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Abstract. We give definition of(λ,v) statistical convergence on a prod-
uct time scale. Furthermore, we generalize de la Vallée Poussin mean
and define strongly(V,λ,v) and [V,λ,v]p

Ψ2 summable functions, statistical
limit superior and inferior on a product time scale. Then, a few inclusion
relations are expressed between the sets of(V,λ,v) summable,p strongly
[V,λ,v]p

Ψ2 summable and(λ,v) statistical convergent functions. Furthermore,
some theorems are proved related to statistical limit superior and inferior
on a product time scale.
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1. INTRODUCTION

The basic idea of statistical convergence was introduced by Zygmund [41] in 1935. Its
notion was given by Steinhaus [35] and Fast [13] and later on reintroduced by Schoenberg
[32] independently. They used natural density of the setA ⊂ N defined by

δ (A) = lim
n→∞

1
n
|{k ≤ n : k ∈ A}| , (1.1)

provided that above limit exists, where|.| indicates the cardinality of the set ofk ∈ A
which satisfyk ≤ n. The idea of statistical convergence depends on asymptotic density of
subset of natural numbers. For many years, some concepts in mathematical analysis are
generalized by using density such as statistical convergence. Because of this reason, they
have an important relation. Statistical convergence is defined by using density in classical
case as below:
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Definition 1.1. [14] A complex sequencex = (xk)k∈N is statistically convergent to a
numberL if δ ({k ∈ N: |xk − L| ≥ ε}) has natural density zero for∀ε > 0. L is necessar-
ily unique and it is called statistical limit ofx = (xk)k∈N, and written asst limxk = L.
S denotes the space of all statistically convergent sequences.

Density and statistical convergence led to applications in summability and sequence
spaces. For instance, statistical limits of measurable functions were introduced by Moricz
[24]. He applied these concepts to strong Cesàro summability. For more details and re-
lated notions we refer to [11] and [30]. In the following years, de la Vallée-Poussin
mean was introduced by Leindler [20]. Other than that, some authors studied(V, λ)
and (C, 1) summabilities, strongly(V, λ) and (C, 1) summabilities and their properties
in classical case (see [9], [21]). Mursaleen [25] took the initiative to introduceλ density
andλ statistical convergence. After almostλ statistical convergence was studied by Savaş
[31]. Furthermore, Nuray [28] definedλ strong summable andλ statistical convergent
functions. And it is generalized by Etet al. [12]. Subsequently, statistical convergence
is defined in different forms as follows: The statistical convergence for double sequences
was first studied by Mohiuddineet al. [22], Moricz [23], Mursaleen and Edely [27] and
Tripathy [36].

Definition 1.2. [29] A double sequencex = (xj,k)∞j,k=0 is convergent in Pringsheim
sense, if for allε > 0, there existsN ∈ N such that|xj,k − L| < ε wheneverj, k > N. In
this case, one can writeP lim

k
xk = L.

Definition 1.3. [27] The sequencex = (xj,k)∞j,k=0 is bounded if there exists a number
M > 0 such that|xj,k| < M for eachj andk, that is,‖x‖ = sup

j,k≥0
|xj,k| < ∞. The set̀ 2

∞

denotes the set of all double bounded sequences.

Definition 1.4. [26] Let K (m,n) = {(j, k) : j ≤ m, k ≤ n} . The double density of
K ⊆ N× N is defined by

δ2 (K) = P lim
m,n

1
mn

|K (m, n)| , if the limit exists. (1.2)

x = (xj,k) is statistically convergent toL if for ∀ε > 0,

{(j, k) : j ≤ m, k ≤ n : |xj,k − L| ≥ ε} , (1.3)

has double density as zero. In this case, one can writest2 limxj,k = L andst2 denotes
the set of all statistically convergent double sequences. Now, we will remind(λ, v) density
and(λ, v) statistical convergence in classical case.

Definition 1.5. [26] Let λ = (λm) and v = (vn) be non-decreasing sequences of
positive real numbers approaching to∞ such thatλm+1 ≤ λm + 1, λ1 = 0 andvn+1 ≤
vn + 1, v1 = 0. Throughout this study,Λ is supposed as the set of all such sequences.
(λ, v)−density ofK ⊂ N× N is defined by

δλ,v (K) = P lim
m,n

1
λmvn

|{m− λm + 1 ≤ j ≤ m,n− vn + 1 ≤ k ≤ n : (j, k) ∈ K}| ,
(1.4)
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provided that above limit exists. In case ofλm = m, vn = n, (λ, v) density reduces to
the double density. At the same time, since

(
λm

m

) ≤ 1 and
(

vn

n

) ≤ 1, it yields δ2 (K) ≤
δλ,v (K) for ∀K.

Definition 1.6. The double de la Vallée Poussin mean was introduced by Mursaleenet
al. [26] as follows

tm,n =
1

λmvn

∑

j∈jm

∑

k∈In

xjk, (1.5)

wherejm = [m− λm + 1,m] andIn = [n− vn + 1, n] . This is a generalization of classi-
cal de la Valĺee Poussin mean to the double case.x = (xj,k) is strongly(V, λ, v) summable
to L if

lim
m,n

1
λmvn

∑

j∈jm

∑

k∈In

|xjk − L| = 0. (1.6)

[V, λ, v] denotes the set of all double strongly(V, λ, v) summable sequences. Ifλm =
m andvn = n for all m,n, then strongly(V, λ, v) summability is reduced to strongly
Ces̀aro summability and[V, λ, v] = [C, 1, 1] , where[C, 1, 1] is the space of all strongly
Ces̀aro summable double sequences. De la Vallée Poussin mean summability is stronger
and general than Cesàro summability. In the classical sense, these summabilities are studied
only for special case of time scales. Our generalization gives the opportunity to study on
different time scales and to make different interpretations in different spaces. Here, we
remind the concept of(λ, v) statistical convergence for double sequences.

Definition 1.7. [26] The sequencex = (xj,k) is (λ, v) statistically convergent toL if
δλ,v (E) = 0, whereE = {j ∈ jm, k ∈ In : |xj,k − L| ≥ ε} ,i.e., and for∀ε > 0,

P lim
m,n

1
λmvn

|{m− λm + 1 ≤ j ≤ m,n− vn + 1 ≤ k ≤ n : |xj,k − L| ≥ ε}| = 0.

(1.7)
In this case,stλ,v limxj,k = L andSλ,v indicates the set of all(λ, v) statistically conver-
gent double sequences.

2. TIME SCALE CALCULUS

Here, our aim is to define all above concepts on a product time scale. But, we firstly
need to give a brief about the historical improvement of time scale calculus. The idea of
time scale calculus was given by Hilger in his doctoral dissertation in 1988 [18]. Later
Guseinov [17] was constructed measure theory on time scales and then further studies
were made by Bohner, Peterson [7] and Bohner, Svetlin [8]. In the following years, many
important results are obtained by many authors in different areas about time scale calculus
(see [1], [6], [10], [16]). A time scaleT is an arbitrary, nonempty, closed subset ofR.
For t ∈ T, forward and backward jump operatorsσ, ρ : T → T can be expressed by
σ (t) = inf {s ∈ T : s > t} andρ (t) = sup {s ∈ T : s < t} , respectively. A semi closed
interval onT is defined by[a, b)T = {t ∈ T : a ≤ t < b wherea, b ∈ T} . Open and closed
intervals can be defined similarly on time scales.

It is necessary to generalize the geometric concept oflengthdefined for intervals and
generalization is calledmeasure, specificallydelta measureon time scales. The following
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definition gives∆ measures of single point set and different types of intervals respectively,
established by Guseinov.

Definition 2.1. [17] Let B denotes the family of semi closed intervals[a, b)T ∈ T and
m : B → [0,∞) be a set function onB such thatm ([a, b)T) = b − a. Then, the set
functionm is a countably additive measure onB. Now, the Caratheodory extension ofm
associated with familyB is called Lebesque∆ measure onT and is denoted byµ∆. The
properties ofµ∆ measure are expressed as follows

i) If {a} ∈ T\ {maxT} , then single point set{a} is ∆ measurable andµ∆ (a) =
σ (a)− a,

ii) If a, b ∈ T anda ≤ b, thenµ∆ ([a, b)T) = b− a andµ∆ ((a, b)T) = b− σ (a) .
iii) If a, b ∈ T\ {maxT} anda ≤ b, thenµ∆ ((a, b]T) = σ (b)−σ (a) andµ∆ ([a, b]T) =

σ (b)− a

Let us now express forward and backward jump operators, graininess function and
∆ measure for multivariable case. Suppose thatn ∈ N is a fixed andTj are time scales
for j = 1, n. Furthermore,σj , ρj andµj are forward and backward jump operators and
graininess function onTj , respectively. Let us set

Ψn = T1×T2 × ...× Tn= {t = (t1, t2, ..., tn) : tj ∈ Tj for all j = 1, 2, ..., n}. (2.1)

Denote the collection of all rectangular parallelepipeds inΨn by= of the form

V = [a1, b1)×[a2, b2)×...×[an, bn) = {t = (t1, t2, ..., tn) ∈ Ψn : aj ≤ tj ≤ bj , j = 1, 2, ..., n} ,
(2.2)

with a = (a1, a2, ..., an) andb = (b1, b2, ..., bn) ∈ Ψn. Let m := → [0,∞) be the set
function that assigns to each parallelepipedV = [a, b). Then, it is not difficult to verify that
= is a semiring of subsets ofΨn andm is aσ−additive measure on=. By µ∆ we denote
the Caratheodory extension of the measurem defined on the semiring= and callµ∆ the
Lebesque∆ measure onΨn (see [4]). Whenn = 2, we can give following explanations
for two variable case.

Definition 2.2. [19] Let Ψ2 = T1×T2= {t = (t1, t2) : tj ∈ Tj for all j = 1, 2} be a
time scale. The forward jump operatorσ : Ψ2→Ψ2 can be defined by

σ(t) = (σ1(t1), σ2(t2)), (2.3)

whereσj(tj) represents the forward jump operator oftj ∈ Tj on the time scaleTj for all
1 ≤ j ≤ 2. The backward jump operatorρ : Ψ2→Ψ2 by

ρ(t) = (ρ1(t1), ρ2(t2)), (2.4)

whereρj(tj) represents the backward jump operator oftj ∈ Tj on the time scaleTj for all
1 ≤ j ≤ 2. Eventually, the graininess functionµ : Ψ2→ R2 by

µ(t) = (µ1(t1), µ2(t2)), (2.5)

whereµj(tj) represents the graininess function oftj ∈ Tj on the time scaleTj for all
1 ≤ j ≤ 2.
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Theorem 2.3. [4] Let T0
j = Tj − {maxTj} , j = 1, 2. For each pointt = (t1, t2) ∈

T0
1 × T0

2, the single point set{t} is ∆ measurable and its∆ measure is given by

µ∆({t}) =
2∏

j=1

µj (tj) . (2.6)

Furthermore, iftj < σj (tj) for all j = 1, 2, {t} = [t1, σ1 (t1))× [t2, σ2 (t2)) ∈ =, and

µ∆({t}) = m ([t1, σ1 (t1))× [t2, σ2 (t2))) =
2∏

j=1

(σj (tj)− tj) . (2.7)

To fill the gap between time scale calculus and summability theory, Seyyidoğlu and Tan
[33] introduced the statistical convergence on time scales and some new concepts such that
∆ convergence,∆ Cauchy by using∆ density and relations between them in 2012. Tu-
ran and Duman ([37], [38]) continued on this subject and extended the idea of statistical
convergence of∆ measurable real- valued functions to an arbitrary time scale and they
expressed some methods for convergence in 2013. Altinet al.[2] studied the uniform sta-
tistical convergence on time scale in 2014. Afterwards, Seyyidoğlu and Tan [34] gave a
generalization of statistical limit points on time scale in 2015. Eventually, Yilmaz and his
coworkers [40] definedλ statistical convergence and stronglyλp Cesaro summability on
time scales in 2016. In 2017, Turan and Duman [39] defined Lacunary statistical conver-
gence on time scales. As far as we know, this issue is quite new and striking. Therefore,
we focus on moving some topics in summability theory to time scale calculus.

The remaining part of this study is arranged as follows: In section 3, we define(λ, v) density
and(λ, v) statistical convergence on a product time scale. Moreover, we define some in-
conclusion relations, strongly(V, λ, v) summability, statistical limit inferior and superior
on a product time scale. Finally, we expressed a few conclusions about the result of this
study in section 4.

3. MAIN RESULTS

In this section, we define(λ, v) density and(λ, v) statistical convergence on a product
time scale. Then, we define de la Vallée Poussin mean and[V, λ, v]pΨ2 summability on this
product time scale. For these generalizations, we need to construct the structure of a time
scale for multivariable case. Let us set

Ψ2 = T× T = {t = (t1, t2) : ti ∈ T for all i = 1, 2}. (3.1)

Ψ2 is called product (or2−dimensional) time scale whereT is a time scale.Ψ2 is a com-
plete metric space with the metricd defined by (see [3], [5])

d(t, r) =

(
2∑

i=1

|ti − ri|2
) 1

2

for t, r ∈ Ψ2. (3.2)

Asymptotic density is an important tool to define statistical convergence. Statistical con-
vergence is an area of active research. Many mathematicians studied properties of statistical
convergence and applied this concept in various areas such as measure theory, trigonomet-
ric series, approximation theory, locally convex spaces, finitely additive set functions and
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Banach spaces. Since density and statistical convergence have many applications to real
life problems their relations and generalizations to product time scales are important. Here,
we introduce the(λ, v) density and(λ, v) statistical convergence for double sequences on
Ψ2.

Definition 3.1. Let Ω be a∆ measurable subset ofΨ2. Then,Ω(λ,v) (t, r) is defined by

Ω(λ,v) (t, r) = {(s, u) ∈ [t− λt + t0, t]T × [r − vr + r0, r]R : (s, u) ∈ Ω} , (3.3.)

for (t, r) ∈ Ψ2 wheret0, r0 ∈ T. Thus, the(λ, v) density ofΩ onΨ2 is defined by

δ
(λ,v)
Ψ2 (Ω) = lim

(t,r)→∞
µ∆

(
Ω(λ,v) (t, r)

)

µ∆ ([t− λt + t0, t]T × [r − vr + r0, r]T)
, (3.4.)

if the above limit exists.

Definition 3.2. Letf : Ψ2 → R be a∆ measurable function. Then,f is (λ, v) statistically
convergent toL onΨ2 if

lim
(t,r)→∞

µ∆ ((s, u) ∈ [t− λt + t0, t]T × [r − vr + r0, r]T : |f (s, u)− L| ≥ ε)
µ∆ ([t− λt + t0, t]T × [r − vr + r0, r]T)

= 0,

(3.5)
for ∀ε > 0 wheret0, r0 ∈ T. In this case, we writest(λ,v)

Ψ2 lim
(t,r)→∞

f (t, r) = L. If

T = N andλt = t, vr = r, we get classical(λ, v) statistical convergence. Therewithal,
one can obtain statistical convergence for double sequences only whenλt = t, vr = r.
(λ, v) asymptotic density is an important tool to define(λ, v) statistical convergence sim-
ilarly to classical density and statistical convergence.

Proposition 3.3. Thest
(λ,v)
Ψ2 limit of function f : Ψ2 → R is unique.

Theorem 3.4.Let f, g : Ψ2 → R be two∆ measurable functions andc ∈ R. If

st
(λ,v)
Ψ2 lim

(t,r)→∞
f (t, r) = L1 andst

(λ,v)
Ψ2 lim

(t,r)→∞
g (t, r) = L2,

then the following statements hold:
i) st

(λ,v)
Ψ2 lim

(t,r)→∞
(f (t, r) + g (t, r)) = L1 + L2,

ii) st
(λ,v)
Ψ2 lim

(t,r)→∞
(cf (t, r)) = cL1.

Proof. The proof is obvious in case ofc = 0. Assume thatc 6= 0, then the proof ofi)
andii) follows from

µ∆ ({(s, u) ∈ [t− λt + t0, t]T × [r − vr + r0, r]T : |cf (s, u)− cL| ≥ ε})
µ∆ ([t− λt + t0, t]T) µ∆ ([r − vr + r0, r]T)

=
µ∆

({
(s, u) ∈ [t− λt + t0, t]T × [r − µr + r0, r]T : |f (s, u)− L| ≥ ε

|c|
})

µ∆ ([t− λt + t0, t]T)µ∆ ([r − vr + r0, r]T)
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and

µ∆ ({(s, u) ∈ [t− λt + t0, t]T × [r − vr + r0, r]T : |f (s, u) + g (s, u)− (L1 + L2)| ≥ ε})
µ∆ ([t− λt + t0, t]T) µ∆ ([r − vr + r0, r]T)

≤ µ∆

({
(s, u) ∈ [t− λt + t0, t]T × [r − vr + r0, r]T : |f (s, u)− L1| ≥ ε

2

})

µ∆ ([t− λt + t0, t]T)µ∆ ([r − vr + r0, r]T)

+
µ∆

({
(s, u) ∈ [t− λt + t0, t]T × [r − vr + r0, r]T : |f (s, u)− L2| ≥ ε

2

})

µ∆ ([t− λt + t0, t]T) µ∆ ([r − vr + r0, r]T)
,

respectively.

Theorem 3.5.stΨ2 ⊂ st
(λ,v)
Ψ2 if and only if

lim
(t,r)→∞

inf
µ∆ ([t− λt + t0, t]T × [r − vr + r0, r]T)

µ∆ ([t0, t]× [r0, r])
≥ 0. (3.6)

Proof. For a givenε > 0, we have

{(s, u) ∈ [t− λt + t0, t]T × [r − vr + r0, r]T : |f (s, u)− L| ≥ ε}
⊂ {(s, u) : [t0, t]× [r0, r] : |f (s, u)− L| ≥ ε}

and

µ∆ ({(s, u) ∈ [t− λt + t0, t]T × [r − vr + r0, r]T : |f (s, u)− L| ≥ ε})
≤ µ∆ ({(s, u) : [t0, t]× [r0, r] : |f (s, u)− L| ≥ ε})

Therefore

µ∆ ({(s, u) : [t0, t]× [r0, r] : |f (s, u)− L| ≥ ε})
µ∆ ([t0, t]× [r0, r])

≥ µ∆ ({(s, u) ∈ [t− λt + t0, t]T × [r − vr + r0, r]T : |f (s, u)− L| ≥ ε})
µ∆ ([t0, t]× [r0, r])

=
µ∆ ([t− λt + t0, t]T)

µ∆ ([t0, t])
µ∆ ([r − vr + r0, r]T)

µ∆ ([r0, r])
µ∆ ({(s, u) ∈ [t− λt + t0, t]T × [r − vr + r0, r]T : |f (s, u)− L| ≥ ε})

µ∆ ([t− λt + t0, t]T)µ∆ ([r − vr + r0, r]T)
.

Hence, by using(3.6) and taking the limit ast, r →∞, we getf (s, u)
st

(λ,v)
Ψ2→ L.

Definition 3.6. The de la Valĺee Poussin mean onΨ2 is defined by

1
µ∆ ([t− λt + t0, t]T × [r − vr + r0, r]T)

∫∫
Ψ2

f (s, u)∆u∆s. (3.7)

f is strongly(V, λ, v) summable to a numberL onΨ2, if

lim
(t,r)→∞

1
µ∆ ([t− λt + t0, t]T × [r − vr + r0, r]T)

∫∫
Ψ2

|f (s, u)− L|∆u∆s = 0. (3.8)

We indicate the set of all strongly(V, λ, v) summable functions onΨ2 by [V, λ, v]Ψ2 .
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Definition 3.7. Let f : Ψ2 → R be a∆ measurable function,λ, v ∈ Λ and0 < p < ∞.
The functionf is [V, λ, v]pΨ2 summable toL onΨ2, if

lim
(t,r)→∞

1
µ∆ ([t− λt + t0, t]T × [r − vr + r0, r]T)

∫∫
Ψ2

|f (s, u)− L|p ∆u∆s = 0. (3.9)

Here, we write[V, λ, v]pΨ2 lim f (s, u) = L. The set of allp strongly(V, λ, v) summable
functions onΨ2 will be denoted by[V, λ, v]pΨ2 .

Lemma 3.8.Let f : Ψ2 → R be a∆ measurable and

Ω(λ,v) (t, r) = {(s, u) ∈ [t− λt + t0, t]T × [r − vr + r0, r]T : |f (s, u)− L| ≥ ε} ,
(3.10)

for ε > 0. In this case, we have

µ∆

(
Ω(λ,v) (t, r)

) ≤ 1
ε

∫∫
Ω(λ,v)(t,r)

|f (s, u)− L|∆s∆u ≤ 1
ε

∫∫
[t−λt+t0,t]T
×[r−vr+r0,r]T

|f (s, u)− L|∆s∆u.

(3.11)

Theorem 3.9.Let f : Ψ2 → R be a∆ measurable function,λ, v ∈ Λ and0 < p < ∞.
Then

i) If f is [V, λ, v]pΨ2 summable toL, then

st
(λ,v)
Ψ2 lim

(t,r)→∞
f (t, r) = L,

ii) If st
(λ,v)
Ψ2 lim

(t,r)→∞
f (t, r) = L andf is a bounded, thenf is [V, λ, v]pΨ2 summable

to L.

Proof.
i) Let [V, λ, v]pΨ2 lim

(t,r)→∞
f (s, u) = L andε > 0, and

Ω(λ,v) (t, r) = {(s, u) ∈ [t− λt + t0, t]T × [r − vr + r0, r]T : |f (s, u)− L| ≥ ε} ,
(3.12)

onΨ2. Then, Lemma 3.8. yields

εpµ∆

(
Ω(λ,v) (t, r)

) ≤ ∫∫
Ψ2

|f (s, u)− L|p ∆u∆s. (3.13)

Dividing both sides of the inequality(3.13) by µ∆ ([t− λt + t0, t]T × [r − vr + r0, r]T)
and taking limit as(t, r) →∞, we get

µ∆

(
Ω(λ,v) (t, r)

)

µ∆ ([t− λt + t0, t]T × [r − vr + r0, r]T)

≤ 1
εp

lim
(t,r)→∞

1
µ∆ ([t− λt + t0, t]T × [r − vr + r0, r]T)

∫∫
Ψ2

|f (s, u)− L|p ∆u∆s = 0.

Then, we obtainst(λ,µ)
Ψ2 lim

(t,r)→∞
f (s, u) = L.
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ii) Let f be bounded and(λ, v) statistical convergent toL on Ψ2. Then, there ex-
ists a numberM > 0 such that|f (s, u)− L| ≤ M for all (s, u) ∈ Ψ2 and sincef is
(λ, v) statistically convergent toL, we have

lim
(t,r)→∞

µ∆

(
Ω(λ,v) (t, r)

)

µ∆ ([t− λt + t0, t]T × [r − vr + r0, r]T)
= 0,

whereΩ(λ,v) (t, r) = {(s, u) ∈ [t− λt + t0, t]T × [r − vr + r0, r]T : |f (s, u)− L| ≥ ε} .
So, the following inequality can be written as

∫∫
[t−λt+t0,t]T
×[r−vr+r0,r]T

|f (s, u)− L|∆u∆s =
∫∫

Ω(λ,v)(t,r)

|f (s, u)− L|p ∆u∆s +
∫∫

Ψ2\Ω(λ,v)(t,r)

|f (s, u)− L|p ∆u∆s

≤ (M + |L|)p ∫∫
Ω(λ,v)(t,r)

∆u∆s + εp
∫∫

Ψ2\Ω(λ,v)(t,r)

∆u∆s

= (M + |L|)p
µ∆

(
Ω(λ,v) (t, r)

)

+ εpµ∆ ([t− λt + t0, t]T × [r − vr + r0, r]T)

and

lim
(t,r)→∞

1
µ∆ ([t− λt + t0, t]T × [r − vr + r0, r]T)

∫∫
Ψ2

|f (s, u)− L|p ∆u∆s

≤ (M + |L|)p lim
(t,r)→∞

µ∆

(
Ω(λ,v) (t, r)

)

µ∆ ([t− λt + t0, t]T × [r − vr + r0, r]T)
+ εp.

Sinceε is arbitrary, it completes the proof.
In classical sense, statistical limit inferior and limit superior and their relations were

introduced by Fridy and Orhan [15]. We generalize these concepts to product time scale
with following definition.

Definition 3.10. Let f : Ψ2 → R be a measurable function and set

BΨ2

(λ,v) (f) =
{

b ∈ R : δ
(λ,v)
Ψ2 {(t, r) : f (t, r) > b} 6= 0

}

AΨ2

(λ,v) (f) =
{

a ∈ R : δ
(λ,v)
Ψ2 {(t, r) : f (t, r) < a} 6= 0

}
.

Then, the statistical limit superior and inferior off is given by

st
(λ,v)
Ψ2 lim sup f =

{
sup BΨ2

(λ,v) (f) , if BΨ2

(λ,v) (f) 6= ∅
−∞, if BΨ2

(λ,v) (f) = ∅ ,

st
(λ,v)
Ψ2 lim inf f =

{
inf AΨ2

(λ,v) (f) , if AΨ2

(λ,v) (f) 6= ∅
∞, if AΨ2

(λ,v) (f) = ∅ ,

respectively.

Theorem 3.11.Let f : Ψ2 → R be a measurable function.
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i) st
(λ,v)
Ψ2 lim sup f = L if and only if

δΨ2

(λ,v) ({(t, r) : f (t, r) > L− ε}) 6= 0

δΨ2

(λ,v) ({(t, r) : f (t, r) > L + ε}) = 0.

ii) st
(λ,v)
Ψ2 lim inf f = ` if and only if

δΨ2

(λ,v) ({(t, r) : f (t, r) < ` + ε}) 6= 0

δΨ2

(λ,v) ({(t, r) : f (t, r) < `− ε}) = 0.

Theorem 3.12.Let f : Ψ2 → R be a measurable function. Then,
i) st

(λ,v)
Ψ2 lim inf f ≤ st

(λ,v)
Ψ2 lim sup f.

ii) lim inf f ≤ st
(λ,v)
Ψ2 lim inf f ≤ st

(λ,v)
Ψ2 lim sup f ≤ lim sup f.

Definition 3.13. A measurable functionf : Ψ2 → R is (λ, v) statistically bounded if
there exists a numberM > 0 such that

δΨ2

(λ,v) ({(t, r) : |f (t, r)| > M}) = 0.

Theorem 3.14.Let f : Ψ2 → R be a measurable function.(λ, v) statistically bounded
measurable functionf is (λ, v) statistically convergent if and only if

st
(λ,v)
Ψ2 lim inf f = st

(λ,v)
Ψ2 lim sup f.

Proof. Let st(λ,v)
Ψ2 lim inf f = st

(λ,v)
Ψ2 lim sup f = L. Forε > 0, we can write

δΨ2

(λ,v)

({
(t, r) : f (t, r) > L +

ε

2

})
= δΨ2

(λ,v)

({
(t, r) : f (t, r) < L− ε

2

})
= 0.

Hence,st(λ,v)
Ψ2 lim f = L. Conversely, letst(λ,v)

Ψ2 lim f = L. Then for everyε > 0

δΨ2

(λ,v) ({(t, r) : |f (t, r)− L| ≥ ε}) = 0

and so
δΨ2

(λ,v) ({(t, r) : f (t, r) ≥ L + ε}) = 0.

Thus,st(λ,v)
Ψ2 lim sup f ≤ L. Also

δΨ2

(λ,v) ({(t, r) : f (t, r) < L− ε}) = 0.

Then, we can writeL ≤ st
(λ,v)
Ψ2 lim inf f. Therefore,

st
(λ,v)
Ψ2 lim sup f ≤ st

(λ,v)
Ψ2 lim inf f andst

(λ,v)
Ψ2 lim inf f ≤ st

(λ,v)
Ψ2 lim sup f.

So, we conclude that

st
(λ,v)
Ψ2 lim inf f = st

(λ,v)
Ψ2 lim sup f.
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4. CONCLUSION

Generalization of subjects in summability theory is a precious issue in applied analysis.
Many mathematicians have tried to get more general results in summability theory. Because
of this importance, we have decided to generalize some concepts about(λ, v) statistical
convergence. For this purpose, we defined(λ, v) density,(λ, v) statistical convergence
and strongly(V, λ, v) summable functions on a product time scale. If special choices are
made, we get classical(λ, v) statistical convergence and strongly(V, λ, v) summability.
Additionally, we obtained some inclusion relations and defined statistical limit inferior,
superior on a product time scale.
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