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Abstract. This article delves the approximate solution for third order sin-
gular boundary value problems using quartic B-spline collocation method
furnished with a new approximation for third order derivative. The new
approximation technique is tested on a class of third order singular ini-
tial/boundary value problems and the computational outcomes are com-
pared with those existing in open literature. Due to its straight forward
and simple application, the proposed numerical algorithm provides more
accurate results as compared to other variants on the topic.
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1. INTRODUCTION

Consider the following class of third order singular boundary value problem (SBVP)

au'(z) + gu”(x) +r(z)u (z) = f(x,u), z € [0,1], (1. 1)
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with one of the following sets of conditions

~

u(0) = ag, u'(0) = ag, u( as
w(0) = a1, u'(1) = a2, u(l)=as
u(0) = aq, v'(0) =az, v (l)=as (1.2)
u(0) = ay, ' (0) = @z, u”(0) =0,

where [ is the shape parameter, a, «;’s are constants and () is a smooth function. To en-
sure the existence of unique solution to (1. 1), we assume that both f and f,, are continuous
with f,, > 0 in the entire domain. The equation (1. 1) carries singularity at = 0 and non-
linear term, which affects the convergence of numerical techniques. Therefore, these types
of initial/boundary value problems have always remained attractive for the researchers. In
recent years, the numerical treatment of boundary value problems (BVP’s) have gained
a considerable amount of attention due to their broad scope of applications in real life
phenomena such as boundary layer theory, chemical reactions, thermal explosions, fluid
dynamics, atomic nuclear reactions and theory of elastic stability [3, 10, 13, 21, 25, 26].
Khuri [16] proposed a new decomposition method for solving generalized Emden-Flower
type equations. The power series solution for higher order SBVP’s has been proposed in
[11, 12, 18] by means of a modified form of Adomian decomposition method (MADM).
Aruna and Kanth [4] used Differential transformation method (DTM) in order to explore
the series solution for higher order SBVP’s. The numerical solution of a class of 3"¢ order
Emden-Flower type equations has been discussed in [23] by means of Adomian decom-
position method (ADM). Taiwo and Hassan [22] formulated an Iterative decomposition
method (IDM) and a numerical method based on Bernstein polynomials for higher order
non-linear SBVP’s. Wazwaz [24] proposed Variational iteration method (VIM) for series
solution of two new kinds of 3"¢ order singular initial value problems. Dezhbord et al.
[7] presented a numerical scheme based on reproducing kernel method (RKM) for solv-
ing higher order SBVP’s. The use of spline functions for solving BVP’s has become very
frequent in recent years. These functions possess high degree of smoothness and provide
approximate solution in the entire domain with great accuracy. The third and fourth degree
B-spline functions have been employed in [1, 5, 6, 8, 9, 14, 15, 17] to study the approximate
solution of BVP’s. Akram [2] employed the fourth degree splines for numerical solution of
37 order singularly perturbed BVP’s. The QBS functions were utilized in [20] for solving
third order singularly perturbed SBVP’s. Igbal ef al. [13] proposed a new cubic B-spline
(CBS) approximation scheme for numerical solution of third order SBVP’s.

In this paper, the approximate solution for 3"¢ order SBVP’s is studied. The proposed nu-
merical scheme is based on a new QBS approximation for third order derivative. In recent
years, different numerical techniques have been proposed for solving third order SBVP’s
but as yet as we know, this approximation technique is novel for the said purpose.

This paper is composed as follows: Some basic concepts of fourth degree basis spline inter-
polation are discussed in section 2. The new approximation to u'”(x) has been formulated
in section 3. Section 4 covers the description of numerical method. In order to prove the
uniform convergence of the presented numerical algorithm, an error analysis is carried out
in section 5. The computational results and discussions are given in section 6.
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2. QUARTIC B-SPLINE FUNCTIONS

Let us divide the interval [a, b] into n + 1 equidistant knots z; = z¢ + ih,? € Z such
thata = 29 < 21 < 3 < -+ < &, = b, wheren € ZT and h = 1(b — a). We extend
[a,b] to [a — 4h, b + 4h] with equidistant knots x; = a + ih, i = —4,—-3,—-2,--- ;n+4,
and define the typical QBS functions as [9, 19]

(. —zi0)%, Tio <x <y
h* 4+ 4h3(x — 2;_1) + 6h2 (2 — 1;_1)?
+4h(z — xi—1)® — 4(x — zi-1)*, Tio1 <x <1
) 11h* + 12h3(z — 2;) — 6h2 (2 — ;)
Bi(z) = 24hA —12h(z — 2;)® + 6(x — x;)*, v <z < T4 (2.3)
ht — 4h3(z — zi42) 4+ 60 (x — @i10)?
—4h(x — 2i42) — 4(x — Tis2)4, Tit1 < < Tiao
(z — zigs)?, Tit2 ST < Ty
0 otherwise.

For a smooth function u(z), there always exists a unique QBS, U (x), which satisfies the
given interpolating conditions, s.t.

n+1

Uz) = Y ciBi(w), Q. 4)

i=—2

where, the constants, ¢;’s are to be calculated. Let U;, m;, M; and T} be the QBS ap-
proximations for the unknown function u(z) and its first three derivatives at the j* knot

respectively.
Using (2. 3) and (2. 4 ), we have

Ui = Ulzj)= i(cj_z + 1lej_1 + 1lej + ¢j41), 2.5)
m; = U'(x;) = %( —¢j_a = 3cj—1 + 3¢ + ¢jt1), (2. 6)
M; = U'(z;) = 2%2(@_2 —Cjo1— ¢+ Cit1), 2.7
T, = U"(z;)= %( —Cj_a 4+ 3cj—1 — 3¢ + ¢jt1). (2. 8)

Using (2. 5 )—(2. 8 ), we can establish the following relations [19]

h4
m; = ul(w])+ﬁ0u(5)(xj)+ , (2 9)
My = () = 5 @fm) 40 2. 10)
" h? (5) h (7)
T; = u'(z;) - Ik (x;) + 510" (xj)+ (2. 11)
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From (2. 9 )—(2. 11 ), we have

[m; — v/ (z5)|le = Ofg]agn\lmj —u/(z;)|| = O(h*),
[M; —u"(z))llc = O(RY),
1Ty — v (zj)|lea = O(R?).

The truncation error in 7; is O(h?), which gives an adequate reason to establish a new
approximation to u’”’(z).

3. THE NEW APPROXIMATION TO u"’(z)

We use (2. 10 ) to expand T _» at the jth knot, (j = 2,3,4,--- ,n—2),as

h? ht
Tj—o = ul® (zj-2) — EU(5)($J‘—2) + ﬁoum (j—2) + -
7h3

23h?

@y _op @y 23Ry TRy 121kt
= u (93]) 2hu (33])‘1' 12“ (x]) 6“ (x])—l—

5 u(7)(l‘j) R

Similar expressions can be derived for T;_1, T4 and T} 15 at jth knot as

®) @ 5h% (5) 1 © Lt @

Tj-y = w?(z;) —hu (ay)—kﬁu (xj)—ﬁu (%‘)‘F%U () +---,
5h2 h3 1h*
Tj+1 = u® (.%‘j) + hu(4)(mj) + ﬁu(m(xj) + EU(G)(CUJ‘) + mum (.”L'j) + -
23h? 7h? 121h*
Tjve = u®(a5) + 2hu® (25) + =5-u® (25) + ——ul (2)) + —uD (@) + -
12 6 240
We suppose that the new approximation T ; for v/’ (x;) is given by
Tj = A1Tj72 + AQijl + A3TJ + A4Tj+1 + A5Tj+2. (3 12)

This expression (3. 12 ) leads to the following five equations involving A;’s as
A+ A+ A3+ A+ 45 = 1

—2A4; —As+ A4 +245 = 0

23A; +5As — A3+ 5A4+2345 = 0
0
0

—14A; — As + Ay + 1445 =
1214, + Ay + Az + Ay + 12145 =

Hence, A; = 72%0, Ay = 1—10, Az = %70, Ay = %0, and A5 = 72%0. Substituting A;’s
into (3. 12 ), we get

~ 1

Tj = m (Cj_4 - 27Cj_3 — 1196j_2 + 485Cj_1 — 485Cj + 1190j+1 + 27Cj+2 — Cj+3).

(3. 13)
Now we approximate v’ (x) at the knot x( using four neighbouring values, such that

%0 = ATy + ATy + ATy + AsTs, (3. 14)
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where
3 h? (s Wt o
Ty = u®(zo)— EU( (o) + %u( wo) + -+,
T, = u(3)(;v0) + hu(4)(x0) + %U(Fﬂ (z0) + hju(G)(xO) + h—4u(7)(x0) N
12 12 240 ’
23h? 7h? 1214
Ty = u®(wo) + 2hu®(z0) + “-u® (20) + —ul®(z0) + u™ () + -+
12 6 240
53h? 17h3 721h*
Tz = u®(x0) + 3hu™ (20) + =—u® (x0) + ——u® (x0) + ——uD(20) + -
12 4 240
The expression (3. 14 ) yields the following four equations
A1—|—A2+A3—|—A4 1,
Ay +2A3+ 344 = 0,
—A; +5A5+ 23435+ 5344 = O,
Ay +14A5 +514, = 0.
Hence, A; = %, Ay = —%, Az = % and Ay = —%. Using these values in (3. 14 ), we
obtain
~ 1
To = w( - 140_2 + 470_1 - 6160 + 4261 - 2062 + 763 - 64). (3 15)
Now, using four neighbouring knots at 21, we suppose
T, = ATy + ATy + AsTs + AyT3, (3. 16)
where
5h? h3 ht
To = u®(z1) —hu®(2)) + Eu(s) (1) — Eu(ﬁ)(xl) + %um(m) +ee
h? h*
T = u®(x) - ﬁu(5) (z1) + %u(ﬂ (1) +---,
T = u®(z1) +hu®(21) + EU(S) (z1) + hju(fi)(xl) + h—4u(7)(x1) N
12 12 240 ’
23h? 7h3 121h4
Ts = u®(x1) + 2hu® (1) + =—u® (21) + —uO (z1) + u () + -
12 6 240
Solving the above system, we get A; = ﬁ, Ag = %, Az = % and A, = 0. Substituting
A;’s back into (3. 16 ), we have
~ 1
T, = %( —cCc_g—Tc_1 4+ 26cy — 26¢1 + Teg + 63). (3.17)

In a very similar fashion, involving four neighbouring knots, we can establish the following
approximations at x,,_; and x,, respectively

n—1 = 1253 ( —Cpq4—Tcy 3+ 26¢, 2 —26¢, 1+ Tc, + Cn+1>7 (3 18)
~ 1
T, = e (Cn—5 —TCp—4 + 20¢,—3 — 42¢p_o + 61cy—1 — 47¢,, + 14cn+1).

(3. 19)
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4. DESCRIPTION OF THE NUMERICAL METHOD

Employing Quasi-linearization technique, equation (1. 1) is transformed as

au%H(x)+§u;§L+1(x)+r(x)u’,n+1(x)—!—Ym(z)umH(x) =Zmn(z), v €]0,1], (4.20)

where Y;,, () = —(%)(%um) and Z,(v) = f(2, ) — (%)(z,um)’ m=0,1,2,---.
The end conditions (1. 2) are also reshaped as
um+1(0) = Qq, U/m+1(0) = Q, um+1(1) = Q3. (4 21)

Using L Hopital’s rule, equation (4. 20 ) is modified as

p(a)tg, 1 () + q(@)tg, 1 (2) + 7(@) 11 (2) + Vin (@)t 41 (2) = Zin (), @ € [0,1],

4.22)
, ifx=0 0, ifz=0
where p(z) = ath 1 N and q(z) = q 4 1 N
a, ifz #0 =, ifx #0.
We suppose that the quartic B-spline solution to (4. 22 ) is given by
n+1
U(z)= > ¢Bi(x). (4.23)
i=—2

Discretizing (4. 22 ) at the j th knot, we obtain

p()Un 1 () + q(z)Upy () + () Uy (25) + Yo (2) U1 (25) = Zin (25).
4.24)
For j = 2,3,4,--- ,n — 2, we use (2. 5)—(2. 7) and (3. 13) in (4. 24 ) to obtain the
following equations

p(I]) (Cj_4 — 27Cj_3 — 1190]‘_2 + 4850]‘_1 — 4850]‘ + 1190j+1 + 27Cj+2 — Cj+3>

24013
Cj_9 —Cj_1 — Cj + Cjyq1 —Ci_o—3ci_1+3¢c; +cipr1
—|—q(a:j)( J 3 T j 3+ ) +r(xj)< 3 J6h j G+ )
- 11 - 11 . .
b V() (22 RGP G TGy g (), (@4 25)

24

Similarly, at the knots zg, 1, ©,—1 and x,, (4. 24 ) yields the following equations respec-
tively

7140_2 + 470_1 - 6160 + 4201 - 2062 + 763 — C4
p(zo)

12h3
C_9—C_1—Cy+cC —C_9—3c_1+3cog+ 1
-HI(JJO)( oh2 ) +7“(330)< 6h )
c_og+1lc_1 + 1lcy + ¢
+ Yo (0) (— 0 ) = Z(x0), (4.26)

24
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—C_9 — 7071 + 2600 — 2601 + 762 +c3
p(z1)

12h3
C_1—Cy—C1+Co —c_1 — 3¢y + 3c1 + ¢o
) (S ) e o )
14 1leg + 11ey +
+Ym(x1)(c ! 0 “ 62) = Zpm(z1), (4.27)

24

—Cp—g — TCp_3 + 26¢,,_2 — 26C,,—1 + TCp + Cpg1
P(@n-1) 1213

Cp—3 — Cp—2 — Cp—1 1+ Cp —Cp—3 — 3cn72 + 3Cn71 +cn
ot 2 )+ (e 2 )

+ Ym(l‘nfl)(

Cpn—3~+ 1lcp_o+ 1lc,—1 + ¢y,
24

) =Zm(zn-1), 4.28)

Cn—s — (Cp—q + 20cy—3 — 42¢,,_o + 61cy—1 — 47c,, + 14cp41
p(zn)

12h3
Cn—2 — Cn—1 — Cp + Cnt1 —Cp—2 — 3Cp—1 + 3¢y, + Cn+1
atan) - )t =
_ 11c,,_ 11c,
+ Kn(xn)(cn 2 Cno1 Cn + Cn+1) - Zm(xn)~ (4 29)

24
The set of boundary conditions (4. 21 ) as well give the following three equations

c_o+1lc_1 + 1lcyg+ 1

_ 4.
24 o .
—C_9—3c_1+3cog+ 1
_ 4.31
6h aQ’ o
Cn—2 + 11Cn—122— llcn + Cn+41 = as. (4 32)

The set of equations (4. 25 )—(4. 32 ), with unknowns ¢;’s, + = —2,—1,0,--- ;,n+ 1, can
be expressed in matrix notation as

Ac—b=0 (4.33)
The matrix equation (4. 33 ) represents a system of n + 4 linear equations involving n + 4
unknowns. Setting m = 0, we begin with an initial guess for Up(z) and solve (4. 33 ) for
c using a modified form of well known Thomas algorithm [9, 19, 20]. The values of ¢;’s
are then put into (4. 23 ) to get U,,,+1(z). This procedure is continued form = 1,2,3,---
till maz|Up41(2) — Upn(x)| < 1078, The numerical calculations are carried out using
Mathematica 9.

5. ERROR ANALYSIS
Using (2. 5)—(2. 7), we can establish the following relations [9]
h[U/(.’L'j,Q) + ].].U/(ifjfl) + 11UI(£IJ]‘) + U/((Ej+1)] = 4[U(!L‘j+1) + 3U((EJ)
= 3U(zj-1) — Ulzj—2)], (5.34)
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ﬁ[U’(wm) —U'(zj-1)]. (5.35)

WU (@) = 2[U(wj41) = 2U(2)) + Ulwja)] = 5

Similarly, using (3. 13 ), we have
3rrim h ! l h2 "
h°U (Ij) = % [59U (:Ej_l) — 72U (xj) + 13U(1‘j+1)] + m [U (Ij_g)
+ 92U”(Ij_1) + 184U//(l‘j) — U//($j+2)] . (5.36)
Employing the operator notation, E# (U’ (x;)) = U'(z;+,), 1t € Z, the relation (5. 34)
can be expressed as
RE~2+11E~ ' + 11E° + ENU'(z;) = 4[E* + 3E° — 3E~" — E~?Ju(x;).
Hence,
E+3-3E1-E2 (z;)
EZ+1E T +11+E|"
Using D = d/dx and E = P, we get
E+3-3E"'—E? = "P43-3c7"P e 2D
= 24hD —12h*D* +8h*D3 —3h*D* + ... |

WU (2;) = 4 (5.37)

E2+1E Y+11+E = e 2P 4 11e7"P 411 +MP
_ 24—12hD+8h2D2—3h3D3+%h4D4+... .

Therefore, equation (5. 37 ) can be expressed as

1 1 1 1 -1
U'(x;) = (D — 5hD2 + gh2D3 + - ) (1 —3hD+ §h2D2 4. ) u(x;)

-1
D—;hD2+;h2D3+~~> [1+ <—;hD+;h2D2+-~>} u(z)

2 3 2

1 1 1 1
(D— hD2+h2D3+---> [1+hD— 12h2D2+--lu(xj)
D4~ hiDP — L _pSpT4 ... u(z;)
720 2016 .

Simplifying, we obtain

) = () + ——hu® () — — 16 (.
U'(z;) =u(z;) + 720h u(z;) 2016h u N (zg)+ - (5. 38)
Similarly, (5. 35 ) can be expressed as
2

1

U (x) 57

[E‘l —2E° 4 El]u(xj) [E' — B~/ (z)

:hQ

h*D* hSDS  R8D®
— [ 2n2D2 )
( S T NTI )“(xj)

h*D3  KSD5 KED7
- <h2D—|— )u’(x])

6 120 5040
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After simplification, the above relation yields the following expression

h* RS
Ml N — o () (6) (8) )
U (z;) = u"(z5) 240" (z )+6048u () +-- . . 39)
In the same way, (5. 36 ) gives the following relation
23h3 Th* 23h5°
U" (. @ u©® ) u® () 5. 40
() = ;) + g (@) ~ g0 (@) + grggp (@) ©-40)

We define the error term at j knot as e(z;) = U(z;) — u(z;). Using (5. 38 )~(5. 40 ) in
Taylor series of error term, we obtain

45 + 46
elzj + oh) = 720 a 216;0 Dy ©las) +

where, 0 < ¢ < 1. From (5. 41), it is clear that the truncation error in the new QBS
approximation method is O(h®).

hou® (2;) + (5. 41)

6. NUMERICAL RESULTS

In this section, we discuss the approximate solution of (1. 1) by new QBS approxima-
tion technique. In order to test the accuracy of proposed numerical technique, the error
norm L is evaluated as

Loo = IUj — ujlloc = Ofg]agn\U(xj) —u(z;)|.

Example 6.1. Consider the following SBVP [4, 11]
u” (x) — S (z) — u(z) — u?(z) = —6e” + 6xe” + Tre” — 2%, = € [0,1],
x
with the end conditions
w(0) =0, u'(0) =0, u(l) =e.

The closed form solution is z3e®. The computational results are listed in Table 1. It
is found that our approximate results are better than DTM [4], MADM [11] and quartic
B-spline collocation method (QBSM) used in [20]. Figure 1 displays the analytical and
numerical solution when A = 1/20. The absolute computational error corresponding to
four different values of / is shown in Figure 2.

Example 6.2. Consider the 37 order SBVP [4, 12, 13]
2 . . .
u”(x) — Zu' (z) — ud(z) = —6e” + 6xe” 4 Tr2e” + 23e” — 2%, x € [0,1],
x
with following end conditions

w(0) =0, u'(0) =0, u/(1) = 4e.

The closed form solution is u(z) = z3e”. In Table 2-3, the approximate results are
compared with DTM [4], MADM [12], NCBSM [13] and QBSM used in [20]. From
Figure 3, one can clearly observe that the computational error decreases with h.
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TABLE 1. Computational results for Example 6.1.

DTM [4]

MADM [11]

QBSM
h=1/40

Proposed method

h=1/20

h=1/40

Exact solution

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.0011051737
0.0097712661
0.0364464109
0.0954774849

0.3935811403
0.6907232803
1.1394859561
1.7930602392
2.7182818285

0
0.0011049829
0.0097682140
0.0364309587
0.0954286436

0.3933337725
0.6902648178
1.1387033873
1.7918056879
2.7163675037

0.0000000000
0.0011044865
0.0097659876
0.0364291591
0.0954390698
0.2060239268
0.3934796306
0.6905929245
1.1393459652
1.7929522212
2.7182818285

0.0000000000
0.0011051345
0.0097711892
0.0364462015
0.0954768795
0.2060903684
0.3935779841
0.6907175863
1.1394773753
1.7930509742
2.7182818285

0.0000000000
0.0011051687
0.0097712202
0.0364461889
0.0954767871
0.2060901723
0.3935776815
0.6907172045
1.1394769819
1.7930506873
2.7182818285

0
0.0011051709
0.0097712221
0.0364461878
0.0954767806
0.2060901588
0.3935776609
0.6907171787
1.1394769554
1.7930506680
2.7182818285

| 957 x107°

[ 1.91x107% [ 1.32x 1077 [ 426 x 10"

2.70 x 1075 |

251

201

05F

Approximate Solution

-®--e---@- ExactSolution

FIGURE 1. Numerical and analytical solution for Example 6.1 when b = 1/20.

TABLE 2. Computational results for Example 6.2.

DTM [4]

MADM [12]

QBSM
h=1/40

Proposed method

h=1/20

h =1/40

Exact solution

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
0.0011049829
0.0097682140
0.0364309587
0.0954286436
0.2059726070
0.3933337725
0.6902648178
1.1387033873
1.7918056879
27163675037

0
0.0011027286
0.0097321453
0.0362483607
0.0948515377
0.2045635871
0.3904115919
0.6848491728
1.1294576080
1.7769747466
2.6937066308

0.0000000000
0.0011044856
0.0097659741
0.0364290953
0.09543838885
0.2060235481
0.3934790076
0.6905921151
1.1393451901
1.7929517917
2.7182818285

0.0000000000
0.0011051345
0.0097711896
0.0364462036
0.0954768863
0.2060903850
0.3935780184
0.6907176489
1.1394774804
1.7930511407
2.7182820822

0.0000000000
0.0011051687
0.0097712202
0.0364461890
0.0954767876
0.2060901734
0.3935776837
0.6907172086
1.1394769889
1.7930506983
2.7182818452

0
0.0011051709
0.0097712221
0.0364461878
0.0954767806
0.2060901588
0.3935776609
0.6907171787
1.1394769554
1.7930506680
27182818285

[ 1.90x1073 [ 246 x 1072 [ 1.33x 10~* [ 5.25 x 107

3.35 x 107% |
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Absolute error Absolute error

6.x1076F 4.x1077
5.x107F

3.x1077
4.x1075¢

3.x107F 2.x1077
2.x107F

1.x1077
1.x1078F

. . - . X . . . . X
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
(@) h=1/10 (b) h=1/20
Absolute error Absolute error

-8

2.5x10 1.5x107°
2.x1078

15x107® 1.x107°
1.x10°8

) 5.x1071°
5.x107°

X X
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
() h=1/40 (d) h=1/80

FIGURE 2. Computational error norm for Example 6.1.

TABLE 3. Absolute numerical error for Example 6.2.

n QBSM NCBSM [13] | Proposed method
30 [ 237 x107% | 398 x 10°° 1.05 x 10~7
40 1.33 x10* | 8.96 x 10~ 3.35 x 1078

Example 6.3. Consider the 3"% order SBVP [22]
3
u” (2) + Su' (z) — ud(x) = 24e” + 36we” 4 122%e” 4 23 — 2%, 2 € [0,1],
T

with the end conditions

u(0) =0, u'(0) =0, u(l) =e.

The analytical exact solution is u(x) = z3e”. The computational results are tabulated in
Table 4. It can be concluded that our results are better than QBSM used in [20] and Iterative
decomposition method (IDM) [22]. The absolute numerical error for different choices of
mesh size is displayed in Figure 4.

Example 6.4. Consider the non—linear singular initial value problem [7, 24]

9(z% +8)

" 2, _
@) + z" (=) = 8ud(x)

, x €10,1],
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Absolute error Absolute error

8.x107%
5.x1077
6.x1076 4.x10~7
4.%x10°8 3.x1077
2.x1077
2.x107%
1.x1077
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
(@) h=1/10 (b) h=1/20
Absolute error Absolute error
3.5x1078
3 %10 2.x1079
-8
2.5%x10 1.5x10~°
2.x1078

1.5x1078
1.x10°8
5.x107°

() h=1/40

1.x107°

5.x1071°

0.2

) h=1/80

FIGURE 3. Computational error norm for Example 6.2.

TABLE 4. Numerical results for Example 6.3.

xT

IDM [22]

QBSM
h=1/40

Proposed method

h=1/20

h=1/40

Exact solution

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0000000000
0.0011050170
0.0097699780
0.0364419458
0.0954666206
0.2060700980
0.3935425575
0.6906604686
1.1393898620
1.7929200380
2.7170847700

0.0000000000
0.0010769248
0.0097141285
0.0363625885
0.0953705090
0.2059671104
0.3934463760
0.6905895196
1.1393688849
1.7929831323
2.7182818285

0.0000000000
0.0011049698
0.0097708186
0.0364456211
0.0954760967
0.2060894103
0.3935769077
0.6907164889
1.1394764059
1.7930503453
2.7182818285

0.0000000000
0.0011051573
0.0097711958
0.0364461515
0.0954767371
0.2060901114
0.3935776133
0.6907171351
1.1394769207
1.7930506477
2.7182818285

0.0000000000
0.0011051709
0.0097712221
0.0364461878
0.0954767806
0.2060901588
0.3935776609
0.6907171787
1.1394769554
1.7930506680
2.7182818285

L

[ 120x107% [ 1.32x10°% | 7.59 x 10~

4.80 x 10% |

with the initial conditions

u(0) =1, u'(0) =u"(0) = 0.
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Absolute error Absolyte error

0.000012 8.x107
0.00001 6. %107
8.x1076
6.x10° 4.x1077
4.x1078
2.x1077
2.x107°
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
(@) h=1/10 (b) h=1/20
s Aﬁ%ojé‘te error Absolute error
X r
3.x107°
4.x1078F 2.5%1079
3.x10°8} 2.x107°
1.5%x107°
2.x1078}
1.x107°
-8
1.x10 5.x10-10
- - - - X X
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
() h=1/40 (d) h=1/80

FIGURE 4. Absolute computational error for Example 6.3.

The exact solution is v/1 4 2:3. The comparison of computational outcomes with RKM
[7]1, QBSM used in [20], ADM [23] and VIM [24] is presented in Table 5-6. It is observed
that our proposed approximation technique shows superior results as compared to QBSM
and VIM. The exact and numerical solutions are shown in Figure 5. The computational
error norm with n = 10, 20, 40, 80 has been portrayed in Figure 6.

Uix

Approximate Solution

#--e--e- Exact Solution

FIGURE 5. Exact and approximate solution for Example 6.4 when h = 1/20.



56

Muhammad Kashif Igbal, Muhammad Abbas and Bushra Zafar

TABLE 5. Approximate results for Example 6.4.

xT

ADM [23]
VIM [24]

QBSM
h=1/40

Proposed method

h=1/20

h=1/40

Exact solution

0.0
0.1
0.2
0.3
04
0.5
0.6
0.7
0.8
0.9
1.0

1
1.0004998751
1.0039920318
1.0134100844
1.0315037286
1.0606594086
1.1027128254
1.1587753002
1.2289362534
1.3112512518

1.3984375

1.0000000000
1.0004998646
1.0039918750
1.0134093262
1.0315015223
1.0606552770
1.1027151874
1.1588655553
1.2296165165
1.3148935619
1.4141911866

1.0000000000
1.0004998639
1.0039919869
1.0134099869
1.0315035946
1.0606599467
1.1027236267
1.1588784721
1.2296338035
1.3149141957
1.4142133767

1.0000000000
1.0004998743
1.0039920290
1.0134100786
1.0315037464
1.0606601576
1.1027238830
1.1588787499
1.2296340739
1.3149144303
1.4142135508

1
1.0004998751
1.0039920318
1.0134100848
1.0315037567
1.0606601718
1.1027239002
1.1588787685
1.2296340919
1.3149144459
14142135624

Loo | 1.58x 1072 [ 224 x107° [ 296 x 1077  1.86 x 10°° |

TABLE 6. Absolute computational error for Example 6.4.

n QBSM RKM [7] Proposed method
20897 x107° [ 778 x 107° 2.96 x 10~7
351292 x 1075 | 4.40 x 10~ 3.18 x 1078

TABLE 7. Absolute computational errors for Example 6.5 when € = 1072,

n 16
Proposed method | 3.16 x 103
QBSM [20] 2.10 x 1072

32
9.77 x 1074
6.59 x 1073

64
5.37 x 107°
1.50 x 10~3

128
3.43 x 1076
3.77 x 1074

256
217 x 1077
9.55 x 1075

Example 6.5. Consider the singularly perturbed SBVP [20]

eu(2) + %U”(x) +u'(2) +u(z) = (1 _ 2) M

b 6071’
€T sin( vel0.1]

&

with the end conditions
1
cos (ﬁ)

u(0) =0, u(t) =1, w'() = =2 Ty
/e

sin( )
sin(ﬁ)
values of n is presented in Table 7. It is revealed that our computed results are better than
QBSM [20]. In Figure 7-8, the approximate and exact solutions are exhibited for two
different values of perturbation constant when n = 20.

The analytical exact solution is . The computational error norm for different
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Absolute error Absolute error

4.x10-6 3.x1077
2.5x1077
-6
3.x10 2.x1077
2.x10°6 1.5x1077
1.x1077
1.x107°
5.x1078
B ' ' ' ' = X X
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
(@ h=1/10 (b) h=1/20
Absolute error Absolute error
1.2x107°
-9
1.5x1078 1.x10
8.x1071°
1.x1078 6.x10"10
4.x1071°
5.x107°
2.x1071°
X X
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
() h=1/40 (d) h=1/80

FIGURE 6. Computational error norm for Example 6.4.

0.2 0.4 06 08 1.0

Approximate solution

@@ @ Exactsolution

FIGURE 7. Exact and numerical solution for Example 6.5 when n = 20,

e=10"2.

7. CONCLUSIONS

In this article, numerical solution of 3"¢ order SBVP’s has been studied. The proposed
scheme is applied on several test problems and we conclude the following outcomes

(1) The proposed numerical method is based on a new quartic B-spline approximation

for 374 order derivative.
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(1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]

(1]

Approximate solution @ @ -@ Exact solution

FIGURE 8. Exact and approximate solution for Example 6.5 when n =
20, € = 1073,

IS
T

N
T

|
N
T

!
IS
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(2) The presented approximation is novel for third order SBVP’s.

(3) The truncation error in the proposed numerical algorithm is O(h®).

(4) As the step size is decreased, the computational error decreases.

(5) Due to its straightforward and simple application, our new approximation tech-
nique produces more accurate results as compared to DTM [4], RKM [7], MADM
[11, 12], NCBSM [13], QBSM used in [20], IDM [22], ADM [23] and VIM [24].
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