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Abstract. Kidney Dialysis is considered as one of the world’s major
health problems. Level of occurrence of this illness is high and every
year increases by%8. Kidney Dialysis refers to temporary or permanent
kidney damage which causes lack of proper functioning of kidneys. One
of the dangerous problems for Dialysis patients is blood pressure. On the
other hand life expectancy of these patients is matter of concern. There-
fore finding a mathematical model which can link these two factors is of
great importance. In this research it has been assumed that input outputs
of the under evaluation units adhere to Rayleigh distribution. By consid-
ering suitable models for data envelopment analysis such as FDH, new
methods for determining random value of under evaluation units are pre-
sented. Since one of the main Rayleigh distribution functions is about life
expectancy, therefore the model is expanded to cover the dialysis patient’s
life expectancy.
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1. INTRODUCTION

Kidney dialysis is one of the major health problems throughout the world which can
cause irreversible progressive damage to kidneys and consequently to the person’s general
health. These include deteriorations in body liquid and/or electrolyte balance. This disease
is responsible for over 60,000 deaths word wide every year.
Kidney function is filtering the blood and eliminating undesired substances out of it. Dialy-
sis carries out many of the natural kidney functions. One of occurring complications during
dialysis is low blood pressure. This condition carries many dangerous outcomes. Under
low pressure conditions blood clothes easily and the dialysis operation is not carried out
properly. This can endanger the patients life.
A family of statistical distribution analysis regarding life expectancy have been developed
within the last century. Data Envelopment Analysis by use of CCR model in 1978 and
then BCC model in 1984 for the evaluation of decision making units were introduced [2-1]
. For evaluation of decision making units in different areas different DEA models using
ranged, Fuzzy, certain, ... . Data were introduced. In reality in many application areas the
processed data is random and not certain. By considering that some of processed data in
real applications would be random cooper et. al [3-4] suggested some models for these
type of data, Li [11] , Huang and Li [6-7], Khodabakhshi [10], Khodabakhshi et. al [9]
introduced DEA models for random data, Horrace and Schmidt [8] also examined the reli-
ability of the random units.
The main problem with these models was that all input/output variables must have normal
distribution. In reality however it may be otherwise and some of the input/output vari-
ables may not have a symmetrical distribution representation i.e. they are asymmetrical.
Therefore evaluation of these data would lead to untrue conclusions and incorrect presen-
tations. Section 2 refers to Rayliegh distribution which was formulated by Lord Rayliegh
in 1919 [13]. This is a specific condition of weibull distribution which is used in cases of
life span data analysis. In this article it has been assumed that the data have Rayliegh dis-
tribution. By considering that Kidney dialysis effects patients’ health and life expectancy
then the Rayliegh distribution which is very popular in life expectancy data modeling has
been used.
The third section considers the suggested FDH random model. An application example
regarding the suggested model is carried out in section 4and the conclusion is carried out
in the fifth section.
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2. PRELIMINARIES

In this section some of the concepts and theorems used in this article are introduced.

2.1. Rayleigh distribution. Rayleigh distribution is a probability distribution which was
first introduced by Lord Rayleigh. This distribution is useful for evaluation of life span data
analysis.
Definition 1: Random variableX with σ > 0 has Rayleigh distribution. It is presented by
X ∼ Rayleigh(σ) such that probability density function and its cumulative distribution
function are determined by [12]:
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For Simplification and use in SFDH model that explained in subsequent future. If we put
1
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2.2. Properties of Rayleigh distribution. now
Some of Properties Rayleigh distribution is:
1) The raw moments are given by:

µk = σk2k/2Γ(1 + k/2);

WhereΓ(z) is the Gamma function.
2) The mean and variance of a Rayleigh random variable may be expressed as:

µ(X) = σ

√
π

2
≈ 1.253σ;

and

var(X) =
4− π

2
σ2 ≈ 0.429σ2;
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3) The mode isσ and the maximum pdf is:

fmax = f(σ; σ) =
1
σ

exp− 1
2
≈ 0.606

σ
;

4) The skewness is given by:

γ1 =
2
√

π(π − 3)
(4− π)3/2

≈ 0.631;

5) The excess kurtosis is given by:

γ2 = −6π2 − 24π + 16
(4− π)2

≈ −0.245;

6) The characteristic function is given by:

ϕ(t) = 1− σte−σ2t2/2

√
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( σt√
2
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− i

)
;

Where erfi(z) is the complex error function.
7) The moment generating function is given by

M(t) = 1 + σteσ2t2/2

√
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2

(
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( σt√
2

)
+ 1

)
;

Where erfi(z) is the error function.
8) The information entropy is given by

H = 1 + In
( σ√

2

)
+

γ

2
whereσ is the EulerMascheroni constant.
With regard to the value of the parameter, Rayleigh distribution can have different forms.
In the following figure the probability density function for parameter variations(σ) have
been drawn:

FIGURE 1. Probability density function of rayleigh distribution
The cumulative distribution function for the parameter variations(σ) of the Rayleigh

distribution is as follows:
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FIGURE 2. Cumulative distribution function of rayleigh distribution

2.3. Output Orientated Free Disposal Hull (FDH). Free disposal hull (FDH) models
were introduced for the first time by Deprin, Tulkens and Simar [5]. In CCR and BCC
models usually a linear combination of efficient units represents inefficient units, but since
in many real world situations linear models do not represent a combination of several units
thus FDH models were formulated. In these only one efficient unit represents a model for
inefficient units. The difference between CCR and BCC data envelopment analysis model
with FDH model is that the FDH technology does not limit itself to concave technology.
Suppose we have a set of n peerDMUs, {DMUj : j = 1, 2, . . . , n} , which produce
multiple outputsYrj , (r = 1, 2, . . . , s),by utilizing multiple inputsXij , (i = 1, 2, . . . ,m) .
When aDMUo is under evaluation by the FDH model, we have [14]:

ϕ∗o = max ϕo

s.t

n∑

j=1

λjXij ≤ Xio; i = 1, . . . , m.

n∑

j=1

λjYrj ≥ ϕoYro; r = 1, . . . , s. (2. 1)

n∑

j=1

λj = 1

λj ∈ {0, 1}; j = 1, . . . , n.

Whereλ is a binary variable andϕo is a free and continues variable.
Model (1) is always true becauseλo = 1, ϕo = 1 andλj = 0 for (eachj 6= 0) ) there
is a true answer. For the model’s deterministic solution (1) the below algorithm can be
presented [14].

Algorithm 1 Preparation stage: the steps below must be taken first.
Step 0: input values,Xij and output values,Yrj are defined.
Repeater step: for each unit under evaluation such asDMUo whereo ∈ {1, 2, . . . , n} the
steps bellow must be repeated.
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Step 1: We eliminate all observations ofj which are true for each r in the inequality
Yrj < Yro . Then we call the remaining observed valuesTo .

Step 2: We eliminate allj ∈ To which are true for each i in the inequalityXij > Xio .
Then we call all remaining observed valuesT̃o .

Step 3: for each observation ofj ∈ T̃o value ofϕj
o is determined from the below re-

lation.

ϕj
o = max

{
ϕo

∣∣∣ϕo ≤ Yrj

Yro
, Yro > 0, r = 1, . . . , s

}
= min

1≤r≤s

{Yrj

Yro
, Yro > 0

}

Step 4: ϕ∗o is calculated from the below relationship:

ϕ∗0 = max
j∈T̃o

{ϕj
0} = max

j∈T̃o

min
1≤r≤s

{Yrj

Yro
, Yro > 0

}

Definition 2: if ϕ∗FDHo
= 1 then unit under evaluation byDMUo is efficient.

3. OUTPUT ORIENTATEDSFDH MODEL WITH RAYLEIGH DISTRIBUTION

In this section output orientated SFDH model with Rayleigh distribution is introduced.
For everyDMUj assumeXj = (X1j , X2j , . . . , Xmj) and Yj = (Y1j , Y2j , . . . , Ysj)
are random input output vectors respectively, such thatXij ∼ Rayleigh(αij), Yrj ∼
Rayleigh(βrj) and also inputs are independent of each other. Likewise outputs are also
independent of each other. But inputs and outputs are not independent of each other. By
using model (1) output orientated SFDH model is defined as below:

ϕ∗o = max
1≤j≤n

maxϕo
j

s.t. P (Xij ≤ Xio) ≥ 1− α; i = 1, . . . , m.

P (Yrj ≥ ϕo
jYro) ≥ 1− α; r = 1, . . . , s. (3. 2)

Output orientated FDH model can be presented in a compact format as: follow:

ϕ∗o = maxϕ

s.t. P
( n∑

j=1

λjXij ≤ Xio

)
≥ 1− α; i = 1, . . . , m.

P
( n∑

j=1

λjYrj ≥ ϕoYro

)
≥ 1− α; r = 1, . . . , s. (3. 3)

n∑

j=1

λj = 1

λj ∈ {0, 1}; j = 1, . . . , n.



Evaluation of Dialyses Patients by use of Stochastic Data Envelopment Analysis 55

3.1. Deterministic output orientated SFDH model at presence of Rayleigh distribu-
tion. For transfer of random model (2) to a determinate model first we state and prove the
fundamental theorem below.

Theorem 1: If X andY are 2 independent random variables, such thatX ∼ Rayleigh(α)
andY ∼ Rayleigh(β) then for eachc > 0 random variableZ = X − cY has the accumu-
lative distribution function below at zero.

Fz(0) =
αc2

β + αc2

Proof: See appendix.

By puttingZ = Yrj − ϕoYro in theorem (1), also considering the first restraint in model
(2) we get:

P
(
Yrj ≥ ϕoYro

) ≥ 1− α ⇔ P
(
Yrj − ϕ0Yro ≤ 0

) ≤ α

⇔ Fz(o) ≤ α ⇔ βroϕ
2
o

βroϕ2
o + βrj

≤ α ⇔ ϕ2
o ≤

α

1− α

βrj

βro

ϕo≥1←→ϕo ≤
√

α

1− α

√
βrj

βro

Similarly by puttingZ = Xij −Xio in theorem (1), also considering the second restraint
in model (2) we get:

P
(
Xij ≤ Xio

)
≥ 1− α ⇔ P

(
Xij −Xio ≤ 0

)
≥ 1− α ⇔

Fz(0) ≥ 1− α ⇔ αio

αio + αij
≥ 1− α ⇔ αij

αio
≤ α

1− α

Thus under these conditions deterministic model is fully defined.
Now for each0 ∈ {1, 2, , . . . , n} and for0 < α < 1 similar to deterministic algorithm (1)
(output orientated FDH) for the random model (1)Go andG̃o can be presented asGo(α)
andG̃o(α) respectively. These are defined as below:

Go(α) =
{

j
∣∣∣αij

αio
≤ α

1− α
, i = 1, . . . , m

}
(3. 4)

In the deterministic FDH model by placing̃Go for ϕo level of efficiency i.e. a number
is substituted.Therefore under random conditions forϕo level of efficiency i.e. number
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√
α

1− α
is placed in the first restraint in model (2)

P
(
Yrj ≥ ϕoYro

)
≥ 1− α ⇔ ϕo ≤

√
α

1− α

√
βrj

βro
⇔

√
α

1− α
≤

√
α

1− α

√
βrj

βro
⇔

√
βrj

βro
≥ 1

ThereforeG̃o(α) is defined as:

G̃o(α) =
{

j ∈ Go(α)
∣∣∣
√

βrj

βro
≥ 1, r = 1, . . . , s

}
(3. 5)

Finally by definitions ofGo(α) andG̃o(α) and algorithm (1) output orientated determin-
istic FDH model can be presented as an efficient algorithm for solving output orientated
random FDH model (2) as below.

Algorithm 2
Preliminary stage: first the fallowing steps must be carried out:
Step 0: value of input(αij) output(βrj) parameters are determined.
Step 1: determine the value forα.
Repeater step: for each unit under evaluation such asDMUo where0 ∈ 1, 2, . . . , n}the
fallowing steps must be repeated.
Step 2: The setsGo(α) andG̃o(α) are determined in relationships (4) and (5).
Step 3: for each observation ofj ∈ G̃o(α) value ofϕj

o(α) is found from the relationship
below.

ϕj
o(α) = max

{
ϕo

∣∣∣ϕo ≤
√

α

1− α

√
βrj

βro
, r = 1, . . . , s

}
= min

1≤r≤s

{√
α

1− α

√
βrj

βro

}

Step 4: ϕ∗o(α) is calculated from:

ϕ∗o(α) = max
j∈G̃o(α)

ϕj
o(α) = max

j∈G̃o(α)
min

1≤j≤s

{√
α

1− α

√
βrj

βro

}

In this caseϕ∗FDHo
(α) equals to:

ϕ∗FDHo
(α) = ϕ∗o(α)

Definition 3: If the unit under evaluationDMUo at the error levelα has no other reverence

other than itself i.e.G̃o(α) = {O} thenϕ∗FDHo
(α) =

√
α

1− α
thenDMUo is α-random

efficient. In this definitionDMUo is called an extreme point on stochastic frontier.

Definition 4: If the unit under evaluationDMUo has another error reference point than

itself andϕ∗FDHo
(α) =

√
α

1− α
thenDMUo is α-random efficient. In this definition
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DMUo is called an extreme point on stochastic frontier.

Definition 5: If the unit under evaluationDMUo has another error reference than itself

andϕ∗FDHo
(α) 6=

√
α

1− α
thenDMUo is α-random inefficient.

Definition 6: If the unit under evaluationDMUo at error levelat error levelα is not over-
come by any of the decision making units i.e.(G̃o(α) = ø) thenDMUo is α-random

efficient. Its efficiency is expressed asϕ∗FDHo
(α) =

√
α

1− α
.

Definition 7: if G̃o(α) 6= ø ando /∈ G̃o(α) then the unit under evaluationDMUo at
error level falls on stochastic frontier which is inefficient. Under this conditionDMUo the
unit under evaluation isα-random inefficient.

Notice: whenGo(α) = ø then its corresponding restraints will be redundant (input re-
straints) andG̃o(α) is calculated for all observations of(1 ≤ j ≤ n) and the algorithm will
be fallowed.

4. APPLICATION

In this section an application problem regarding life expectancy has been used to present
functioning of an output orientated SFDH model in determining the efficacy of systems on
life expectancy by use of Rayleigh distribution. Considering importance of life span and
lowering of blood pressure output orientated model was used.
Please take note: to make certain that the results of solving the random models be sound
and reliable then according to uncertainty principles a value for must be selected such
that to be near1/2, so the results obtained from random models and deterministic models
would be the same.

4.1. A Practical Application Regarding Life Expectancy. In this example an output ori-
entated SFDH model was exemplified by considerations of measuring random efficiency of
decision making units. Thirty dialysis patients were presented byDMUj(j = 1, 2, . . . , n).
EachDMUj consists of two input elements which are: The average weekly time under
dialysis and the time period on the waiting list for Kidney transplant, measured annually
represented asXij , i = 1, 2 These adhere to goodness of fit test according to Rayleigh
distributionXij ∼ Rayleigh(γij) (for inputs). Patients’ life span and low blood pressure
are each a random variable inYrj , r = 1, 2 which according to goodness of fit test have
Rayleigh distributionYrj ∼ Rayleigh(βrj) (for outputs).
Input output parameters are presented in table (1). By employing Algorithm (2) random
efficiency for each of the 30 patients was determined.
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TABLE 1. inputs and outputs

Average weekly Time period Life span Blood
DMUj hours of before Kidney expectancy pressure

dialysis transplant in years In years (second output )
(first input) (second input) (first output)

DMU01 X11 ∼ Rayleigh(6) X21 ∼ Rayleigh(2) Y11 ∼ Rayleigh(15) Y21 ∼ Rayleigh(9)
DMU02 X12 ∼ Rayleigh(12) X22 ∼ Rayleigh(5) Y12 ∼ Rayleigh(11) Y22 ∼ Rayleigh(8)

DMU03 X13 ∼ Rayleigh(15) X23 ∼ Rayleigh(1) Y13 ∼ Rayleigh(2) Y23 ∼ Rayleigh(4)
DMU04 X14 ∼ Rayleigh(8) X24 ∼ Rayleigh(3) Y14 ∼ Rayleigh(20) Y24 ∼ Rayleigh(9)
DMU05 X15 ∼ Rayleigh(16) X25 ∼ Rayleigh(0.5) Y15 ∼ Rayleigh(11) Y25 ∼ Rayleigh(3)
DMU06 X16 ∼ Rayleigh(20) X26 ∼ Rayleigh(0.67) Y16 ∼ Rayleigh(0.02) Y26 ∼ Rayleigh(2)

DMU07 X17 ∼ Rayleigh(9) X27 ∼ Rayleigh(20) Y17 ∼ Rayleigh(7) Y27 ∼ Rayleigh(9)
DMU08 X18 ∼ Rayleigh(8) X28 ∼ Rayleigh(2) Y18 ∼ Rayleigh(9) Y28 ∼ Rayleigh(9)
DMU09 X19 ∼ Rayleigh(12) X29 ∼ Rayleigh(6) Y19 ∼ Rayleigh(15) Y29 ∼ Rayleigh(9)
DMU10 X110 ∼ Rayleigh(6) X210 ∼ Rayleigh(3) Y110 ∼ Rayleigh(18) Y210 ∼ Rayleigh(7)

DMU11 X111 ∼ Rayleigh(15) X211 ∼ Rayleigh(2) Y111 ∼ Rayleigh(13) Y211 ∼ Rayleigh(3)
DMU12 X112 ∼ Rayleigh(15) X212 ∼ Rayleigh(2.5) Y112 ∼ Rayleigh(12) Y212 ∼ Rayleigh(2)
DMU13 X113 ∼ Rayleigh(20) X213 ∼ Rayleigh(7) Y113 ∼ Rayleigh(0.02) Y213 ∼ Rayleigh(2)
DMU14 X114 ∼ Rayleigh(16) X214 ∼ Rayleigh(9) Y114 ∼ Rayleigh(3.5) Y214 ∼ Rayleigh(4)

The data in table (1) is evaluated according to algorithm (2) and processed for each level
of α ∈ {0.1, 0.3, 0.5, 0.525}and by use of EXECL represented in table (2).
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Average weekly Time period Life span Blood
DMUj hours of before Kidney expectancy pressure

dialysis transplant in years In years (second output )
(first input) (second input) (first output)

DMU15 X115 ∼ Rayleigh(12) X215 ∼ Rayleigh(11) Y115 ∼ Rayleigh(2) Y215 ∼ Rayleigh(3)
DMU16 X116 ∼ Rayleigh(9) X216 ∼ Rayleigh(5) Y116 ∼ Rayleigh(19) Y216 ∼ Rayleigh(8)
DMU17 X117 ∼ Rayleigh(16) X217 ∼ Rayleigh(2) Y117 ∼ Rayleigh(8.5) Y217 ∼ Rayleigh(5)
DMU18 X118 ∼ Rayleigh(9) X218 ∼ Rayleigh(13) Y118 ∼ Rayleigh(11) Y218 ∼ Rayleigh(7)

DMU19 X119 ∼ Rayleigh(6) X219 ∼ Rayleigh(4) Y119 ∼ Rayleigh(16) Y219 ∼ Rayleigh(9)
DMU20 X120 ∼ Rayleigh(15) X220 ∼ Rayleigh(15) Y120 ∼ Rayleigh(14) Y220 ∼ Rayleigh(4)
DMU21 X121 ∼ Rayleigh(16) X221 ∼ Rayleigh(14) Y121 ∼ Rayleigh(9.5) Y221 ∼ Rayleigh(3)
DMU22 X122 ∼ Rayleigh(12) X222 ∼ Rayleigh(10) Y122 ∼ Rayleigh(14) Y222 ∼ Rayleigh(4)

DMU23 X123 ∼ Rayleigh(20) X223 ∼ Rayleigh(3.5) Y123 ∼ Rayleigh(10) Y223 ∼ Rayleigh(2)
DMU24 X124 ∼ Rayleigh(16) X224 ∼ Rayleigh(1.5) Y124 ∼ Rayleigh(8) Y224 ∼ Rayleigh(6)
DMU25 X125 ∼ Rayleigh(8) X225 ∼ Rayleigh(6) Y125 ∼ Rayleigh(12.5) Y225 ∼ Rayleigh(8)
DMU26 X126 ∼ Rayleigh(15) X226 ∼ Rayleigh(9.5) Y126 ∼ Rayleigh(2) Y226 ∼ Rayleigh(3)

DMU27 X127 ∼ Rayleigh(16) X227 ∼ Rayleigh(3) Y127 ∼ Rayleigh(2) Y227 ∼ Rayleigh(2)
DMU28 X128 ∼ Rayleigh(16) X228 ∼ Rayleigh(5.5) Y128 ∼ Rayleigh(11) Y228 ∼ Rayleigh(4)
DMU29 X129 ∼ Rayleigh(16) X229 ∼ Rayleigh(4) Y129 ∼ Rayleigh(12) Y229 ∼ Rayleigh(3)
DMU30 X130 ∼ Rayleigh(20) X230 ∼ Rayleigh(20) Y130 ∼ Rayleigh(1) Y230 ∼ Rayleigh(2)

The results presented in table (2) indicate that atα = 0.05 level, %20 of the patients i.e.
patients number 1,4,7,8,9,19 and atα = 0.1 level, %20 of patients number 1,4,7,8,9 and 19
and atα = 0.3 level, %27 of number 1,4,7,8,9,17,19 and 24, and atα = 0.5 level, patients
number 1,3,4,5,7,8,9,10,19 and 24 were %33 of patients, and atα = 0.525 level patients
number 1,3,4,5,7,8,9,10,19 and 24 i.e. %33 of patients showed random efficiency.
Other patients showed random inefficiency. In addition patients number 1,4,7,8,9 and19
were randomly efficient at all levels. These represent %20 of the patients (according to de-
finitions 3 to 7). It could be concluded that patients number 1, 4,7,8,9 and 19 was efficient
i.e. the kidney transplant operation was carried out at a suitable time.
Therefore by considering hospital clinical conditions such as dialysis equipment and qual-
ity of dialysis, investigating medical team performance including diagnosis by the physi-
cians, nursing staff, considerations of diet, reduction of liquid taking and operation tim-
ing which all contributed to lowering patient blood pressure and lengthening their life ex-
pectancy showed the validity of physicians decision for time of operation.
For inefficient units decisions made as well as quality of operation and care plus diet con-
siderations were weak. It may be considered that atα = 0.5 level the obtained efficiency
results from random SFDH and the results from output orientated deterministic FDH mod-
els were equal.

Appendix: Proof of Theorem 1
According to definition 1 we have

Fz(z) = P (Z ≤ z) = P (X − cY ≤ z) = P (X ≤ cY + z)

if cY + z ≤ 0 thenFz(z) = 0 because random variableX is supported within(0,∞)
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TABLE 2. shows the results of measuring random efficiency of the dial-
ysis patients

α = 0.05 α = 0.1 α = 0.3 α = 0.5 α = 0.525
DMUj Efficiency Efficiency Efficiency Efficiency Efficiency

DMU01 0.2777 0.3333 0.9512 1.0000 1.0513
DMU02 0.24555 0.3536 1.0089 1.0607 1.1151
DMU03 0.29999 0.5000 1.4268 1.0000 1.0513
DMU04 0.45555 0.3333 0.9512 1.0000 1.0513
DMU05 0.56666 0.4495 1.2826 1.0000 1.0513
DMU06 0.56666 0.7071 1.1650 1.2247 1.2247
DMU07 0.24555 0.3333 0.9512 1.0000 1.0513
DMU08 0.33333 0.3333 0.9512 1.0000 1.0513
DMU09 0.24555 0.3333 0.9512 1.0000 1.0513
DMU10 0.25666 0.3514 1.0026 1.0000 1.0513

α = 0.05 α = 0.1 α = 0.3 α = 0.5 α = 0.525
DMUj Efficiency Efficiency Efficiency Efficiency Efficiency

DMU11 0.24444 0.4134 1.1798 1.0742 1.1293
DMU12 0.27777 0.4303 1.0635 1.1180 1.1754
DMU13 0.276666 0.7071 2.0178 2.1213 2.2302
DMU14 0.25555 0.5000 1.4268 1.5000 1.5770
DMU15 0 .23333 0.5634 1.6078 1.6903 1.7770
DMU16 0.245555 0.3420 0.9759 1.0260 1.0786
DMU17 0.234444 0.4472 0.9512 1.3284 1.3966
DMU18 0.23555 0.3780 1.0785 1.1339 1.1921
DMU19 0.24555 0.3333 0.9512 1.0000 1.0513
DMU20 0.2444 0.3984 1.1369 1.1952 1.2566

range. Then ifcY + z > 0 then we get:

Fz(z) =
∫ ∞

− z
c

FX(cY + z)fy(y)dy

Thus considering random variableY is supported within(0,∞) range:

Fz(z) =





∫∞
− z

c
FX(cY + z)fY (y) dy; −z

c
> 0

∫∞
0

FX(cY + z)fY y dy; −z

c
≤ 0
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α = 0.05 α = 0.1 α = 0.3 α = 0.5 α = 0.525
DMUj Efficiency Efficiency Efficiency Efficiency Efficiency

DMU21 0.277777 0.4837 1.3801 1.4510 1.5254
DMU22 0.27888 0.3984 1.1369 1.1952 1.2566
DMU23 0.25555 0.4714 1.3452 1.4142 1.4868
DMU24 0.26666 0.4082 0.9512 1.0000 1.0513
DMU25 0.27666 0.3536 1.0089 1.0607 1.1151
DMU26 0.288888 0.5040 1.4381 1.5119 1.5894
DMU27 0.45666 0.5634 1.3924 1.6903 1.7770
DMU28 0.3454 0.4495 1.2826 1.3484 1.4176
DMU29 0.476 0.4303 1.2280 1.2910 1.3572
DMU30 0.4453 0.7071 2.0178 2.1213 2.2302

Now if −z

c
≤ 0 which is equivalent toz ≥ 0;

Fz(Z) =
∫ ∞

0

FX(cY + z)fY (y) dy

=
∫ ∞

0

(
1− e−(cy+z)2α

)
2βye−βy2

dy

=
∫ ∞

0

2βye−βy2
dy −

∫ ∞

0

2βye−βy2
e−(cy+z)2α dy

=
∫ ∞

0

2βye−βy2
dy −

∫ ∞

o

2βye−βy2−(cy+z)2α dy

Since solving the above integration is difficult, the fallowing method is carried out. Also
note that only valueFZ(0) = P (Z ≤ 0) is needed. Therefore by equatingZ to zero or
Z = 0 the required solution is found.

P (X − cY ≤ 0) =
∫ ∞

0

P (X − cY ≤ 0
∣∣∣Y = y)fY (y) dy

=
∫ ∞

0

Fx(cy)fY (y) dy =
∫ ∞

0

(
1− e−α(cy)2

)
2βye−βy2

dy

=
∫ ∞

0

2βye−βy2
dy − β

∫ ∞

0

2ye−βy2
e−α(cy)2 dy

=
∫ ∞

0

2βye−βy2
dy − β

∫ ∞

0

2ye−y2(β+αc2) dy

= −e−βy2
]∞
0

+
( β

β + αc2

)
e−y2(β+αc2)

]∞

0
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= lim
y→∞

(
− e−βy2

)
+ e−β(o)2 + lim

y→∞

((
β

β + αc2

)
e−y2(β+αc2)

)

−
(

β

β + αc2

)
e−(o)2(β+αc2) = 0 + 1 + 0−

(
β

β + αc2

)

= 1−
(

β

β + αc2

)
=

αc2

β + αc2
=

1−
(

β

β + αc2

)
=

αc2

β + αc2

Which proves the theorem.

5. CONCLUSION

For purposes of evaluation of decision making units many DEA models have been intro-
duced. These models mainly have been developed for the purpose of using ranged, Fuzzy,
definite, certain, .... data models. Under real conditions however data generated is usually
uncertain and also not under control of decision making units, i.e. they are random. Un-
der these conditions new methods 12 were required. More recent models consider random
input output data having normal distribution. There are no suitable models with regards to
determining efficiency of units in presence of statistical distributions as yet.
In this article random nature of data has been considered. By use input outputs orientated
SFDH models with input outputs adhering to Rayleigh distribution efficiency of DMUs
have been evaluated.
In the presented method by considering error levelα possibility of occurrence of unfore-
seen conditions is derived. This error level must be analysed initially and decided upon.
Any variation in this level of error will be reflected in the produced results. Therefore
selection of this error is of great importance. It is advisable to select the error level as a
numberα to be near 0.5. Since one of the variables which fallow Rayleigh distribution is
the random life expectancy which fits the condition of the dialysis patients therefore it was
applied for 30 dialysis patients and its obtained results are presented.
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