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Abstract. In this article, a generalized algorithm for curve and surface
design has been presented. This algorithm is based on Ridge regression.
The subdivision schemes generated by the proposed algorithm give less
response to the outliers. The quality of proposed subdivision schemes
are also better than the least squares based subdivision schemes. More-
over, least squares based subdivision schemes are the special case of our
schemes.
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1. INTRODUCTION

Subdivision schemes are an efficient tool for generating smooth curves and surfaces.
The advantage of subdivision scheme is that it can be applied to any data. But the subdi-
vision schemes constructed by different methods other than the statistical method does not
deal with noisy data and outliers.

In statistics, the least squares method is one of the oldest and most papular method for
the data fitting when data is irregularly-spaced. In 2015, first time Dyn et al. [1] had
introduced and analyzed a family of stationary subdivision schemes for refining noisy data
by fitting local least squares polynomials (i.e. by usingl2 regression). In the same year,
Mustafa et al. [2] presentedl1-regression for the construction of subdivision schemes to
deal with noisy data with impulsive noises and outliers. The generalization of this work
was presented in [3].
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Ridge regression belongs to a class of regression tools that usel2 regularization. Ridge
regression is a technique for analyzing multiple regression. If the data contain outliers, the
least squares estimates are unbiased; ridge regression is used for such type of data. Lu et
al. [5] proposed a fast algorithm for ridge regression when the number of features is much
larger than the number of observations. Khalaf et al. [6] used ridge regression for the es-
timator of predictors collinearity. Cule and Iorio [7] presented a method to determine the
ridge parameter based on the data. Hang et al. [8] used ridge regression for remote sens-
ing data analysis, including hyper-spectral image classification and atmospheric aerosol
retrieval.

1.1. Motivation and contributions. Ridge regression is used in different fields for data
analysis. We use the ridge regression in the field of subdivision schemes. The purpose of
this article is to construct the univariate and bivariate subdivision schemes which deal with
noisy data and outliers.
The contributions of our proposed work are:

• A generalized algorithm for univariate and bivariate subdivision schemes.
• Subdivision schemes generated by our proposed algorithm give less response to

the outliers as compared to the least squares based subdivision schemes [1] (see
Figure 1).

• The quality of the curve generated by the proposed schemes is also better than the
curve generated by the least squares based subdivision schemes [1] (see Figure 1).

The paper is structured as follows: In Section 2, the generalized algorithm of univariate
subdivision schemes is presented. Section 3 is for the bivariate case. Applications and
comparison are presented in Section 4. Conclusions are drawn in Section 5.

2. UNIVARIATE CASE

In this section, we present a generalized algorithm for curve fitting. We present a family
of α-ary subdivision schemes for curve designing. For the derivation of a family ofα-ary
subdivision schemes, we follow the following steps.
Step 1: Consider thepth degree polynomial

f(xr) = a0 + a1xr + a2x
2
r + a3x

3
r + · · ·+ apx

p
r . (2. 1)

In ridge regression shrinks the regression coefficients by imposing a penalty on their size
[9]. The ridge coefficients minimize a penalized residual sum of squares of ( 2. 1 ) with
observations(xr = r, f(xr) = fr) for r = −n,−n + 1, · · · , n, wheren > 0 is defined as

J(a0, a1, a2, · · · , ap) =
n∑

r=−n

(
fr −

p∑

i=0

air
i

)2

+ λ

p∑

i=1

a2
i . (2. 2)

Hereλ is an arbitrary parameter that controls the amount of shrinkage (i.e. The distance
between control polygon and limit curve): as the value ofλ increases, the amount of shrink-
age also increases. See [10] for more details about shrinkage. For minimizing the sum of
squares of residual, we adopt the same procedure as that of ordinary least squares. By tak-
ing the partial derivatives of(2.2) with respect toa0, a1, a2 · · · , ap and setting them equal
to zero. We get the values ofa0, a1, · · · , ap. By substituting the values ofap’s in ( 2. 1 ),
we get the best fit polynomial of degreep to the data.
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Step 2: Once the best fit polynomial of any degree is obtained, the family ofα-ary subdi-
vision schemes is derived by puttingr = ± 2t+1

2α , whereα ≥ 2 with t = 0, 1, 2, · · · , α− 1
and replacingfr by fk

i+r.

2.1. Family of (2n+1)-point, α-ary schemes based on a polynomial of degree 1.Here,
we will present the family of(2n + 1)-point,α-ary subdivision scheme based on a polyno-
mial of degree 1. After substitutingp = 1 in (2.1) and(2.2), we get the linear polynomial
and penalized residual sum. By taking the partial derivatives of the penalized residual sum
and setting them equal to zero, we get the values ofa0 anda1.

a0 =
1

2n + 1

n∑
r=−n

fr and a1 =
3

2n3 + 3n2 + n + 3λ

n∑
r=−n

rfr.

By putting the values ofa0 anda1 in linear form, we get the best fit polynomial

f (r) =
1

2n + 1

n∑
r=−n

fr +

(
3

2n3 + 3n2 + n + 3λ

n∑
r=−n

rfr

)
r. (2. 3)

The family of (2n + 1)-point α-ary subdivision schemes is obtained by substitutingr =
± 2t+1

2α in (2.3) and replacingfr by fk
i+r

fk+1
αi+θ = f

(
±2t + 1

2α

)
=

1
2n + 1

n∑
r=−n

fk
i+r +

(
3

2n3 + 3n2 + n + 3λ

n∑
r=−n

rfk
i+r

)

×
(
± 2t + 1

2α

)
, θ = 0, 1 · · · , α− 1. (2. 4)

Which is the general form of a family of(2n + 1)-point α-ary subdivision schemes based
on linear polynomial. By substituting the different values ofn andα, we get the family
members of(2n + 1)-pointα-ary subdivision schemes.
Similarly, if −n + 1 ≤ r, s ≤ n, wheren ≥ 1, then we get family of2n-point α-ary
approximating subdivision schemes for curve design.
The least squares based subdivision schemes are also reproduced by our proposed algo-
rithm.

Remark 2.2. By takingλ = 0, we get the families of schemes proposed by Dyn et al.[1].

Remark 2.3. By takingλ = 0 and p = 3, we get the families of schemes proposed by
Mustafa and Bari[4].

Family members of binary approximating subdivision schemes:For a family of
binary approximating subdivision schemes, putα = 2 in ( 2. 4 ), we get

fk+1
2i+θ =

1
2n + 1

n∑
r=−n

fk
i+r +

(
3

2n3 + 3n2 + n + 3λ

n∑
r=−n

rfk
i+r

) (
± 2t + 1

4

)
. (2. 5)

By substitutingn = 1, we get a 3-point binary approximating subdivision scheme

fk+1
2i =

(1
3

+
1

8 + 4λ

)
fk

i−1 +
1
3
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)
fk

i+1. (2. 6)
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Forn = 2, we have a 5-point binary approximating subdivision scheme

fk+1
2i+1 =
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fk

i+2. (2. 7)

Similarly, for each value ofn, we get a binary scheme.

2.4. Family of (2n+1)-point, α-ary schemes based on polynomial of degree 2.Here, we
will present the family of(2n+1)-point,α-ary subdivision scheme based on a polynomial
of degree 2. For this, putp = 2 in (2.1), we get the second degree polynomial. After the
step 1 of the algorithm, we get a best fit polynomial

f(r) =
1
β0

(
η0 − η0β

2
1 − η2β0β1

β2
1 − β0β3

)
+

( η1

β2

)
r +

(η0β1 − η2β0

β2
1 − β0β3

)
r2, (2. 8)

where

β0 =
n∑

r=−n

1, β1 =
n∑

r=−n

r2, β2 =
n∑

r=−n

r2 − λ, β3 =
n∑

r=−n

r4 − λ,

η0 =
n∑

r=−n

fr, η1 =
n∑

r=−n

rfr, and η2 =
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r=−n

r2fr.

The family of (2n + 1)-point α-ary subdivision schemes is obtained by substitutingr =
± 2t+1

2α in (2.8) and replacingfr by fk
i+r

fk+1
αi+θ = f

(
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)
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1
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where

β0 =
n∑

r=−n

1, β1 =
n∑

r=−n

r2, β2 =
n∑

r=−n

r2 − λ, β3 =
n∑

r=−n

r4 − λ,

η0 =
n∑

r=−n

fk
i+r, η1 =

n∑
r=−n

rfk
i+r, and η2 =

n∑
r=−n

r2fk
i+r.

Which is the general form of a family of(2n + 1)-point α-ary subdivision schemes. By
substituting the different values ofα andn, we get the family members. The schemes can
be analyzed by using the techniques given in [1].
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3. BIVARIATE CASE

This section is for non-tensor product surface subdivision schemes. For the derivation
of a family ofα-ary subdivision schemes, we follow the following steps.
Step 1: Consider the bivariatepth degree polynomial with respect to the observations
(xr = r, ys = s, f(xr, ys) = fr,s)

f(r, s) = a0 +
1∑

i=0

ai+1r
1−isi +

2∑

i=0

ai+3r
2−isi +

3∑

i=0

ai+6r
3−isi + · · ·

+
p−1∑

i=0

ai+αrp−1−isi +
p∑

i=0

ai+α+pr
p−isi. (3. 10)

By ridge regression approximation, the penalized residual sum of squares is defined as:

J(a0, a1, · · · , a2p+α) =
n∑

r=−n

n∑
s=−n

(
fr,s − a0 −

1∑

i=0

ai+1r
1−isi − · · ·

−
p∑

i=0

ai+α+pr
p−isi

)2

+ λ

p∑

i=0

a2
i+α+p. (3. 11)

By taking the partial derivatives with respect toa0, a1 · · · a2p+α and setting them equal
to zero, we will get a system of linear equations. The solution of these equations gives the
values ofa2p+α’s. By substituting these values in ( 3. 10 ), we get the best fit bivariate
polynomial.
Step 2: Once the best fit polynomial of any degree is obtained, the family of(2n + 1)2-
point α-ary non-tensor product surface subdivision schemes is derived by putting(r, s) =
(± 2t+1

2α ,± 2t+1
2α ), whereα ≥ 2 with t = 0, 1, 2, · · · , α− 1 and replacingfr,s by fk

i+r,i+s.
Similarly, if −n + 1 ≤ r, s ≤ n, wheren ≥ 1, then we get family of4n2-point α-ary
approximating subdivision schemes for surface design.

3.1. Family of (2n + 1)2-point, α-ary bivariate schemes based on a polynomial of de-
gree 1. The family of(2n + 1)2-point,α-ary subdivision scheme based on the polynomial
of degree one is presented in this section. By substitutingp = 1 in (3.10), we get the linear
bivariate polynomial

f (r, s) = a0 + a1r + a2s. (3. 12)

After applying step 1 of the above algorithm, we get the values ofa0, a1 anda2:

a0 =
1

(2n + 1)2

n∑
r=−n

n∑
s=−n

fr,s, (3. 13)

a1 =
1

3(4n4 + 8n3 + 5n2 + n− 3λ)

n∑
r=−n

n∑
s=−n

rfr,s, (3. 14)

a2 =
1

3(4n4 + 8n3 + 5n2 + n− 3λ)

n∑
r=−n

n∑
s=−n

sfr,s. (3. 15)
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By substituting the values ofa0, a1 anda2 in (3.12), we get the best fit bivariate polynomial
of degree one. The family of(2n+1)2-pointα-ary non-tensor product subdivision schemes
is obtained by putting(r, s) = (± 2t+1

2α ,± 2t+1
2α ) and replacingfr,s by fk

r,s in the best fit
polynomial. The general form of the scheme is

fk+1
αi+θ,αj+θ = a0 + a1

(
±2t + 1

2α

)
+ a2

(
±2t + 1

2α

)
, (3. 16)

wherea0, a1 anda2 are defined in(3.4), (3.5) and(3.6) respectively. Corresponding to the
different values ofn andα, we get the family members of(2n+1)2-pointα-ary non-tensor
product surface subdivision schemes.

Remark 3.2. By takingλ = 0, we get the families of bivariate schemes proposed by Dyn
et al. [1].

Remark 3.3. By takingλ = 0 andp = 3, we get the families of bivariate schemes proposed
by Mustafa and Bari[4].

4. APPLICATIONS AND COMPARISON

This section aims to present the visual performance and comparison of subdivision
schemes generated by Ridge Regression (RR) algorithm and ordinary least squares (OLS)
algorithm [1]. In Figure1, we consider the data with three outliers and apply the proposed
3-point scheme ( 2. 6 ) whenλ = 2.5 and ordinary least squares based 3-point schemes
presented in [1]. We see that the proposed 3-point scheme ( 2. 6 ) gives less response to
the outliers comparative to the 3-point scheme presented in [1]. The second row of Figure
1 is the mirror images of the selected region of images presented in the first row. From this
figure, we can easily observe that the quality of curves generated by the proposed scheme
is better than the quality of curves produced by [1].

In Figure2, we consider the noisy data and apply the proposed 3-point scheme ( 2. 6
) whenλ = 2.5 and 3-point scheme presented in [1]. The second row of Figure2 is the
mirror images of the selected region of the images presented in the first row. From this
figure, we can again observe the quality of the curves generated by the proposed scheme is
better than the quality of curves produced by [1].

In Figure3, we present the comparison between the scheme ( 3. 16 ) withλ = 2.5 and
the schemes presented in [1]. We observe that as the complexity of scheme increases the
quality of surfaces increases. In surface case, it is difficult to see the differences among
these surfaces by naked eyes. But as in the curve case by magnifying some parts of images,
one can see the differences among these images.
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(a) (b)

FIGURE 1. (a) and(b) are the comparison of proposed 3-point schemes
whenλ = 2.5 and 3-point scheme of [1] in terms of outliers. The second
row of (a) and(b) is the mirror images of the selected region, shows the
quality of curves.

(a) (b)

FIGURE 2. (a) and(b) are the comparison of proposed 3-point schemes
whenλ = 2.5 and 3-point scheme of [1] in terms of noisy data. The
second row of(a) and(b) is the mirror images of the selected region,
shows the quality of curves.
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(a) Initial noisy surface

(b) 3-point (OLS) (c) 3-point (RR)

(d) 5-point (OLS) (e) 5-point (RR)

(f) 7-point (OLS) (g) 7-point (RR)

FIGURE 3. (a) Shows the initial noisy surface whereas(b) - (g) shows
the comparison of proposed surface subdivision schemes whenλ = 2.5
with surface schemes presented in [1].
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5. CONCLUSIONS

In this article, the generalized algorithms for univariate and bivariate approximating
subdivision schemes have been presented. A comparison between least squares based and
ridge regression based subdivision schemes is presented. The subdivision schemes gener-
ated by our algorithm give less response to the outliers and also give good quality of the
curves and surfaces. Moreover, the least squares based subdivision schemes are the special
cases of our proposed algorithm.
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