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Abstract. We give definition of(x,v)_ statistical convergence on a prod-
uct time scale. Furthermore, we generalize de laééalPoussin mean
and define stronglyv,x,») and[v,,»)? ,- summable functions, statistical
limit superior and inferior on a product time scale. Then, a few inclusion
relations are expressed between the sets/afs). summablep_strongly
[v.av]? , sSummable angh, ) statistical convergent functions. Furthermore,
some theorems are proved related to statistical limit superior and inferior
on a product time scale.
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1. INTRODUCTION

The basic idea of statistical convergence was introduced by Zygmund [41] in 1935. Its
notion was given by Steinhaus [35] and Fast [13] and later on reintroduced by Schoenberg
[32] independently. They used natural density of the4et N defined by

0(A) = lim l|{k‘§n:k‘€A}|, (1.1)
n—oo N,

provided that above limit exists, whetg indicates the cardinality of the set éfc A

which satisfyk < n. The idea of statistical convergence depends on asymptotic density of

subset of natural numbers. For many years, some concepts in mathematical analysis are

generalized by using density such as statistical convergence. Because of this reason, they

have an important relation. Statistical convergence is defined by using density in classical

case as below:
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Definition 1.1. [14] A complex sequence = (z1),y IS statistically convergent to a
numberL if § ({k € N: |z, — L| > ¢}) has natural density zero foe > 0. L is necessar-
ily unique and it is called statistical limit of = (xy), .y, and written ast_limzy = L.

S denotes the space of all statistically convergent sequences.

Density and statistical convergence led to applications in summability and sequence
spaces. For instance, statistical limits of measurable functions were introduced by Moricz
[24]. He applied these concepts to strong &essummability. For more details and re-
lated notions we refer to [11] and [30]. In the following years, de la&&Poussin
mean was introduced by Leindler [20]. Other than that, some authors st(idjed
and (C, 1) .summabilities, stronglyV, \) and (C, 1) _summabilities and their properties
in classical case (see [9], [21]). Mursaleen [25] took the initiative to introdudensity
and ) _statistical convergence. After almosistatistical convergence was studied by Savas
[31]. Furthermore, Nuray [28] defined strong summable and_statistical convergent
functions. And it is generalized by Et al. [12]. Subsequently, statistical convergence
is defined in different forms as follows: The statistical convergence for double sequences
was first studied by Mohiuddinet al. [22], Moricz [23], Mursaleen and Edely [27] and
Tripathy [36].

Definition 1.2. [29] A double sequence = (xm)‘;"k:o is convergent in Pringsheim
sense, if for ale > 0, there existsV € N such thaiz; , — L| < ¢ wheneverj, k > N. In
this case, one can write_ liin xp, = L.

Definition 1.3. [27] The sequence = (xj,k)‘;okzo is bounded if there exists a number

M > 0suchthatz; x| < M for eachj andk, thatis,||z|| = sup |z;x| < co. The set’2,
J,k=>0

denotes the set of all double bounded sequences.

Definition 1.4. [26] Let K (m,n) = {(j, k) : § < m,k < n}. The double density of
K C N x Nis defined by

5 (K) = P_lim —— |K (m,n)|, if the limit exists. (1.2)

m,n Inn
x = (x; 1) is statistically convergent té if for Ve > 0,
{6, k) j<mk<n:l|vjp— L[ > e}, (1.3)
has double density as zero. In this case, one can wfitdim «; , = L andst, denotes

the set of all statistically convergent double sequerides, we will remind()\, v) _density
and(\, v) _statistical convergence in classical case.

Definition 1.5. [26] Let A = (\,,) andv = (v,) be non-decreasing sequences of
positive real numbers approachingdo such that\,,,11 < A\, + 1, A1 = 0 andv,11 <
v, + 1, v1 = 0. Throughout this study\ is supposed as the set of all such sequences.
(\,v)—density of K C N x N is defined by

Sx0 (K) = P_lim

m,n AmUnp

\{m—)\m—klSjﬁm,n—vn—klgkgn:(j,k‘)eK}l,
(1.4)
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provided that above limit existdn case of\,, = m, v, = n, (A, v)_-density reduces to
the double density. At the same time, sirfée) < 1 and (%) < 1, it yields d, (K) <
Ire (K) for VK.

Definition 1.6. The double de la Valle Poussin mean was introduced by Mursakgen

al. [26] as follows
T (1.5)

" j€jm kel
wherej,, = [m — A\, + 1, m] andl,, = [n — v, + 1, n]. Thisis a generalization of classi-
cal de la Valée Poussin mean to the double cases (z; 1) is strongly(V, A, v)_summable

to L if )

lim o Z > Jajk — LI =0. (1.6)

J€Im k€L,

[V, A, v] denotes the set of all double strondly, A\, v)_.summable sequences. Xf,, =
m andv, = n for all m,n, then strongly(V, A\, v)_.summability is reduced to strongly
Cesro summability andV, \,v] = [C, 1,1], where[C, 1,1] is the space of all strongly
Cesaro summable double sequences. De la@é@aPoussin mean summability is stronger
and general than Cas summability. In the classical sense, these summabilities are studied
only for special case of time scales. Our generalization gives the opportunity to study on
different time scales and to make different interpretations in different spaces. Here, we
remind the concept df\, v) _statistical convergence for double sequences.

1
AU

tm,n

Definition 1.7. [26] The sequence = (z; k) iS (A, v) _statistically convergent td if
dro(E)=0,whereE = {j € j,,k €I, : |z, — L| > e} e, and fove > 0,

1
P_li
im +

m,n m’Un

{m—-—An+1<j<mmn—-v,+1<k<n:|zr— Ll >} =0.

a.7)
In this casest, ,,_lim z; , = L andS) , indicates the set of all\, v) _statistically conver-
gent double sequences.

2. TIME SCALE CALCULUS

Here, our aim is to define all above concepts on a product time scale. But, we firstly
need to give a brief about the historical improvement of time scale calculus. The idea of
time scale calculus was given by Hilger in his doctoral dissertation in 1988 [18]. Later
Guseinov [17] was constructed measure theory on time scales and then further studies
were made by Bohner, Peterson [7] and Bohner, Svetlin [8]. In the following years, many
important results are obtained by many authors in different areas about time scale calculus
(see [1], [6], [10], [16]). A time scaldl is an arbitrary, nonempty, closed subsetRof
Fort € T, forward and backward jump operatarsp : T — T can be expressed by
o(t)=inf{se€T:s>t}andp(t) =sup{s € T: s < t}, respectively A semi closed
interval onT is defined byja, b)r = {t € T : a <t < bwhereqa,b € T} . Open and closed
intervals can be defined similarly on time scales.

It is necessary to generalize the geometric conceperafth defined for intervals and
generalization is calletheasurespecificallydelta measuren time scales. The following
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definition givesA_measures of single point set and different types of intervals respectively,
established by Guseinov.

Definition 2.1. [17] Let B denotes the family of semi closed intervaisb),, € T and
m : B — [0,00) be a set function o8 such thatmn ([a,b);) = b — a. Then, the set
functionm is a countably additive measure & Now, the Caratheodory extensionof
associated with familyB is called Lebesqué\_measure ofi" and is denoted by . The
properties ofuA _measure are expressed as follows

i) If {a} € T\ {maxT}, then single point sefa} is A_measurable angia (a) =
o (a) — a,

1) If a,b € T anda < b, thenpa ([a,b)r) =b—aandpa ((a,b)y) =b—0(a).

i17) If a,b € T\ {max T} anda < b, thenua ((a,bly) = o (b)—0o (a) andua ([a,bly) =
o(b)—a

Let us now express forward and backward jump operators, graininess function and
A_measure for multivariable case. Suppose that N is a fixed andl'; are time scales
for j = 1,n. Furthermoreg;, p; andy; are forward and backward jump operators and
graininess function offf ;, respectively. Let us set

P =T xTy X ... X T, = {t = (tl,tg, ,tn) : tj S Tj for a”_] =1,2, ,n} (21)
Denote the collection of all rectangular parallelepiped&inby < of the form

V= [al,bl)X[ag,bg)X...X[CLn,bn> = {t = (tl,ﬁg, ...,tn) e " a; < t]‘ < bj, ] =1,2, ...,n},
(2.2)

with a = (a1, ag,...,a,) andb = (b1, bs,...,b,) € ¥"™. Letm :§ — [0,00) be the set

function that assigns to each parallelepipée- [a, b). Then, itis not difficult to verify that

S is a semiring of subsets df"” andm is ac—additive measure o8. By ua we denote

the Caratheodory extension of the measurdefined on the semiring and callua the

LebesqueA_measure onl'™ (see [4]) Whenn = 2, we can give following explanations

for two variable case.

Definition 2.2. [19] Let U2 = Ty xTa= {t = (t1,t2) : t; € T; forall j = 1,2} be a
time scale. The forward jump operator ¥2—¥? can be defined by
U(t) = (Ul(tl),az(tz))7 (23)

whereg (t;) represents the forward jump operatortpfe T, on the time scal&; for all
1 < j < 2. The backward jump operatpr: ¥2—W¥? by

p(t) = (p1(t1), pa(ta)), (2.4)

wherep; (t;) represents the backward jump operatot,;of T; on the time scal&; for all
1 < j < 2. Eventually, the graininess functign: ¥2— R? by

p(t) = (pa(ta), pa(te)), (2.5)

where;(t;) represents the graininess functiontgfe T; on the time scalél; for all
l<j<2
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Theorem 2.3.[4] Let ’Jl‘? =T; — {maxT;},j = 1,2. For each point = (t1,t2) €
T? x T9, the single point seft} is A_measurable and itA_measure is given by

2
pal{ty) = [ w ) (2.6)
j=1
Furthermore, it; < o; (t;) forall j = 1,2, {t} = [t1,01 (1)) X [t2, 02 (t2)) € S, and

pa({t}) = m([t1, 01 (t1)) X [t2, 02 (t2))) = H (o (tj) —t5). (2.7

To fill the gap between time scale calculus and summability theory, Seylyidnd Tan
[33] introduced the statistical convergence on time scales and some new concepts such that
A_convergenceA_Cauchy by using\_density and relations between them in 2012. Tu-
ran and Duman ([37], [38]) continued on this subject and extended the idea of statistical
convergence ofA_measurable real- valued functions to an arbitrary time scale and they
expressed some methods for convergence in 2013. éftai[2] studied the uniform sta-
tistical convergence on time scale in 2014. Afterwards, Segidand Tan [34] gave a
generalization of statistical limit points on time scale in 2015. Eventually, Yilmaz and his
coworkers [40] defined _statistical convergence and strongly_Cesaro summability on
time scales in 2016. In 2017, Turan and Duman [39] defined Lacunary statistical conver-
gence on time scales. As far as we know, this issue is quite new and striking. Therefore,
we focus on moving some topics in summability theory to time scale calculus.

The remaining part of this study is arranged as follows: In section 3, we defing_density
and(\, v) _statistical convergence on a product time scale. Moreover, we define some in-
conclusion relations, strongly/, A\, v)_summability, statistical limit inferior and superior
on a product time scale. Finally, we expressed a few conclusions about the result of this
study in section 4.

3. MAIN RESULTS

In this section, we define\, v) _density and A, v) _statistical convergence on a product
time scale. Then, we define de |a \&&@|Poussin mean af, A, v]},. summability on this
product time scale. For these generalizations, we need to construct the structure of a time
scale for multivariable case. Let us set

U? =T x T ={t=(t1,t2) : t; € Tforalli =1,2}. (3.1)

¥? is called product (o2—dimensional) time scale whefRis a time scale¥? is a com-
plete metric space with the metradefined by (see [3], [5])

1

2

2
d(t,r) = <Z t; — ri|2> fort,r € U2, (3.2)
=1

Asymptotic density is an important tool to define statistical convergence. Statistical con-
vergence is an area of active research. Many mathematicians studied properties of statistical
convergence and applied this concept in various areas such as measure theory, trigonomet-
ric series, approximation theory, locally convex spaces, finitely additive set functions and
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Banach spaces. Since density and statistical convergence have many applications to real
life problems their relations and generalizations to product time scales are important. Here,
we introduce thé\, v) _density and \, v) _statistical convergence for double sequences on

U2,

Definition 3.1. Let{) be aA_measurable subset &f. Then, Q. (t,r) is defined by
Qo) (1) ={(s,u) € [t = X\e +to, t]p X [r —vp +10,7] = (s,u) € Q},  (3.3)
for (t,r) € U2 wheretg, ro € T. Thus, the(\, v) _density ofQ2 on ¥2 is defined by

6(/\2,11) (Q) — lim 22N (Q(/\,v) (ta T))
bt (t,r)—oo pa ([t — A + o, tlp X [r — vy + 10, 7]p)

if the above limit exists.

: (3.4)

Definition 3.2. Let f : U2 — R be aA_measurable function. Thefijs (A, v) _statistically
convergent ta_ on U2 if

pa ((s,u) € [t — X+ to, tly X [r—vp +710,7]p 2 | (s,u) — L| > ¢)

lim =0,
(t,r)— 00 pa ([t — Ao +to, tlp X [r —vp +70,7]7)
(3.5)
for Ve > 0 wherety,rg € T. In this case, we writet&fg”), lim f(¢t,r) = L. If

(t,r)—o0
T=Nand)\; = t, v, = r, we get classical)\, v) _statistical convergence. Therewithal,
one can obtain statistical convergence for double sequences only whent, v, = r.
(A, v) _asymptotic density is an important tool to define v) _statistical convergence sim-
ilarly to classical density and statistical convergence.

Proposition 3.3 Thestfl,ﬁ’”),limit of function f : ¥2 — R is unique.

Theorem 3.4.Let f, g : ¥2 — R be twoA_measurable functions and= R. If
st&,};’v), lim f(t,r) =1Ly andstfpﬁ’”),( li)m g (t,r) = Lo,
t,r)—o00

(t,r)—o0

then the following statements hold:
i) sty lim (f (t7) 49 (7)) = Ly + Lo,

(t,r)—o0
i7) stEI,)‘z’v),( li)m (cf (t,7)) = cLy.
t,r)—oo

Proof. The proof is obvious in case of= 0. Assume that # 0, then the proof of)
andi:) follows from

pa ({(s,u) € [t = Xe +to, t]p X [r — v + 710,77 2 |cf (s,u) — cL| > €})

A ([t — A\t + to,t]T> JIN ([7" — Uy + ’I“(),?“]T)
o ({sw e = d b0ty x I — ol s 1F (s 0) — L 2 5 })
B pma ([t*)‘tthOvt]'[[‘) /‘A([T*UTJFTOWA}T)
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and

pa ({(s,u) € [t = M +to, tp X [r —vp + 10, rlp 2 [ (s,u) + g (s,u) — (L1 + Lo)| > €})
pa ([t =Xt +to, tlp) pa ([r —vr + 1o, 7]p)

_ kA ({(s,u) € [t = A+ to, tly x [r —vp 4+ 1o, 7]y ¢ |f (s,u) — L1] > 5})

- pa ([t = A+ to, tp) pa ([r = vp + 10, 7]7)

N pa ({(s,u) € [t — X + to, t]y x [

¢]

r— vy 4+ 10,7y 1 | f (s, u)—Lg\E%})
pa ([t = At +to, tlp) pa ([r — vr + 10, 7)) 7

respectively.

Theorem 3.5.5ty2 C st( ") if and only if

lim inf 22 ([t = Ae + to, 8]

(t,r)—o0

X [r— v, +710,7]p)
HA ([f,o,t] X [7“0,7“])

> 0. (3.6)

Proof. For a givere > 0, we have

{(s,u) € [t =N+ to,tlp X [r —vp +ro,7r]p | f(s,u) — L| > €}

C{(s,u) : [to, t] x [ro, 7] | f (s,u) — L| > e}
and

pa ({(s,u) € [t = A +to, tlp x [r—vp + 1o, 7]y 0 | f (s,u) — L] > €})
< pa ({(s,u) « [to, t] x [ro, 7]« |f (s,u) — L| = €})
Therefore
pa ({(s,u) : [to, t] X [ro,r] : |f (s,u)
pa ([to, ] x [ro,7])
S Ha ({(s,u) € [t = A\t + to, t]p

—L|>¢})

X [r—vp+71o,7]p | f(s,u) — L] > €})
HA ([to,t] X [’I“o,’l“])
DN ([t = Xe + to, tlp) pa ([r — vp +10,7]p)

B pa ([to. 1)) pa ([ro, 7])

pa ({(s,w) € [t = A 4 to, tlyp X [r —or +70,7]p | f (s,u) = L] > €})
pa ([t =X +to, tp) pa ([r = or + 10, 7)7)

st()‘ )
Hence, by using3.6) and taking the limit as,» — oo, we getf (s,u) *— L.
Definition 3.6. The de la Vakke Poussin mean ol?’ is defined by

1
AuAs. 3.7
pa ([t =X+ to, tlp ¥ [r—vr—l—ro,r]T)\{sz (5,u) Auls 3.7)
f is strongly(V, A, v) _summable to a numbeér on 2 if

1
lim s,u) — L| AulAs = 0.
(t,’I”)HOO /’LA([t_)\t—’_tO,ﬂTX [T_'UT—'_TO’T]'[[‘)&,[!‘JC( ) |

We indicate the set of all strongly, A, v) -summable functions ow? by [V, ), v]

(3.8)
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Definition 3.7. Let f : ¥2 — R be aA_measurable function\,,v € A and0 < p < co.
The functionf is [V, A, v];,. -summable td. on ¥2, if

1
lim s,u) — LIP AuAs =0. (3.9
(tr) =00 pan ([t = A +to, tly X [r — v + ro,r}T){zf 1 (s,u) = L] (3.9)

Here, we writg]V, A, v]%,. _lim f (s,u) = L. The set of alp_strongly(V, A, v) -summable
functions on®? will be denoted byV, A, v} .

Lemma 3.8.Let f : ¥2 — R be aA_measurable and
Qo) (1) ={(s,u) € [t = X\g +to, tlp X [r = v, + 7o, 7]p 2 |f (5,u) = L| > €},

(3.10)
for e > 0. In this case, we have
1
MA(Q(AU) tr)_ I 1f(syu) — L|A3Au<f If |f (s,u) — L| AsAu.
(a0 () € [t—As+to, tp
X [r—vr47r0,r]y
(3.11)

Theorem 3.9.Let f : ¥2 — R be aA_measurable functiony,v € A and0 < p < oo.
Then
i) If fis[V, A, v]5. -summable ta_, then

stg;’v), lim f(t,r)=1L,

(t,r)—o0

ii) If st&fg”), lim f(¢,7) = L andf is a bounded, thef is [V, A, v]%,. -summable

t,r)—0o0
to L.
Proof.
i) Let [V, A, v]h. - li)m f (s,u) = Lande > 0, and
t,r)—o0
Q(A,v) (taT) = {(s,u) € [t — A+ tOvt]’H‘ X [T — Ur +7"077n}’]r : |f (s,u) - L| > 5}7
(3.12)
on¥2. Then, Lemma 3.8. yields
pa Qo (£7)) < ff|f s,u) — L|” AuAs. (3.13)

Dividing both sides of the inequalit§3.13) by pa ([t — A\t + to, t]p X [r — v, + 70,7]1)
and taking limit ag¢, ) — oo, we get

pa (R (7))
pa ([t = A+ to, tly X [r —vr +710,7]p)
L 1
—  lim s,u) — LIP AulAs = 0.
€P (t.r)—oo pia ([t — At + Lo, t]p X [r — v + rom]T)qj,;f |f (s, 0) |

<

Then,weobtairxtflfg”), lim f(s,u) = L.

(t,r)—o0
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ii) Let f be bounded and)\, v)_statistical convergent td on ¥2. Then, there ex-
ists a numbe/ > 0 such that|f (s,u) — L| < M for all (s,u) € ¥? and sincef is
(A, v) _statistically convergent té, we have

20N (Q(/\,v) (ta T))

lim =0
(t,r)—o0 UA ([t — )\t =+ t(),t]v[r X [7’ — Uy + T0, ’I‘]T)

)

whereQ, ) (t,7) = {(s,u) € [t = A\ + to, t]p X [r —vp +7o,7]p < |f (s,u) — L| > €}.
So, the following inequality can be written as

[/ |f (s,u) — L|AuAs = [[ |f(s,u) — L] Auls + I |f (s,u) — L|” AuAs

[t—=Xe+to,t]p Qa0 (E7) W2\Q( 5,0y (t,7)
X[r—vp4ro,7]p

<(M+ |L|)p ff Auls + P ff Auls
Q(,\Yv)(tﬂ‘) \112\Q(A’,,,) (tﬂ‘)
= (M + L))" pa () (t,7))
+ePun ([t — Xe + to, t]p X [ — v + 70, 7]7)
and

1
lim s,u) — LI AuAs
(t.r)—oo pa ([t — A + o, t]p X [T—UT—H“O,T}T)JJU( ) |

Q) (@
< (M + L))" lim #a Qo (1))
(t,r)—o0 UA ([t — )\t + to,th\ X [T — U + ’I"(),’I”]T)

+ &P,

Sincee is arbitrary, it completes the proof.

In classical sense, statistical limit inferior and limit superior and their relations were
introduced by Fridy and Orhan [15]. We generalize these concepts to product time scale
with following definition.

Definition 3.10. Let f : ¥2 — R be a measurable function and set
BE, () = {b eR: 60V {(tr) : f(tr) > b} £ o}
A () = {a eR: O {(tr): f(t,r) < a} £ o} .
Then, the statistical limit superior and inferior pis given by

sup BY ) (f), if BE ) () #

(A\v) . @
st _limsup f = . ,
v pf { oo, if B(q';,v) (f) =0

o) v . inf AL ) (f), if A (f) #0
Stg‘g’ ),hmlnff = { (;‘é) i Ag‘z’ )(f) 0
’ (M) -

respectively.

Theorem 3.11.Let f : U2 — R be a measurable function.
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i) st5") _limsup f = L ifand only if

58 ((tr) s f(tr) > L—e}) #0
68 ({(t,7) = f(t,r) > L+e}) =0,
i) st0y”_liminf f = ¢ if and only if

Sy (L) 2 f(tr) < L2} #0
58 ({(tr)  f(tr) < L—c}) =0.

Theorem 3.12.Let f : U2 — R be a measurable function. Then,
i) stslf;’v),lim inf f < stg‘gv),lim sup f.

i) liminf f < st‘(;;v),liminff < stfp)‘z’v),limsupf < limsup f.

Definition 3.13. A measurable functiorf : ¥ — R is (), v) _statistically bounded if
there exists a numbed/ > 0 such that

5% () < 1f (t.r)] > M}) = 0.

Theorem 3.14.Let f : ¥2 — R be a measurable functiof), v) _statistically bounded

measurable functioyfi is (A, v) _statistically convergent if and only if
stsl,kz’v),lim inf f = stg;’v),lim sup f.

Proof. Let st%”),lim inf f = st%’”),lim sup f = L. Fore > 0, we can write

) ({(m) f(tr)> L+ g}) =58 ({(t,r) () < L — g}) —0.

Hence,stfﬁg”),limf = L. Conversely, Ietstflfg”),limf = L. Then for every: > 0

& () < |f (tr) — LI = e}) =0
and so
68 ({(tr) - f(t,1) = L+e)) =0.

Thus,st&f;’v),lim sup f < L. Also

0 (&) f(t,r) < L—e}) =0.

Then, we can writd, < stflf;;”),lim inf f. Therefore,

stEI,)‘g’v),lim sup f < stsl,);v),lim inf f andstflf;’v),lim inf f < st&fg”),lim sup f.
So, we conclude that

st&,ﬁ;“),lim inf f = stEI,);’v),lim sup f.
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4., CONCLUSION

Generalization of subjects in summability theory is a precious issue in applied analysis.
Many mathematicians have tried to get more general results in summability theory. Because
of this importance, we have decided to generalize some concepts @holitstatistical
convergence. For this purpose, we defirigdv) _density, (A, v) _statistical convergence
and strongly(V, A, v) -summable functions on a product time scale. If special choices are
made, we get classic@h, v) _statistical convergence and strongW, A, v) .summability.
Additionally, we obtained some inclusion relations and defined statistical limit inferior,
superior on a product time scale.
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