], spatiotemporal periodic traveling wave (PTW) solutions are sig-
nificant for many partial differential equations (PDEs) to recognize the pattern formation.
The PTW solutions were more mentioned in ecological [1, 10, 16], chemical [2, 5, 23],
physical [17, 21, 22] and biological systems [3, 15]. In this paper, we numerically examine
the stability of the PTW solutions of the reaction-diffusion (R-D) model. The method of
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continuation [13] is a powerful and standard procedure to analyze the PTW solutions of the
system of PDEs.

This paper presents the mechanism of the pattern formation through the numerical in-
vestigation with the R-D Brusselator model which is also known as the trimolecular model.
This chemical R-D model involves rich spatiotemporal patterns. When two or more in-
teracting chemical diffuses then spatial patterns arise due to the instability [18]. Since
the concept about the pattern selection, pigmentation process of an activation and inhi-
bition in any natural system has no clear evidence [7]. Therefore the pattern formation
of any activator-inhibitor model is an interesting and challenging phenomenon for many
researchers. The Brusselator model with pattern formations are studied in [4, 6, 20, 24].
A numerical solution technique of the model named second-order method is developed in
[19].

In this article, we discuss the R-D Brusselator model in Section 2. In Section 3, We
employ the method of continuation through a package WAVETRAIN [13] to analyze the
PTW solutions of the R-D model. Also, numerical simulations in one dimension and two
dimensions are discussed in this section. Finally, some conclusions regarding the obtained
results are given in Section 4.

2. MODEL

The autocatalytic chemical reactions for the standard R-D Brusselator model [9] is given
by

∂u

∂t
= d1∇u + a− (b + 1)u + u2v,

∂v

∂t
= d2∇v + bu− u2v,

(2. 1)

where the dimensionless concentrationsu and v represents activator and inhibitor, re-
spectively andd1 andd2 are the corresponding diffusion coefficients. Also,f(u, v) =
a− (b + 1)u + u2v andg(u, v) = bu− u2v are the reaction kinetics for the activator and
inhibitor, respectively wherea andb represents the kinetic parameters. The steady state
solution of (2. 1 ) is(u∗, v∗) = (a, b

a ).

3. METHODOLOGY, RESULTS AND DISCUSSIONS

3.1. Existence and Stability Analysis Through Continuation Package.In this part, we
demonstrate the existence and stability of the PTW solutions of (2. 1 ) by the method of
continuation through a software package WAVETRAIN. The continuation package WAVE-
TRAIN needs some specific settings as input files. We considerz = x− ct as the traveling
wave coordinate with the space variablex, time variablet and the wave speedc. Now, we
useu(x, t) = U(z) andv(x, t) = V (z) and put in (2. 1 ) and hence, we get a system of
ordinary differential equations (ODEs) as following:
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TABLE 1. Considered parameter values of (2. 1 )

Parameters a b d1 d2

Values 3.0 · · · 3.0 10.0

dU

dz
= P,

dP

dz
= (−cP − a + (b + 1)U − U2V )/d1,

dV

dz
= Q,

dQ

dz
= (−cQ− bU + U2V )/d2.

(3. 2)

In order to solve the set of traveling wave equations (3. 2 ), WAVETRAIN requires
an initial PTW solution and we use an initial solution from the simulation of the model
(2. 1 ) for a pair of free parameterb and wave speedc values. The system (3. 2 ) repre-
sents the limit cycle solution indicates that, the existence of PTW solutions of the model
(2. 1 ). In order to calculate the stability results of the model (2. 1 ) in WAVETRAIN, we
need to perform some necessary calculations. By puttingulin(x, t) = u(x, t) − U(z) and
vlin(x, t) = v(x, t) − V (z), we form a set of linearized equations from (2. 1 ) on travel-
ing wave solution. By substitutingulin(x, t) = eλtU(z) andvlin(x, t) = eλtV (z) in the
linearized equations, we find the eigenvalue equations as follows:

λUlin = c
dUlin

dz
+ d1

d2Ulin

dz2
+ Ulin(−b− 1 + 2UV ) + Vlin(U2),

λVlin = c
dVlin

dz
+ d2

d2Vlin

dz2
+ Ulin(b− 2UV ) + Vlin(−U2).

(3. 3)

where the boundary conditions are as follows:

Ulin(P ) = Ulin(0) exp(iγ), for someγ ∈ R,

Vlin(P ) = Vlin(0) exp(iγ), for someγ ∈ R,
(3. 4)

whereP is the period of the PTW,γ is the wave phase shift for the one period,Ulin and
Vlin are the eigenfunctions andλ is the eigenvalue.

Now, using the method employed in [11], WAVETRAIN calculates the stability of PTW
solutions of the model (2. 1 ) by determining the essential spectrum. In the large domain
of the PTW solution spectrum, there exists only the essential spectrum [12]. Eckhaus type
stability change occurs if the spectrum curvature changes the sign near the origin and Hopf
type stability change occurs if the spectrum curvature changes the sign away from the
origin. [14]. 1 shows the PTW solutions of (2. 1 ) with the existence as well as the stability
results. We determine a two dimensional parameter plane as a function of the bifurcation
parameterb, where we use8 × 8 grid elements. In the numerical computations, we use
the parameter values of (2. 1 ) as mentioned in 1 and the parameterb is considered as a
bifurcation parameter. We find a locus of Hopf bifurcation points which is represented
by the orange color. Also, the green triangle represents that there is no PTW solution.
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FIGURE 1. An illustration of the existence and stability of PTW solu-
tions of (2. 1 ) as a function ofb andc. Here8× 8 grid elements is used
to generate this two dimensional parameter plane. The other parameter
values of (2. 1 ) are same as in 1. The symbol 115 refers that there is
no periodic traveling wave at that point, the symbol 108 refers the stable
PTW solutions and the symbol 108 refers the unstable PTW solutions.
The orange line refers to the locus of Hopf bifurcation points. The gray
line represents the iso-period lines. Also, The blue line indicates the
Eckhaus type stability boundary of the PTW solutions.

 0
 2
 4
 6
 8

 10
 12
 14
 16

U

-18
-16
-14
-12
-10
-8
-6
-4
-2
 0
 2

P

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

V

-2
 0
 2
 4
 6
 8

 10
 12

 0  0.2  0.4  0.6  0.8  1

Q

z/Period

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

U

-6
-5
-4
-3
-2
-1
 0
 1
 2

P

 2
 3
 4
 5
 6
 7
 8
 9

 10

V

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

 2.5
 3

 0  0.2  0.4  0.6  0.8  1

Q

z/Period

FIGURE 2. PTW solution profiles of (2. 1 )(a) A stable PTW solution
profile for b = 14.0 andc = 12.14 with period= 75.40.(b) A unstable
PTW solution profile forb = 15.5 andc = 2.42 with period= 18.95.
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Moreover, the red and blue circle on the parameter plane represents the stable and unstable
PTW solutions, respectively. After that, we determine a Eckhaus type stability boundary
between these stable and unstable PTW solution regions.

3.1 shows a stable PTW solution whereb = 14.0 and c = 12.14 where the period
for this particular stable PTW solution is75.40 and 3.1 shows an unstable PTW solution
profile whereb = 15.50, c = 2.42 and in this case, the calculated period is18.95. In 2, the
remaining values of the parameters in (2. 1 ) are same as in 1.
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FIGURE 3. (a)A dispersion diagram of the period and wave speedc for
b = 15.0. (b) a stable PTW solution behavior using essential spectrum
when c=11.0 (c) an unstable PTW solution behavior using essential spec-
trum when c=5.0.

3.1 shows the bifurcation diagram of the period of the PTW solutions and the corre-
sponding wave speeds. This bifurcation diagram is calculated atb = 15.0 where the other
parameter values are same as in 1.Our analysis shows that, the stability change occurs at
c = 8.19 whenb = 15.0 and which is Eckhaus type. Forb = 15.0 andc = 8.19, the
period of the PTW solution is42.75 (approximately) which is the minimum stable period.
An illustration of the bifurcation diagram in 3.1 by using essential spectra is given by 3.1
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and 3.1. 3.1 is plotted forc = 11.0 (c > 8.19) where we see that the spectrum curvature
changes the sign near the origin and does not cross the imaginary axis indicate that stable
PTW solution exists. In 3.1, we usec = 5.0 (c < 8.19) where we see that spectrum curva-
ture changes the sign near the origin but imaginary axis crosses indicate that unstable PTW
solution exists.

3.2. Pulse Increment of PTW Solutions. In this subsection, we verify our result obtained
in 3.1 with the direct numerical simulations of (2. 1 ) in one dimensional space. We apply
the periodic boundary conditions over the domain[0, Dx] with an implicit scheme. Here
Dx is the system size and can be represented byDx = n× p with the number of periodic
pulsesn and the spatial period of the pulsep. Also we use1305 grid elements withdx =
0.006 anddt = 0.01. In 4, the parameter values of (2. 1 ) are same as in 3.1. In 3.1, the
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FIGURE 4. Space-time plots of the PTW solutions of (2. 1 ) based on
the bifurcation diagram. (a) A stable two pulses PTW solution for the
period= 45. (b) A PTW solution where pulse increases from two pulses
to eleven pulses for the period= 42.

minimum stable period isP = 42.75 approximately at the Eckhaus bifurcation point. First,
we useDx = 90 as the system size with two periodic pulses that means, the spatial period
of each pulse isp1 = 45 which is higher value than minimum stable period value42.75.
Then we perform the numerical simulation with the above settings for5 < t < 50 and
we obtain a stable PTW solution as 3.2. Next, we useDx = 84 as the system size with
two periodic pulses that means, the spatial period of each pulse isp2 = 42 which is lower
value than the minimum stable period value42.75. After that, we perform the numerical
simulation with5 < t < 50 and we get a PTW transformation from two pulses to eleven
pulses. Since 3.1 represents a dispersion diagram which comes from 1 where 1 shows the
continuation results of the system (3. 2 ) that means existence as well as the stability of
PTW solutions of the model (2.1), hence we get a satisfactory correspondence between
the continuation results and the results from the direct numerical simulations of the model
(2. 1 ).

3.3. Pattern Formation Phenomenon. In this subsection, we verify our result obtained
in 1 with the direct PDE numerical simulations of (2. 1 ) in two dimensional space. We ap-
ply Neumann boundary conditions in (2. 1 ) with the alternating direction implicit method
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(ADI). We usedx = dy = 0.5 as space step anddt = 0.001 as time step on a grid of
220 × 220 elements. We also considerb as a bifurcation parameter and the other values

FIGURE 5. An illutration of the pattern evolution from stripe to spot in
two-dimensional space as we vary a parameterb in (1) and the other
parameter settings are same as those in Table I. Numerical results with
space stepdx = dy = 0.5 and time stepdt = 0.001 on grid of220×220
elements with (a) initial data (b)b = 10.5 (c) b = 10.8 (d) b = 12.0 (e)
b = 14.0 (f) b = 15.5.

of the parameters of (2. 1 ) are the same as in 1. We assume a bar initial data to perform
the whole simulation process. We continue our simulation process for a long time until
we reach a steady state pattern. The dynamics of the transformation of pattern formation
for the R-D model (2. 1 ) as a function ofb is observed in 5. 3.3 shows bar data as an
initial guess. We obtain a regular stripe pattern forb = 10.5 shows in 3.3. We find the
breakup of the stripe pattern near the stability boundary forb = 10.8 which shows in 3.3.
When we cross the stability boundary by increasing the value ofb, breakup also increases
which shows in 3.3 and 3.3. In 3.3, we get a fully spot pattern forb = 15.5. That means
the transformations from the stripe pattern to the spot pattern occurs for the PTW transfor-
mations via the Eckhaus type stability boundary. Consequently, we get a good agreement
between the continuation result obtained in reffig:wavetrain and the numerical result in
two dimensions.
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4. CONCLUSION

Regular spatial pattern formation is a central feature of natural phenomenon in a wide
range of biological and chemical systems. Recent evidence shows that spatial patterns be-
come an important indicator to explain the dynamical behavior of any R-D models. Nowa-
days, numerical analysis is a major way to understand the pattern solutions of the PDE
models. For such reasons, we studied the dynamics of pattern formation represented by
the nonlinear R-D Brusselator model. We showed the existence as well as the stability re-
sult analysis of the model through a continuation package WAVETRAIN. We obtained an
Eckhaus type stability boundary where we confirmed our stability results by determining
the essential spectra curvature. The stability result of the direct PDE simulations in one
dimension agreed with the continuation result of the system of ODEs. Also, the numeri-
cal simulations in two dimensions showed that the transformation of the pattern formation
occurred as a consequence of the PTW transformation due to the Eckhaus type stability
boundary. Hence, we get a fine correspondence of the system of ODEs continuation result
with the direct numerical simulations of the PDE system.
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