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Abstract. This paper proposes a memetic algorithm by integrating adap-
tively a local search approach with a recently proposed variant of differ-
ential evolution, reflected adaptive differential evolution with two external
archives (RJADE-TA). The main objective is to bring together the explo-
ration factor of differential evolution and exploitative component of local
search to solve continuous optimization problems. A novel hybrid local
search mechanism is proposed and demonstrated leading to a crossbred
version of RJADE-TA. In other words, the best solutions after a regular
toll of global search are migrated to an archive, where Davidon Fletcher
Powell local search method is implemented to the migrated solutions. Af-
terwards, the population is updated with new reflected solutions to pre-
vent premature convergence. The proposed approach is novel in the sense
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that most of the algorithms store only inferior or superior solutions in the
archives. None of the algorithms implemented the local search inside the
archive. Thus, this combination is a new one. To evaluate the merit of
developed meme, a benchmark suite of complex 28 functions from CEC
2013 test problems is selected and implemented. The experimental re-
sults demonstrate that this integration of local search strategy can further
improve the performance of RIADE-TA. They further reveal that the pro-
posed meme outperforms differential evolution based algorithms on most
of the tested problems.

AMS (MOS) Subject Classification Codes: 35529; 40S70; 25U09
Key Words: Population Minimization, Local Search, Global Optimization, Memetic Al-

gorithms, Adaptive Differential Evolution, External Archives.

1. INTRODUCTION

Continuous optimization is a popular research field, because various real world tasks
can be formulated as a continuous function [32, 35]. Various population based search
techniques have been proposed in last few decades to deal with this kind of continu-
ous optimization problems. For instance, Genetic Algorithm (GA) [17, 33, 47], Particle
Swarm Optimization (PSO) [15, 20, 21], Evolution Strategies (ES) [16], Cuckoo Search
(CS) [45,46], Ant Colony Optimization (ACO) [12, 13,40], Bacterial Foraging Optimiza-
tion (BFO) [19,38] and Differential Evolution(DE) [39,41,42].

Among the above established algorithms, DE is a metaheuristics that can deal with
complex problems effectively, without having specific information about problems [28].
In the past two decades, DE has been shown as a powerful optimizer for a wide variety
of optimization problems [30]. DE has the advantage over PSO, GA, ES and ACO as
it contains very few parameters to controll. It is user friendly and easy to implement.
Because of these merits, we have chosen DE as a global optimizer in the proposed hybrid
strategy. Due to its simple structure and few controlling parameters, DE has been widely
applied [4,5,8,10,36] to practical optimization problems. However, DE does not guarantee
fast convergence to the known optimum [28,31]. Stagnation of DE has been observed in
many experimental studies [28].

Local Search (LS) [18] techniques can be hybridized to improve DE’s search capability.
Merging of LS mechanism into a global search optimizer for fine tuning the solution is
known as Memetic Algorithm (MA) [3, 28, 29]. Two of the most recent MAs are [32]
and [28]. In both hybrids, LS mechanism is utilized to complement the global search
algorithm. Very recently, Broyden Fletcher Goldfarb Shanno (BFGS) LS was hybridized
with an adaptive DE variant, JADE [49], which results in an MA, DEELS [22]. In most of
these hybrid designs, LS is incorporated to the best solution only. However, in our proposed
hybrids, it is incorporated to the archived elements with population minimization.

In the current paper, we propose a hybrid design which inlaid Davidson-Fletcher-Powell’s
(DFP) [2,11] LS strategy into our recently proposed algorithm, RJADE/TA [23] to improve
further the performance of RJADE/TA. The key idea is to operate the archived elements by
LS and keeping the record of both the perviously explored and new points to minimize the
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chance of loosing the ever best solution. For this purpose, a different LS mechanism is
utilised resulting in a novel hybrid. Firstly, DFP is implemented to the archived informa-
tion. Secondly, a reflection mechanism is proposed.

This study has the following structure: Basic DE, RJADE/TA and DFP are described in
Section 2. Following the related work in Section 3, Section 4 presents the proposed hybrid.
Section 5 presents the experimental results and its analysis obtained with the proposed
algorithm. Finally, Section 6 concludes this paper and comments on some future research
directions.

2. BAsic DE, RJIADE/TA AND DFP

We already described canonical DE and JADE in detail in our previous work [22,23],
here we only review RJADE/TA and DFP method upon which the present work is mainly
based.

2.1. RJADE/TA. RJADE/TA is an adaptive DE variant. The main idea of which is to
archive elite solutions of the population at regular interval of optimization and reflect the
overall poor solutions. RJADE/TA introduced the following two aspects in JADE:

2.1.1. Mirroring the Elite Candidate. To avoid stagnation and early convergence, RIADE/TA

replaces the best solution, ZEIZ]est,i)

to the second archive A2/, The best individual zEIZLS £0) (the solution corresponding to

minimum function value) of population P is shifted away through the centroid x. . The

(K] (K] :
(best,i) (best,i) by itself

is migrated to the second archive A[?! as shown in the Algorithm 1.

by its mirror image of the search procedure and post it

reflected candidate replaces z in the P and the ever best candidate z

2.1.2. Second Archive. RJIADE/TA has two archives, referred as Al and A for the sake
of convenience. When the optimization reaches the half of available resources (maximum
function evaluations), the first archive update of A%l is made. Afterwards, A is updated
adaptively with a continuing intermission of generations, refer to Algorithm 1. The char-
acteristics of both archives can be listed as:

(1) The optimal solutions of the current search are posted to A2, whereas Al stores
the very recently found inferior solutions.

(2) The size of A can not exceed population size N [°], if it does, few solution vectors
are discarded arbitrarily; however, in AL the size might exceeds [V [P, As it makes
history of all found best individuals, none of the solutions is discarded here.

(3) A%l records only single solution of the present generation, it might be a parent or
an offspring solution. In contrast, Al'l maintains the substandard (more than one)
“parents individuals ” only.

(4) Al is updated at each generation and A[?!, initialized as 0, is updated adaptively
with a gap of x generations.

(5) The information in A"l is employed in reproduction afterwards. Whereas in Al?!
the stored best solution is reflected with a new solution; which is then sent to
the population. Once a candidate solution is posted to A2, it remains passive
during the toll of whole optimization. When the search procedures are terminated,
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Algorithm 1 Outlines of RIADE/TA Procedure [23]

1:

21:

22:
23:
24:
25:
26:
27:
28:
29:

35:

R AN A

Sample size = N [Pl FES = Function Evaluations; x = difference between 2 consec-

utive updates of A% ;
(k] IK] [k]

Generate N P! uniform and random solutions, 21,0 B(s2si)7 2 B ) to make the
initial population P;
Initialize Archives At = A2l = p;
Set \CR = \AF =0.5;p=5%; c=0.1;
Set Scp = Sp = @;
Evaluate the members of P;
while FES < MaxFES do
Compute F; = rand(AF,0.1);
Choose zEﬁ;s]t) randomly from IOOp% populatlon
Make random selectlon of z 75 z (5.0) from P;
Arbitrarily select Z z by z[];] 4 from PU Altl;
[k] ZlK] [p,k] (k] (k] CAL AN
Prodpce trial Vectors w( z(, i (z Zipst) ~ B(s,iy) T Fi(z(shi) — X(gy.i));
for j = 1tondo
if j < jrana or rand(0,1) < CR; then
(k] (K]
i = Wi
else . .
G0 = 26y
end if
end for
Choose the fittest amongst {zgi]i), qgi]i)};
if qE | is the elite then
(SJ) — A 1], CR; = Scr, F; — SF;
end if
if size of Al'l > N then
Remove some solutions of Al arbitrarily;
end if
Update A%
if k = U,j] then
(best ) - A[Q];
K] (% ] _ N “’] [k]
Calculate the center of mass of P — 2z 4¢3y as 2z, ; = N[l’] . Doin ()
. . k k k k
Produce point of reflection as zui) = zEC]’i) + (z Ec]’i) — zEbLSm))

end if
AMCR=(1—-c¢)-A\CR+c-meana(Scr);
AF =(1—¢) - AF +c-meang(Sr);

end while

36: Outcome: The population member corresponding to minimum function value from

PU A% in the optimization.
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then the recoded information contribute towards the selection of the best candidate
solution.

In the forthcoming section, we will describe the LS method which will be incorporated in
the new algorithm.

2.2. Davidon Fletcher Powell Method (DFP). The DFP method is a variable metric
method, which was first proposed by Davidon [11] and then modified by Powell and
Fletcher. It belongs to the class of gradient dependent LS methods. The DFP procedure is
outlined in Algorithm 2. If a right line search (given in line 16) is used in DFP method, it
will assure convergence (minimization) [2].

Algorithm 2 Outlines of DFP Algorithm [44]

1: Inmitialization, error: demanded accuracy;
2 7 : iterations counter .

3 z[0] : the initial iterate .

4 H : I,, <, Initialization of Hessian matrix.

5: 3 =0.

6: while j < v do

7 find the difference d, = zli 1] — zlil;

8 find the difference dy = V f(zUT1) — v f(zl7]);
9 ifd. # 0and dy # O then

’

10: temp, = d,HUld,;

g
11: tempy = d/zdg;
12: Revise the Hessian matrix as:

a1 _ gl (ede)  (HUdyd HUD)

tempy tempq
13: end if
14: locate the search direction sl/] with the help of Hessian matrix sl/] = —HUIV f(zU]);
15: calculate a; by golden section search [44];
16: zU+1 = 2] 4 o lilsl],

17: end while
Result: zlJ+1 s the output of the algorithm.

3. RELATED WORK

To heal the above mentioned weaknesses of DE, many researchers merged various LS
techniques in DE. Nelder Mead Simplex (NMS), a LS method was hybridized with DE [1]
to improve the local exploitation of DE. Recently, two new LS strategies were proposed
and hybridized iteratively with DE in [28,32]. These hybrid designs showed performance
improvement over the algorithms in comparison. Two LS strategies, trigonometric and
interpolated LS were inserted in DE to enhance it’s poor exploration. Also, two LS tech-
niques were merged in DE along with a restart to improve its global exploration [24]. This
algorithm was statistically sound, as the obtained results were better than other algorithms.
Furthermore, alopax dependent crossover LS was merged in DE [27] to improve its di-
versity of population. In another experiment, DE’s slow convergence was enhanced by
combing orthogonal design (OD) LS [9] with it. To avert local optima in DE random LS
was hybridized [37] with it. On the other hand, some researchers borrowed DE’s mutation
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and crossover in traditional LS methods, for example see [25,48]. To the best of our knowl-
edge, none of the reviewed algorithms in this section hybridized DFP local search into DE
framework. Further, the proposed work here maintains two archives, first one stores infe-
rior solutions and second keeps information of elite solutions migrated to it by the global
search. Furthermore, the second archive improves the solutions’ quality further by imple-
menting DFP there. Hence our proposed work has the following advantages. Firstly, the
second archive keeps complete information of the solutions before and after LS. This way
any good solution is not lost. Secondly, the migrated solutions to second archive are regen-
erated by new reflected potential solutions which maintain the diversity of the population.
This diversity is very important for the search to carry on and as a result it does not converge
prematurely.

4. RJADE/TA INTEGRATED WITH LOCAL SEARCH

A good number of hybrid algorithms of LS with global search algorithms have been
proposed in literature. However, hybridizing two or more technique together to perform
efficiently is still a major issue. In this paper, we hybridize a LS method DFP with a global
search method RJADE/TA. DFP is integrated in a different way into RIADE/TA, resulting
in a different variant of RJADE/TA. We shall refer this as RJADE/TA-LS through out this
work.

4.1. RJADE/TA-LS. The initial population is explored by RJADE/TA till 50% of the
function evaluations. After regular mutation, crossover, selection and All] updates in
RJADE/TA, as shown in Algorithm 1, the population is sorted and the current best so-

(%]

lution z ) is migrated to A, where DFP LS will be incorporated to the migrated

(best,i
elements. After implementation of DFP, ZEI:z]ew,i) is produced from old migrated solution.
Here, the previously explored and the new solution as a result of implementation of DFP
will be posted to archive A?! (see Algorithm 3). Unlike our perviously proposed archive
APl in RTJADE/TA [23], where the archive was keeping the records of only best solutions
and with no LS, A2l in this experiment will maintain information of both solutions.

Due to migration of best solution to A[?!, the current population size will be decreased by
1 at each A?! update in RIADE/TA-LS. Thus to maintain fixed population, a replacement

Eﬁ]i) of

) is computed through the centroid of the N?! — 1 population

is newly generated and added to the population as follows. Infect a mirror image z
(k]

the migrated solution z (best.i

NPl
k] _ (Nl 1y [K]
z0; = (NP 1) Y "2, @1
i=2
Hence ignoring the shifted solution by equation shown in line 7 of Algorithm 3. The
current population is updated with this new candidate solution and iteration is terminated.

(kl - _ [k (%] (k]
Z(ri) = (B(ei) = Boesti) T B(cyiys “.2)
(%] (K]
(ry2 (best,i)*
The archive A?! is updated after regular intervals of « generations (20 here). The mi-
grated solutions and those explored by DFP remain there during the entire optimization.

where z ) is the reflection [34] of z
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When the whole evolution is completed the overall best candidate is selected from PU A%
The novelty of RIADE/TA-LS is that it employs the LS to the archived solutions only, dif-
ferent from all the hybrids designs reviewed in section 3 above.

Algorithm 3 RJADE/TA-LS

1: Update AP as;
2: if k = k then

(K] .
3: z(best,i) - A[z]’
4: Apply DFP to ZEIZLS 1) t0 prduce zE]:L]ewJ.),

. [K] 2] [K) [2].
5: Zinewi) A%l and Bipesti) AlZly .
p

6: Calculate the centroid of P — z[k}(best,i) as Z[Ckl = ﬁ Zf\;2 Zgﬁ]l)
7: Produce point of reflection as zglji) = ZEIZ],z') + (Zglz]l) - ZEIZLSt,i))
8: end if

9: Update the population with ZEI:,]Z.).

10: Terminate the iteration.

5. EXPERIMENTATION

In this section, first we discuss the experimental setup, and then RIADE/TA-LS is com-
pared with global problem solvers available in the litrature.

5.1. Experimental Setup. Extensive experiments are conducted on 28 functions of CEC
2013 test problems [26], We will refer these as CP1, CP2, and so on in this experiment.
We follow the parameter settings suggested for CEC 13 test suit [26]. The population
size NP is kept 100 and problem dimension, 7 is considered 10 here. The demanded
functions evaluations are 10000 x nn. The stopping criteria are that if the maximum function
evaluations are met or the difference between the Means of function errors is less than 108
as suggested in literature [23,26].

5.2. Comparison of RJADE/TA-LS with Global Problem Solvers in Literature. Table
1 shows the experimental statistics (i.e., best, mean, median, worst and standard devia-
tion) obtained by RJIADE/TA-LS in 51 runs on 28 functions with dimensions n = 10 of
the CEC 2013 test functions. Whereas Table 2 presents the "Mean values” of function er-

rors (f (ZEIZLS i) — f (zyji))) obtained by proposed RIADE/TA-LS, where f (ZEIZ]@')) is the
known value to reach of a particular problem. The comparison is made with ada7ptive DE
variants jDE, jDEsoo [6] and jDErpo [7] proposed in the literature. These algorithm were
presented at special session of CEC 2013 competition. Moreover, we further compare the
new algorithm against our previously proposed RJADE/TA [23] in the same table.

In Table 2, the + shows that the specific algorithm wins against our RJIADE/TA-LS,
the - indicates that the particular algorithm loses against our algorithm and = reveals that
both the algorithms obtained same statistics. The outstanding performance of RJADE/TA-
LS is clearly visible from Table 2, where many negative - signs made this fact evident.
It is clearly visible that RJADE/TA-LS achieved significantly better results than jDE and
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TABLE 1. EXPERIMENTAL STATISTICS OF RJADE/TA-LS ON 28
TEST FUNCTIONS OVER 51 RUNS WITH DIMENSION n = 10.

Test Problem || Best Worst Median Mean Std Dev
cp1l 0.0000e + 0 0.0000e + 0 0.0000e + 0 0.0000e + 0 0.0000e + 0
CP2 0.0000e + 0 0.0000e + 0 0.0000e + 0 0.0000e + 0 0.0000e + 0
CP3 2.2737¢ — 13 3.3330¢e + 03 1.1399¢ + 02 2.5750e + 02 5.0783FE + 02
CP4 0.0000e + 0 2.0151e + 003 0.0000e + 0 3.9511e + 001 2.8216e + 02
CP5 0.0000e + 0 0.0000¢e + 0 0.0000e + 0 0.0000e + 0 0.0000e + 0
CP6 0.0000e + 0 9.8124e + 0 9.8124e +0 6.9264¢e + 0 4.5155e + 0
CP7 7.7216e — 04 3.3426e + 0 5.0649¢ — 02 2.3707¢ — 01 5.2201e — 01
CP8 2.0153e + 01 2.0532¢e + 01 2.0361e + 01 2.0352¢e + 01 7.9096 F — 02
CP9 2.7588¢ + 0 5.6920¢e + 0 4.5433¢ + 0 4.4888¢ + 0 6.0648¢ — 01

CP10 1.0573e — 11 6.5443e — 02 3.2581e — 02 3.2488e — 02 1.4326e — 02
CP11 5.6843¢ — 14 9.0949¢ — 13 1.7053e — 13 2.2737¢ — 13 1.7576e — 13
CP12 3.0935¢ + 0 1.0292¢ 4+ 01 7.1592e + 0 6.8613e + 0 1.5339¢ + 0
CP13 3.1153e¢ + 0 1.4565F + e01 7.8074e + 0 7.9039¢ + 0 2.5344e + 0
CP14 1.7909F — 004 6.6399F — 002 1.8731E — 003 7.3105E — 003 1.6904F — 002
CP15 2.0294F 4+ 002 8.8731F + 002 6.8075F + 002 6.6733F + 002 1.4778E + 002
CP16 6.0593F — 001 1.6032F + 0 1.0913E +0 1.0855E +0  2.1696FE — 001
CP17 1.0122F + 001 1.0122F +001 1.0122F + 001 1.0122FE + 001 4.4260F — 006
CP18 1.6924F + 001 3.2454F + 001 2.2826F + 001 2.2884F + 001 3.4018E 4+ 0
CP19 3.1028F — 001 5.7275E — 001 4.6508F — 001 4.4752F — 001 6.1314EF — 002
CP20 1.9544F 4+ 0 3.4657E + 0 2.5479F + 0 2.5707E +0  3.4632F — 001
CpP21 2.0001FE + 002 4.0019FE + 002 4.0019F + 002 3.9627E + 002 2.8031F + 001
CP22 1.0508FE — 002 1.2329FE + 002 1.4179E + 001 2.0589F + 001 2.3414F + 001
CP23 2.0008FE + 002 1.1802FE + 003 6.6229F + 002 6.7549F + 002 1.9405E + 002
CP24 1.2132FE + 002 2.1316E + 002 2.0043E + 002 1.9809F + 002 1.9196F + 001
CP25 1.7553F + 002 2.1085FE + 002 2.0063FE + 002 2.0190F + 002  4.7984F + 0
CP26 1.0540F + 002 3.1497FE + 002 1.1413E + 002 1.3596F + 002 4.6023FE + 001
CP27 3.0001F + 002 3.0223E + 002 3.0022FE + 002 3.0033E + 002 3.7837E — 001
CpP28 3.0000E + 002 3.0000F + 002 3.0000E 4+ 002 3.0000FE + 002 5.1662F — 012

jDEsoo algorithms on 14 and 15 out of 28 problems, respectively. In contrast, jDE got
superior statistics on 8 problems against RIADE/TA-LS, which can be seen from Table 2.

In comparison with jDErpo, both the algorithms solved 12/28 problems, while on 4
problems they are equivalent. While in comparison with RJADE/TA, RJADE/TA-LS per-
forms superior than RIADE/TA. It is interesting to note that on complex problems, CP21-
CP28, RJADE/TA-LS performed better on majority of problems against most of the algo-
rithms. This is surly due to the integration of LS, which is very good in fine tuning the
solution.

The proposed work here incorporates a reflection mechanism which saves the search
from going into bad direction. RJADE/TA-LS dependency on LS for fine tuning the solu-
tion could be the reason of its getting good solutions, while the algorithms in comparison
which are not using LS did not get better solutions. Moreover, its archive records the
shifted solutions and newly generated ones, so it has a very low chance to loose good so-
lutions or to stuck into local optima. In general, it keeps balance between exploration and
exploitation.
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TABLE 2. Comparison of RIADE/TA-LS Obtained Results with Other

Global Optimizers.
| Prob || jDE jDEsoo jDErpo RIADE/TA  RJADE/TA-LS |

CcP1 [[ 0.0000e + 0= 0.0000e +0= 0.0000e + 0= 0.0000e + 0=  0.0000e + 0
CP2 || 7.6534e — 05- 1.7180e + 03- 0.0000e +0=  0.0000e + 0=  0.0000e + 00
CP3 || 1.3797e+ 0+ 1.607le +0+ 3.7193e — 05+ 1.2108¢ + 02+ 2.5750e + 02
CP4 || 3.6639¢ — 08+ 1.2429¢ — 01+ 0.0000e + 0+ 1.1591e +02- 3.9511le + 01
cP5 || 0.0000e +0= 0.0000e +0=  0.0000e + 0= 0.0000e + 0= 0.0000e + 00
CP6 || 8.658le+0- 8.4982¢ + 04- 5.3872¢ + 0+  7.8884e +0-  6.9264e + 00
CP7 || 2.7229¢ — 03+ 9.4791le — 01- 1.6463e — 03+ 1.5927¢ — 01+ 2.3707e¢ — 01
CP8 || 2.0351e 4+ 01- 2.0348¢ + 01+ 2.0343e + 01+ 2.0366e + 01-  2.0342¢ + 01
CP9 || 2.6082¢+ 0+ 2.7464e + 0+ 6.4768¢ — 01+ 4.4593¢ + 0+  4.4888¢ + 00
CP10 || 4.5263¢ — 02- 7.0960e — 02- 6.4469¢ — 02- 3.5342¢ — 02-  3.2488¢ — 02
CP11 || 0.0000e + 0= 0.0000e +0= 0.0000e +0= 0.0000e + 0=  2.2737e¢ — 13
CP12 || 1.2304e+01- 6.1144e + 0+ 1.3410e +01- 7.7246e +0-  6.8613e + 00
CP13 || 1.3409e 4+ 01- 7.8102¢e + 0+ 1.438le +01- 6.757le+0+  7.9039¢ + 00
CP14 || 0.0000e+ 0+ 5.0208¢ — 02- 1.9367e +01- 1.1994e — 02- 7.3105¢ — 003
CP15 || 1.1650e 4+ 03- 8.4017e + 02- 1.1778¢ + 03- 6.6660e + 02+ 6.6733¢ + 02
CP16 || 1.0715e+ 0+  1.0991e +0- 1.0598¢ + 0+ 1.1336e +0-  1.0855¢ + 00
CP17 || 1.0122¢ + 01= 9.9240e + 0+ 1.0997¢ + 01- 1.0122¢ +01= 1.0122¢ + 01
CP18 || 3.2862¢ 4+ 01- 2.7716e + 01- 3.2577e +01- 2.2715¢ + 01+ 2.2884¢ + 01
CP19 || 4.3817¢ — 01+ 3.1993¢ — 01+ 7.4560e — 01- 4.4224e — 014+ 4.4752¢ — 01
CP20 || 3.0270e+0-  2.7178¢ +0-  2.5460e + 0+ 2.5317e +0+  2.5707e + 00
CP21 || 3.7272e + 02+ 3.5113e + 02+ 3.7272e + 02+ 3.9627¢ + 02=  3.9627¢ + 02
CP22 || 7.9231e+01- 9.1879e + 01- 9.7978¢ + 01- 2.7022e + 01-  2.0589¢ + 01
CP23 || 1.1134e 4+ 03- 8.1116e+ 02- 1.1507e +03- 7.0015e 4+ 02-  6.7549¢ + 02
CP24 || 2.0580e 4 02- 2.085le+ 02- 1.8865e + 02+ 2.0217e+02-  1.9809¢e + 02
CP25 || 2.0471le 4+ 02- 2.0955¢ + 02- 1.9885e + 02+ 2.0314e + 02-  2.0190e + 02
CP26 || 1.8491e 4+ 02- 1.9301le+ 02- 1.1732e + 02+ 1.2670e + 02+ 1.3596¢ + 02
CP27 || 4.7470e 4+ 02-  4.9412e + 02- 3.0000e + 02+ 3.0351e 4+ 02-  3.0033e + 02
CP28 || 2.9216e + 02+ 2.8824e + 02+ 2.9608¢ + 02+ 2.8824e + 02+  3.0000e + 02

- 14 15 12 12

+ 8 10 12 10

= 6 3 4 6

The high performance of RIADE/TA-LS on last CP21-CP28 problems, being the most
difficult ones in the CEC 13 test suit as these are formulated by combining two or several
other complex problems [43], indicates that the new technique is more suited to such hard

problems.

Further boxplots are plotted to study the behaviour of RJADE/TA-LS against RIADE/TA.
The means obtained by both algorithms in 20 runs are represented by the boxplots. Since
we considered minimization problems only, so if the boxplot in figure 1 is lower than the
other, then it is considered as best. Thus, the boxplot of CP8 and CP10 in figure 1(a) and (b)
reveals that means obtained by RIADE/TA-LS are lower than RJADE/TA, so RJADE/TA-
LS is better than RIADE/TA. The boxplots for CP18, CP20 and CP24 are given in figure
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FIGURE 1. Boxplots of RIADE/TA-LS and RJADE/TA
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1(c), (d) and (e). In all of these functions, RJADE/TA found same mean value in each
run, so the boxplot is given as straight line, which means it was stuck in local optima.
While RJADE/TA-LS solutions are lower than the horizontal line and are distinct in most
cases, which are given in the same figure 1(c), (d) and (e). Which concludes that the new
algorithm avoids to stuck in local optima.

In case of CP25, the boxplot in figure 1 (f) is again lower and means are spread in small
area as compared to boxplot of RJADE/TA, Which has higher means and some data is out
side the plot, the black spots in the graph. Considering CP27, RJADE/TA performed better
than RJADE/TA-LS, as its box is lower than ours’ one, and be seen in figure 1 (g).

6. CONCLUSIONS

In this study, we proposed a memetic algorithm by combining a DE version RIADE/TA
with DFP, LS technique for continuous unconstrained optimization. The main idea behind
this work is to bring together the local tuning of LS and global exploration of RJADE/TA
to form new variant which should perform efficiently in both local/global regions. Hence,
the shifting of elite solutions to archive and their exploitation by DFP was proposed. A
diversity maintenance mechanism was also established to prevent premature convergence
of the algorithm.

The proposed variant is tested on comparatively recent and hard test problems from CEC
2013, and the obtained experimental results are compared with well established algorithms.
The results demonstrated that the new version is efficient than various algorithms in com-
panions on majority of tested problems. It was also identified that this algorithm is more
suitable for hard problems.

In future, the current work with some modifications will be extended to solve con-
strained optimization problems. Secondly, some other LS algorithms will be studied in
this approach. Thirdly, instead of adopting DE, other global optimizers will be used. We
also intend to propose other archive techniques.
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