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Abstract. In this article, we explore the effect of noise on pattern emer-
gence in a predator–prey model with herd behavior developed because
of stochastic partial differential equations (SPDEs). Under specific level
of noise, the system is practically observed twice phase transitions. The
multi–scaling approach is extended from single to multiple SPDEs. Dy-
namical analysis of amplitude equation interprets the structural transitions.
Then we find the necessary and sufficient constraint which shows the phe-
nomena of transition from a spacial homogenous state to spatial travelling
wave. Noise has an undermining impact on the dynamics of a population
by the emergence of the Hopf bifurcation. Finally, theoretical results are
illustrated via numerical simulations.
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1. INTRODUCTION

Broadly noticeable phenomena in natural models are spatial non–homogenous dispen-
sation of quantities of species through various spatial scales and this phenomenon is called
spatial patterns. The Process behind the emergence of a spatial pattern is one of the main
problems in biological science. In 1952, Alan M. Turing exhibit that in a chemical model
how the coupling of reaction–diffusion can generate pattern formation [36]. In the past
few decades, some experts and scholars have performed a methodical study on different
reaction–diffusion model and emergence of patterns, such as the activator–inhibitor system
[13, 48, 20, 7], the Brusselator model [11, 3], the FitzHugh–Nagumo model [15, 49], the
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Gray–Scott model [18, 42, 17] and so on. Nowadays, the emergence of patterns attains
great popularity from researchers that spatial patterns appear in the result of interaction
among different biological and physical operations [4, 16, 22, 21, 5, 35, 25, 45, 46].

The impact of noise is a famous area in various fields ranging from physics to biology
and chemistry [10]. Recently, it is identified that in theoretical ecology noise is a key tool.
Some important queries in population–environment are connected to the part that noise
can affect the dynamics of the ecosystem such as weather forcing and non–linear interplay
allying individualists of same or distinct species [26]. The impact of noise produced on
population dynamics have been studied by [32].

In natural ecosystem the surrounding noise holds an essential role in phase transitions
[2, 8, 9, 31, 37, 38, 39]. From the mathematical point of view, in the form of travelling
waves the Hopf bifurcation generates a phase transition from spacial homogeneous state to
regular fluctuation [27, 40, 41]. When the density of the species in the start is same at equi-
librium the traveling wave appears near the spacial defect point. Related to the surrounding
the travelling waves have been observed, while the spacial structure of travelling waves is
not forever stable. A chemical observation [19] reveals that after the large interval of time
the regular spacial waves break into irregular turbulence. As the behavior of the solution
does not hold the theory of the reaction–diffusion model near the spacial defect point. The
phenomena which produce second phase transition is still unclear such that the regular pat-
terns develop into irregular patterns. To understand the behavior of second phase transition
numerical scheme is usually applied.

The main objective of this paper is to consider the travelling waves and investigate the
impact of phase transition induced by noise in a predator–prey system with herd behavior.
Our study tells us that the emergence of the Hopf bifurcation by noise reveal an undermin-
ing effect on the homogeneous state. With regular noise dynamics in the transitional time,
regular travelling waves are developed meticulously. The developing regime of travelling
waves slowly breaks and is unstable. Irregular turbulence will appear in the end. For long
period of time the regular regimes and irregular regimes exist together nevertheless the
irregular regimes eventually takes the region from the regular regimes and remains forever.

This article has been arranged as follows: In Section (2) we introduce the mathematical
model with the noise term in it. In section (3) the multi–scaling approach is applied to get
the necessary and sufficient conditions for noise to generate the Hopf bifurcation from the
amplitude equation. In section (4) to verify the theoretical analysis, numerical simulation
is applied to obtain the travelling wave.

2. MATHEMATICAL MODEL

In the form of square root of prey population the functional response of prey which
reveal herd behavior, the basic predator–prey system with logistic growth is as follow
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where U(t) denotes the density of prey and time t and V (t) denotes the density of predator
at time t. The parameter G is the developing rate of the prey. The parameter C 1 represents
the capacity of carrying for the prey and in the negligence of prey, the parameter D is the
extinction rate of the predator. The parameter E is the searching capability of U for V , C 2

is the consuming rate of prey to predator. The parameter T H is average time handling.
For understandability, the model (2.1) can be non–dimensionalized by using the follow-

ing scales:

P =
U

C1
, Q =

EV

G
√

C1

, tnew = Gtold,

where the remaining parameters are dimensionless which are
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D

G
, c =
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G
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√
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With these scaling model (2.1) becomes
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√
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On the other hand, the issue of spatial and temporal pattern formation in biological com-
munities is probably one of the most exciting problems in modern biology and ecology.
Spatial pattern formation arose from the observation in chemistry by Turing [36] that diffu-
sion can also destabilize equilibrium solution, a scenario well known as Turing instability.
Although this is counter intuitive, the interest in the diffusion-driven instability has long ex-
panded from chemical system to biological [23, 1, 12, 29, 30, 44, 28]. Thus by adding the
reaction term to the system (2.2) we obtained the reaction–diffusion predator–prey model
with herd behavior is as follows

∂P

∂t
= D1ΔP + P

(
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)−
√

PQ

1 + α
√
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∂Q
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= D2ΔQ +

c
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− sQ, (2.3)

where the non–negative constants D1 and D2 for the prey and predator are diffusion coeffi-
cients. Nevertheless, from [47], we know that the phenomenon of spatial pattern formation
in (2.3) cannot occur under all possible diffusion rates. So, the researchers in [47, 44]
change the linear mortality sQ into the quadratic mortality sQ 2 in (2.3) and investigated
Turing Pattern, Stability, Turing instability and Hopf bifurcations.

Let c = r, D1 = D2 = 1, b = s/r. We modify the system (2.3) with noise by
considering the key role of the noise in population dynamics as follows
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When the diffusion and noise is absent, by basic computation shows that this model has
three spatial uniform equilibria such as:

(0, 0), (1, 0) and (P∗, Q∗) =
(

b2

(1−αb)2 ,
b
(
(1−αb)2−b2

)
(1−αb)4

)
.

In [6], when α = 0 the average time handling is zero, the author has used this supposi-
tion. Following the work of [6] throughout in this paper, we also assume that α = 0 which
implies

∂P

∂t
= ΔP + P

(
1 − P

)−√
PQ + ϕη(t)

∂Q

∂t
= ΔQ + rQ

(√
P − b

)
+ ϕη(t), (2.4)

where ϕ is the noise tensor, η(t) is the arbitrary Gaussian variation which holds 〈η(t)〉 = 0
and 〈η(t)η(τ)〉 = 2ϕ(t − τ), i.e. the Gaussian variation η(t) is different in time and
consistent in space. We examined the system (2.4) under zero flux boundary constraints,
biologically we can say that there is no flux over the boundary of the population.

3. PHASE TRANSITION INDUCED BY NOISE

We call the system (2.4) a deterministic system in the absence of noise. When the dif-
fusion is absent, basic computation shows that the model (2.4) has three spacial uniform
equilibria which consists of two boundary equilibriums (0, 0), (1, 0) and a positive equilib-
rium (P0, Q0) = (b2, b(1 − b2) where b ∈ (0, 1). The Jacobian matrix J is as follows

J =

(
1−3b2

2 −b
r(1−b2)

2 0

)
=
(

J11 J12

J21 J22

)
.

From the biological point of view, we only focused the behavior of stability of positive

equilibrium point. In this case the positive spacial uniform equilibrium if b >
√

1
3 it is a

stable node. If b <
√

1
3 it is near to a stable limit cycle. Thus the system (2.4) undergoes

the critical value of the Hopf bifurcation parameter b:

b =

√
1
3
≡ bH .

When b > bH , we shall show that noise undermines the stable node to produce the alter-
nate dynamics. Multi–scaling analysis will apply near the Hopf bifurcation point. For the
solution of system (2.4) the Fourier expansion is as follows(

P
Q

)
=
(

P0

Q0

)
+
∑

k

exp(λ(k)t). (3.5)

Near the Hopf bifurcation value bH , the amplitude λ(kH) ≈ 0 correspond the wave–
number kH = 0. All the amplitudes λ(k �= kH) 	 0, expect for kH = 0. The amplitude
λ(kH) dominate the other amplitudes by using central manifold theorem. Based on the
stability of the spatial uniform solution, we consider a perturbation as follows

P̃ (t) = P (t) − P0, Q̃(t) = Q(t) − Q0.
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For the sake of convenience, we omit tildes. At the positive equilibrium (P 0, Q0), by
utilizing the expansion system (2.4) can obtain as

∂P
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For multi–scaling analysis, we let t = ωT + ετ1 + ε2τ2 + O(ε3) where the variable t
depends on T, τ1, τ2 and ε is infinitesimal. T is the fast time scale with same order as t,
where τ1 and τ2 are slow time scale and of high order as t. We let ε2 = b−bH

bH
, and the

term noise ϕ is small related to ε2. The dynamics has a fast time scale close to the value of

Hopf bifurcation, t ∼ 2π/ω where ω =
√

rb(1−b)
2 is the fast mode frequency. We set the

multi–scaling analysis as follows
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ϕ = ϕ0ε

3 + O(ε4), (3.7)

where Pi and Qi (i = 1, 2, 3) are slow time scale solution behavior.
Substituting (3.7) into the system (3.6) and comparing the same power of ε, one can

obtain the three equations as follows:
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Here
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Since LH linear operator of the system and (P1, Q1)T is the linear combination of the
eigenvector related to the eigenvalue iω. We first consider the case O(ε) and the solution
is given by

(P1, Q1)T = C(τ1, τ2)eiT + c.c., with  ≡ (1, 2)T ∈ Ker(LH − iωI), (3.10)

where C(τ1, τ2) is the arbitrary amplitude of the solution and c.c. stands for the complex
conjugate. Its form is intended by higher order perturbational term. The vector  is defined
up to a constant and normalized as follows

 = (1, 2)T , with 2 = −i

√
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2
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Next, we consider the case of O(ε2). Substituting (3.10) into system (3.8), we obtain
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The right side of the above equation have no resonance (i.e. B have no term of e iT ), by
default the Fredholm alternative is hold. We explicitly calculate the solution B in (3.8)as(
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We now consider O(ε3). Assure the existence of the non–trivial solution of this system
by using Fredholm alternative condition, where (ω ∂

∂T I − LH)∗ and (ω ∂
∂T I − LH) are
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the adjoint operator of each other. The right hand side of the vector function orthogonal
with the non–trivial kernel of (ω ∂

∂T I−LH)∗. The non–trivial kernel of (ω ∂
∂T I− LH)∗ is

represented as ∗eiT and
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To examine the resonance of the C, the Fredholm alternative condition satisfies 〈 ∗eiT ,C〉 =
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Let the amplitude A = εC and multiplying (3.15) by ε 3, we obtain the amplitude equation
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We notice that the amplitude A(t) depends on the strength of the noise ϕ. Furthermore,
Re(f1) = −√

3 < 0, when ϕ = 0 the amplitude decompose to 0 if b > bH , which means
positive equilibrium (u0, v0) is stable in the deterministic system. With the presence of
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noise, substituting ∗
1 = 1 and ∗

2 = i
√

2
r(

√
3−1)

into (3.16) one can obtain,

dRe(A)
dt
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where the real part of A is Re(A) and φ dependent on r. When the phase transition appears,
φRe(A)3 is terminate by (b − bH)(−√

3)Re(A). Thus, after large interval of time the
amplitude A(t) tends to positive steady state, if and only if

ˆ 2π/ω

0
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(
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√
2

r(
√
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sin(ωt)
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Since the phase transition rely on the noise, we deduce that phase transition produced by
noise and undermine the homogeneous state of the system. Hutt [14] Studied that the noise
driven the Hopf bifurcation.

Through numerical simulations, we will show that the noise induced phase transitions.
Figure. 1 shows that the prey species density found at defined space point. We observe that
in the stability of the system (2.4) noise played an essential role. The exact and amplitude
solution (obtained from (3.16) ) are decomposed to the positive equilibrium point (P 0, Q0)
in the deterministic system (up panel). The exact solution with noise showed alternate
behavior (down panel), where amplitude solution holds (3.16).

4. EMERGENCE OF TRAVELLING WAVE AND BREAKUP

The reaction–diffusion model emerge travelling waves in 2–dimensional space in case of
phase transition produced by Hopf bifurcation [33, 34]. Self–composed travelling wave is
generated at the core of the spatial defect point. Numerically it will be shown that travelling
waves are generated by noise driven phase transition. The simulation shows that travelling
waves break into spatial–temporal chaos slowly known as spiral turbulence. In a chemical
model, the spiral turbulence was initially determined by [19].

Our numerical scheme depends on the formulae based on stochastic Euler forward finite
difference algorithm [43, 48]. Although the section, the system is observe in defined spatial
domain [0, 900]×[0, 300]. On a framework the system is determined by step time Δt = 0.1
and step space Δu = Δv = 1. Numerical scheme of the system is initialized by spatial
homogenous population densities distribution for the reason that homogeneity will last till
the end by spatial homogenous initial distribution, which is not of our concern. We count
the given below initial conditions for comprehensive results.

P (u, v, 0) = P0 − ε1(u − 180)(u − 720)− ε2(v − 90)(v − 210),
Q(u, v, 0) = Q0 − ε3(u − 445)− ε4(u − 135), (4.19)

where ε1 = 8 · 10−7, ε2 = 6 · 10−7, ε3 = 9 · 10−5 and ε4 = 6 · 10−5.

P (u, v, 0) = P0 − ε1(u − 0.1v − 225)(u − 0.1v − 675),
Q(u, v, 0) = Q0 − ε2(u − 225)− ε3(v − 675), (4.20)
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where ε1 = 8 · 10−7, ε2 = 6 · 10−7, ε3 = 9 · 10−5.
Finding for the prey species is presented in our numerical scheme. Figure. 2 and 4

indicates the systematic emergence of an irregular spatial regime as rising of regular spatial
travelling waves as indicated by initial constraints (4.19) and (4.20), while the travelling
waves in the initial stage are more regular in Figure. 2(a) than Figure. 4(a). It is shown
in (Figure. 2(d) and 4(d)) that the break up in travelling waves begins with the emergence
of an irregular spatial regime and in the end, the irregular regime appears in the complete
region. The noise played a main part in establishing travelling waves as shown in Figure. 2
and 4 and is not compulsory to demolish the stability of travelling wave. Similarly for the
system (2.4), finding for the prey species is presented when average handling time α �= 0.
A systematic emergence of an irregular spatial regime as rising of regular spatial travelling
waves as shown in Figure. 3 and 5 connected by initial constraints (4.19) and (4.20), while
in the initial stage the travelling waves are less regular than in Figure. 3(a) than Figure.
5(a). It is shown in (Figure. 3(d) and 5(d)) that the break up in travelling waves begins with
the emergence of an irregular spatial regime and in the end, the irregular regime appears
in the complete region. The noise played a main part in establishing travelling waves as
shown in Figure. 3 and 5 and is not compulsory to demolish the stability of travelling wave.
The cause of break up in travelling waves is not clear.

The emergence and break in the pattern of the system dynamics can be seen in detail
in Figure. 6 and Fig. 7. The 2-dimensional energy spectra are indicated by Figure. 6
is a suitable sign of spatial chaotic dynamics [24]. The dynamics of spatial regime show
widen character after the large interval of time. The moving path attains at a defined point
(u, v) = (450, 150) in the phase region is shown in Figure. 7. We can easily find out
that inside the limit cycle the path nearly fills the complete domain. Thus, to divide the
domain into two sections a visible boundary at each moment is present such as a regular
and irregular regime (jagged pattern) [24]. In addition, the steady expansion in the limit
cycle amplitude exhibits increase in the boundary. The irregular regime at the end disperses
on the complete domain, which indicates that for a specific large time interval the two
dynamical patterns can coincide. We can observe by Figure. 2 and 4 that noise can cause
an appearance of chaotic spatial–temporal regime at large time interval which appears to
remain forever, while the regular pattern appears at an intermediate time. Figure. 3 and 5
also showed the same observation as mentioned above.

5. CONCLUSION

In this study the impact of noise on spatial regime dynamics in a predator–prey system
with herd behavior is observed. We focused that the model without noise is locally stable
under parametric constraint. Sufficient and necessary constraint is constructed for noise by
multi-scale analysis to generate the existence of Hopf bifurcation by amplitude equation,
which resulted in the appearance of travelling waves evolved into the spatial–temporal
chaos.

Before the appearance of spatial–temporal chaos two transitions exist. The Appearance
of travelling waves originally by spatial heterogenous population density dispersion is the
result of the first transition. The break in travelling waves in spatial–temporal chaos is
resulted by the second transition. The mathematical point of view for second transition
is ambiguous, while on the other hand multi–scale analysis completely understood. With
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noise, this method helps to compute directly the centre manifold and examine its impact
on Turing bifurcations. We obtain the bifurcation constrain (3.18) by deriving amplitude
equation (3.16). The level of the noise strength ϕ is not included in bifurcation constrain.
On the other hand ϕ is an order of ε3 such as ϕ ∼ ((b−bH)/bH)3/2 as assumed from (3.7).
We find out that the noise can induce the spiral turbulence by a second phase transition.
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FIGURE 1. Comparability of prey P density for system (2.4) among de-
terministic system (up panel) and noise system (down panel). (Noise
ϕ = 0.01, with parameters r = 50, b = 0.572.)
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FIGURE 2. Spatial dispersion of P (prey) for (a) t = 250, (b) t = 500,
(c) t = 1000, (d) t = 2000 having initial condition (4.19) for the system
(2.4) with parameters r = 50, b = 0.572, ϕ = 0.01.
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FIGURE 3. Spatial dispersion of P prey for (a) t = 50, (b) t = 100, (c)
t = 200, (d) t = 250 having initial condition (4.19) for the system (2.4)
with parameters α = 0.1, r = 50, b = 0.572, ϕ = 0.01.



34 Naveed Iqbal, Ranchao Wu

FIGURE 4. Spatial dispersion of P prey for (a) t = 250, (b) t = 500,
(c) t = 1000, (d) t = 2000 having initial condition (4.20) for the system
(2.4) with parameters r = 50, b = 0.572, ϕ = 0.01.
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FIGURE 5. Spatial distribution of prey for (a) t = 50, (b) t = 100, (c)
t = 200, (d) t = 250 with initial condition (4.20) for the system (2.4)
with parameters α = 0.1, r = 50, b = 0.572, ϕ = 0.01.
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FIGURE 6. Images of 2-dimensional power spectra for P (prey) at t =
2000 with initial conditions (4.19) (left) and (4.20) (right).
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FIGURE 7. The System (2.4) phase plane at spatial location (450, 150)
in the filled domain by spatial–temporal irregular oscillation for initial
conditions (4.19) (left) and (4.20) (right). The dot shows the initial point
while the pointer indicates the trajectory direction.


