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Abstract. An AG-groupoid also called a Left-almost semigroup is
a magma satisfying the law, uv-w = wv-u  Vu, v, w. In this paper,
the concept of Cheban AG-groupoid is developed and investigated
as a subclass of AG-groupoid. Various non-associative examples
and counterexamples are constructed by the recent computational
techniques of Mace-4, GAP and Prover-9. Cheban AG-groupoids
are enumerated up to order 6 and various relations of this class
are established with already existing subclasses of AG-groupoids.
Furthermore, ideals in Cheban AG-groupoid are introduced and
investigated.
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1. INTRODUCTION

Abel Grassmann’s groupoid (shortly AG-groupoid) is generally a non-commutative
and non-associative structure that holds the left invertive law. The medial law,
tu-vw = tv-uw holds in every AG-groupoid however, the paramedial law, tu-vw =
wu - vt is satisfied in AG-groupoid if it possesses the left identity. AG-groupoids
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have various applications in geometry, flock theory, fuzzy and finite mathematics
[1, 16, 7, 12, 13]. A variety of new subclasses is being rapidly introduced and inves-
tigated [4, 19, 20, 21]. We extend the concept of left (resp. right) Cheban loops
arising in [I8] and introduce some new subclasses of AG-groupoids that are left
(resp. right) Cheban AG-groupoid. In the Section 2 we give definitions of these
AG-groupoids and provide some non-associative examples to show their existence.
We use juxtaposition in our mathematical calculations to avoid frequent use of
parenthesis. For instance, tu - vw will mean (¢ - u) - (v - w). Various AG-groupoids
with their defining identities arising in various papers [2} 3, 14, 16}, 17, 19, 22} 23] 25]
are presented in the following Table 1 that we use frequently throughout this arti-
cle. In Section 3 we establish relations of Cheban AG-groupoids with some other
previously known subclasses of AG-groupoids. It is investigated that any Cheban
AG-groupoid is Bol*, is middle and left nuclear square and is a commutative semi-
group, if S is the inverse AG-groupoid. We also prove that any AG* is Cheban
AG-groupoid and that a Cheban AG-groupoid is a semigroup if either it has the
left identity element or it is cancellative. In Section 4 we provide enumerations
of Cheban AG-groupoids up to order 6 and in Section 5 we define and investigate
various ideals in a Cheban AG-groupoid. From now onward Cheban will mean a
Cheban AG-groupoid.

2. MATERIALS AND METHOD

We listed various definitions of different subclasses of the AG-groupoid in Table-
1 below to investigate the new class of Cheban AG-groupoid. We have used the
modern techniques of GAP and Mace-4 to enumerate Cheban AG-groupoids up to
order 6 and to find various examples and counterexamples.

Cheban AG-groupoid

Definition 1. Let S be an AG-groupoid, then is called -
(i) -left Cheban AG-groupoid if Vt,u,v,w € S,
t(uv - w) = vt - uw
(ii) -right Cheban AG-groupoid if Vt,u,v,w € S,
(t-uv)w = tw - vu
(iii) -Cheban AG-groupoid if S is both a left and a right Cheban AG-groupoid.

’ AG-gropoid ‘ Defining Identitiy ‘ AG-gropoid ‘ Defining Identitiy
Bol* tuwv - w) = (tu - v)w Right alternative | wv-v =wu-vv
Inverse w-u=u& vu-v=uv | Self-dual UVW =W VU
Left nuclear square wlv-w =u? - vw Right cancellative | ur = vz = u=wv
Right nuclear square w - w? = u - vw? Left cancellative TU=2TV = U=
Middle nuclear square | uv? - w = u - v?w AG-3-band U UU=UU U =U
AG* UV W =V - uw T! tu = vw = ut = wv

Table 1. AG-groupoids and their identities

Example 1. The following Caley’s tables respectively represent:

(i) Right Cheban AG-groupoid of order 3.
(ii) Left Cheban AG-groupoid of order 3.
(iii) Cheban AG-groupoid of order 3.
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£]0 1 2 x[0 1 2 0 1
0/0 0 0 0[0 0 0 0 0
1{0 0 0 110 00 0 0
2|1 1 1 210 1 1 0 1

(1) (i) (iif)

3. RESULTS AND DISCUSSIONS

3.1. Relations of Cheban AG-groupoid with some other known subclasses.
Here, relations of Cheban AG-groupoid are investigated with some of the existing
subclasses of AG-groupoid.

Theorem 1. A Cheban AG-groupoid is Bol*.
Proof. Let t,u,v,w be elements of a Cheban AG-groupoid S. Then, by the left

invertive law, the medial law and by the Definition 1)), we have
t(uv-w) = tlwv-u)=vt wu=vw- tu=(v-ut)w
= (w-ut)v =wv-tu= (tu-v)w.
Thus, t(uv - w) = (tu - v)w. Hence S is Bol*-AG-groupoid. O

The converse statement of Theorem (1) may not be valid, as shown by the
following counterexample.

Example 2. A Bol*-AG-groupoid which is not a Cheban AG-groupoid. Here, 0 *
(1%2)%3) # (2%0)* (1%3). Thus S is not a left Cheban or a Cheban AG-groupoid.

x[0 1 2 3
0oj0 1 2 3
110 3 2
203 2 1 0
312 38 0 1

It has been investigated that Every Bol*-AG-groupoid is paramedial AG-groupoid
[20]. Hence, using this fact and Theorem (), we prove the following.

Corollary 1. Cheban AG-groupoid is paramedial AG-groupoid.

Next, we establish a relation of Cheban AG-groupoid with the left nuclear square
and middle nuclear square AG-groupoids.

Theorem 2. Any inverse Cheban AG-groupoid is a commutative semigroup.

Proof. Let S be a be the inverse Cheban AG-groupoid, and u,v € S. Then, by left
invertive and medial laws and Definition (1), we have

w = (uv-u)v = (vu)(ww) = u((uv)v)
= u((vv)u) =vu-vu =v(uwv - u) = vu

Thus uv = vu. Therefore, S is commutative, but as each commutative AG-groupoid
is also an associative, thus S is a commutative semigroup. (]

Theorem 3. For a Cheban AG-groupoid K each of the following hold:

(i) K is middle nuclear square.
(i) K is left nuclear square.

Proof. Let K be a Cheban AG-groupoid, and u,v,w € K.
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(i) Then, by left invertive, medial laws, Definition (1)) and Theorem (1)) we get

u(v?w) = (vu-vw) = (v(wv))u = (u(wv))v =

= w-ovw=v(vu-w) =v(wu-v) =
= w-wv=uw- o= (u-vv)w = (uw?)w

Thus u(v?w) = (uvv?)w. Hence, K is middle nuclear square AG-groupoid.

(ii) Again by the use of left invertive and medial laws, Theorem (3, Part [i) and
Definition (1)), we have

W)w = (wv-u?) = (w-uu)v = (uw - uww) =
= uu-wv = ulwu-v) =u(vu - w) = vy - vw = (u? - vw
Thus (u?v)w = u?(vw). Hence, K is is left nuclear square AG-groupoid and
the theorem is proved.

O

Now, a counterexample is provided to show that each Cheban AG-groupoid
is neither a right nuclear square nor a right alternative. However, we prove in
the following that a Cheban AG-groupoid is right nuclear square if it is the right
alternative AG-groupoid.

Example 3. A Cheban AG-groupoid of size 4 that is neither a right alternative
nor a right nuclear square.

[0 1 2 3
0]0 1 2 3
1/1 0 3 2
213 2 1 0
310 02 2

The next theorem has extended the idea of Theorem (3)) to establish a relation
for Cheban AG-groupoid with nuclear square if it is either a right alternative AG-
groupoid, or a self-dual AG-groupoid or a T'-AG-groupoid.

Theorem 4. A Cheban AG-groupoid S is nuclear square, if any of the following
18 true:

(i) S is right alternative AG-groupoid.
(i) S is self-dual AG-groupoid.
(iii) S is T'-AG-groupid.

Proof. Let S is Cheban AG-groupoid, and u,v,w € S. Then

(i) If S is a right alternative, then by left invertive and medial laws and Definition
(1)), we have

w(vw?) = ulvw-w) = u(w?v) = wu - wu =
= ww-uw = (w - w)w = wv - ww = (uw)w?.
Thus u(uw?) = (uv)w?. Hence, S is right nuclear square AG-groupoid, and
thus by Theorem (3)) the result follows.
(ii) If S is self-dual AG-groupoid, then again by Corollary (1)), and medial law,
we have

w(w?) = wv-wu=ww-vu=u-vw.
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that is wv - w? = u - vw?. Hence, S is right nuclear square, and whence is

nuclear square by Theorem (3]).
(iii) If S is T'-AG-groupoid, then by the left invertive and medial laws and Defi-
nition (1), we have
w-w? = uw-vw = w? - uww = vw - uw =
= wu-ww= (v -ww)u = (w)w? = u(vw?).
that is wv - w? = u - vw?. Hence, S is right nuclear square, and whence is
nuclear square by Theorem (3]).

O
Theorem 5. Any AG*-groupoid is a Cheban AG-groupoid.
Proof. Assume that K is an AG*-groupoid, and let u, v, w,z € K. We prove via in
turn that K is left and a right Cheban AG-groupoid.
(i) For left Cheban AG-groupoid let w,v,w,x € K. Then, using Part (viii) of
Table 1, we have
u(ow-z) = ulw-vx)=wu-ve = ulvw - x) = wu - va.
This shows that K is left Cheban AG-groupoid.
(ii) For right Cheban AG-groupoid let u,v,w,z € K. We use again the left
invertive, medial laws and Part (viii) of Table 1, we have
ufow-x) = (vu-w)r=zw-vu
= (v-zw)u= (Tv-wW)u = uw - TV = UT - WU
= (u-vw)xr =uxr - wo.
This shows that K is right Cheban AG-groupoid. Hence the result is estab-
lished.
O

A Cheban AG-groupoid becomes a commutative semigroup under the following
variety of conditions.

Theorem 6. For each of the following assertions, a Cheban AG-groupoid S is a
commutative semigroup.
(i) S has the left identity element.
(i) S is AG-3-band.
(ii) S is left cancellative.
(iv) S is left cancellative.
Proof. Let S be a Cheban AG-groupoid. Then
(i) Assume S has the left identity e, and let u,v € S. Then by left invertive,
medial laws and Definition (1)), we have
w = eu-ev=(e-ve)u=(u-ve)e=
= wue-ev=cleu-v) =e(vu-e)=
= Ue-VE=UV-Ee =UV-E=Eev- U= V.
Thus the commutativity of S is established, that leads to associativity in AG.
Therefore, S is a commutative semigroup.
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(i)

(iii)

Assume S is AG-3-band, then Using the left invertive, medial laws, the as-
sumption, Definition (1)) and Theorem (1), we get
w = (uwv-uw)uww = (v(uw-v))uw = (v(vu - u))uv =
= ((vv-wuw)uv = (wv - u)(vw - u) = ((uv)(vw))(uv) =
(u-vv)v)(un) = ((v(vv))u)(uu) = (vu - vo)(uu) =
uw - vv)(vu) = (uv - ww)(vu) = ((u - vu)v)(ve) =

(v(vw))u)(vu) = (vu - wv)(vu) = (u(uv - v))(vu) =

u(vv - w))(uu) = (vu - vu)vu = vu

Thus uv = vu. That is S commutative, and thus is an associative. Equiva-
lently, S is commutative semigroup.

Assume S is left cancellative-AG-groupoid. Now Definition (1)) the assump-
tion, left invertive and medial laws are used to get

z(zu-v) = z(vu-z)=ux-ve=w- -zx = (u-TT)V =
= (w-azr)u=vu-zx=vx ur=x(uw- ) =
= z(zv-u) = z(zu-v) =z(zv-u) =
= Tu-v=av-u
Equivalently uv = vu. Thus, S commutative, and hence associative. Equiva-
lently, S is commutative semigroup.

Assume S is right cancellative-AG-groupoid. Again, using Definition (1)) the
assumption, left invertive, medial laws and Theorem (1)), we have

(wv-z)x = (zv-uw)x=z(vu-z)=ur vx =uv- xT =
= (u-zzx)v=(v-22)u = VU TT = VT - UT =
(v-zu)r = x(zu-v) = zv - ur = v((ux)z) = (vu - z)x
= (wv-z)r = ((vu)z)x
= w-r=vu-zx
Therefore uv = vu. Equivalently, S is commutative, and thus associative.
O

The following counterexample has depicted that each Cheban AG-groupoid may
neither be a right nuclear square nor a T"'-AG-groupoid.

Example 4. Let Q = {1,2,3,4}, then, (Q,*) in the table below is Cheban AG-
groupoid that is neither right nuclear square nor T*-AG-groupoid, as (1x1)x(4x4) #

1% (1

% (4%4)) and 1x1=1%2 do not imply 11 =2x 1.
+[1 2 3 4
112 2 3 2
213 3 3 3
33 3 3 3
412 2 3 2

Based on our data, the following reality may be true; however, we failed to prove
or to provide a counterexample to disprove it. Thus, we have proposed it as a
conjecture to the reader.

Conjecture 1. Every unipotent Cheban AG-groupoid is right alternative.
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4. ENUMERATION OF CHEBAN AG-GROUPOIDS

Classification and enumeration of various mathematical entries is considered as
a sound area of research in finite and pure mathematics. Classification of the fi-
nite simple groups is considered as an achievement of the current century. The
enumeration of various structures is obtained indifferent ways like; combinator-
ial or in algebraic consideration. Using the combinatorial consideration and the
bespoke exhaustive generation software some non-associative algebraic structures,
like, quasigroups and loops are enumerated up to size 11 [15]. FINDER (Finite
domain enumeration) [24] is used for enumeration of IP loops up to the size 13
[5]. The developed constraint solving techniques for semigroups and the monoids,
the third author of this article, in collaboration with A. Distler (the author of
[8, 19, [10]) has used GAP to enumerate AG-groupoids. It is worth mentioning that
the data presented in [11] is verified by one of the referees of the said article with
Mace-4 and Isofilter as acknowledged in the mentioned article. All this validate
the enumeration and classification results for the Cheban AG-groupoids, a subclass
of AG-groupoids, as the same techniques and relevant data of [11] with modified
coding in GAP (GAP, 2012) has been used for the purpose. Further, all the tables
of size up to 3 have been verified manually for our Cheban AG-groupoids. Enu-
meration of non-associative Cheban AG-groupoids of order 3 to 6 is given in Table
2 below:

[ AG-groupoid/Order 13[4 ] 5 ] 6 ‘
| Total | 81269 | 31467 | 40097003 ‘
Left Cheban AG-groupoid |2 | 50 | 2983 1356457
Right Cheban AG-groupoid | 6 | 204 | 24482 35538962
Cheban AG-groupoid 21 49 | 2913 1334621

Table 2. Enumeration of non-associative Cheban AG-groupoids up to order 6.

5. IDEALS IN CHEBAN AG-GROUPOID

Here, we have characterized Cheban AG-groupoid S by the properties of their
ideals. A subgroupoid K of S is a right (resp. left) ideal of S if

KS C K(resp. SK CK)

Theorem 7. For any left ideal L of a Cheban AG-groupoid S and ¥Yxr € S, the
following holds:

(i) xzL? is right ideal of S.
(ii) L2z is left ideal of S.

Proof. Let S be Cheban AG-groupoid and L be a left ideal of S, thenm € L,s € S,
then
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(i) By Theorem (1)) the property of Cheban AG-groupoid and by the left invertive
law, we have

(x(LL)S)= U (x-mm)s = U zs-mm

seS,meL seS,meL

U s(mz-m) = U (sm-xz)m
seS,meEL seS,meL

U (xm-s)m = U (ms-am)
s€eSmeL seS,meL

U (mx-sm) = U x(sm-m)
seS,meL s€S,meL

x(sm-m) C U x(mm)CaL?

seS,meL seS,meL

Hence zL? is right ideal of S.
(ii) Again by the properties of Cheban AG-groupoid, left ideal and left invertive
law, we have

S(LL)x) = SESI{nELs (mm-x) = sesqneLs (wm -m)
U ms-azm = U mzx-sm
seS,meL seS,meL
(m-ms)x = U (x-ms)m
seS,meL seS,meL
U xzm-sm = U xzm-m
seS,meL seS,meL
U mm-z C L%
seSmeL

So L2z is left ideal for S.
O

Theorem 8. For a Cheban AG-groupoid S, the set u - Su is right ideal of S if
uesS

Proof. Let u be an element of a Cheban AG-groupoid, then by the definition of
Cheban AG-groupoid, medial and left invertive laws, we have

(u-Su)S:”l;]Es(u'mu)y = wgfes(uyum)
U Gweyn) = U ulyuea)
LTy = U (uu-ay)
z,ges (uz - uy) = a;,g%s (u-yu)x
U = U ()
ml}]ggu (ux-y) = zgesu (yz - u)

= (u-Su)S C wu-Su

Thus (u - Su)S C u - Su is right ideal of S. O

Theorem 9. For any element u of a Cheban AG-groupoid S, the set uS -u is ideal
of S.
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Proof. For any u € S, by Theorem (1), properties of Cheban AG-groupoid, the
medial and the left invertive laws, we have

S-u)S = s = U . g
(uS - u) s (us-u)s L v (su-s)
U .58y = U . 55’
os (uu - ss') s (u-ss)u

(wS-u)S C uS-u

So (uS - u) is right ideal of S. Again by the properties of Cheban AG-groupoid and
medial law, we have

S (uS - u) = S’ST,JeSs (us’-u) = s (ss" - uu)
. s(’JGS (s'u-su) = T (ss' - u)

LY (us'-s) = s (s'u - us)

s (s su)u = U (u-su)s’

WY (us’-us) = Y (uu - s's)

= s,s(’]GS (u-ss)u

SuS-u) C uS-u
So (uS - w) is left ideal of S. Equivalently, «S - u is an ideal. O

Theorem 10. For any right ideal R of a Cheban AG-groupoid S and uw € S, the
following are true.

(i) w- Ru is a right ideal of S.
(i) uR - u is a left ideal of S.

Proof. For any right ideal R of a Cheban AG-groupoid S and u,s € S,r € R, by
the properties of a Cheban AG-groupoid, the medial and the left invertive laws, we
have

(i)

(u (Ru)) § = reRq;eS ulru))s = rezgses (us) (ur)
reR(,JSGSS (wu)r) = reR[,JSGSS((TU) v)

TGRI{SES ((us) (ru)) - = reR[,]ses (u(ur)) s

reRL,[SES ((su) (ru)) - = relgsesu ((rs)u)

(RS-u)S C wu-Ru.

Thus u - Ru is a right ideal of S.



88 M.Rashad, I.Ahmad, Amanullah and M. Shah

(ii) Again by the properties of Cheban AG-groupoid and the medial law, we have

S (uR - = U .
(uR - u) TeR)sess (ur - u)

U (su-r)u = U (ur-su)
rE€R,s€S keS,leL

U r(su-u) = U (rs-u)u
reéR,seS reR,seS

U (us-m)u = U (ur-us)
reR,seS reR,seS

U (uu-rs) = U u(ru-s)
reR,se€S reR,se€S

U u(su-r) = U  (uu-sr)
reR,seS reR,seS

U . C R
reR,s€S (w-rsju € (uR)u

Thus uR - u is a left ideal of S.
O

Theorem 11. For a Cheban AG-groupoid S and u,v € S,uv - S U vu - S is ideal
of S.

Proof. Let u,v,x,y € S, then using the properties of a Cheban AG-groupoid, the
medial and the left invertive laws, we have

Suwv-SUovu-S) = Suww-S) US(wu-S)
L lwey) Uz (w-y)) = U f(vw-uy) U (uz-vy))
Ul U ez = U (@ yn)u U (uya)]
LT Mwyp)o U (veyayu) = U f(uv-ay) U (vu-ay))

S(uv-S U vu-S)

N

(uwv-S U vu-S)

It means S (uv-S U vu-S) C (uww-S U vu-S). Thus (wv-S U vu-S) is a right
ideal of S. Now, by the property of Cheban AG-groupoid and the medial law and
Theorem (1) above, we have

(w-SUvu-5)S = (w-9)SU (vu-S)S

LT My U uo-y)a] = U oy -uv) U (zy - ou)

LT e v) Uy(a-w)] = U (yu-z)o U (yo-z)ul

L Mvwyu) U (ue-yo)] = U o (yo-y) Uz (yu-v)]

LT My v)u U (zy-wje] = U f(uw-ay) U (vu-ay))
C (w-SUwvu-S)

Thus, (wv-S U vu-8)S C (uww-S U vu-S). So (uv-S U vu-S) is a left ideal of
S. Hence (uv-S U vu - S) is an ideal of S. O

Theorem 12. Let L be left ideal of a Cheban AG-groupoid S. Then for any u,v €
S, (uL)v is an ideal of S.



A STUDY ON CHEBAN ABEL-GRASSMANN GROUPOIDS 89

Proof. Let L be a left ideal of .S, then for u,v € S, [ € L, by the property of Cheban
AG-groupoid,the medial and the left invertive laws and definition of the left ideal,
we have,

(uL-v)S = kegleL(ulm)k

U (kv-ul) = U (k-lu)v
keS|leL keS|leL

U (w-luk = U  (vk-ul)
keS|leL keS|leL

U (vu-kl) = U wu(kv-l)
keS|leL keS|leL

U u(lv-k) = U  (vu-lk)
keS,leL kesS,leL

U (w-kl)u = U (u-klh)v
keS|leL keS|leL
C (ul)v

That is, (uL - v) S C (uL)v. Thus (uL) v is a right ideal of S. Now, by the property
of a Cheban AG-groupoid, medial law and by Theorem (If), we have

S(uL-v) = kegleLk (ul - v)
keS|leL (k- uv) = kegleL (- kv)
U (-vk)u = U  (u-vk)l
keS,leL kesS,leL
U (ul-kv) = U  (uk-lv)
kes|leL keS|leL
U (ul-kv) = U 1(ku-v)
keS|leL keS|leL
U l(vu-k) = U (ul-vk)
keS|leL keS|leL
U (w-lk) = U (u-kl)v
kes|leL kes|leL
C (ul)w

Thus S(uL - v) C uL -v. Hence ulL - v is left ideal. Equivalently, uL - v is an ideal
of S. g

6. CONCLUSION

A new class of AG-groupoid is investigated which is called Cheban AG-groupoid.
Various examples and counterexamples are constructed using the modern compu-
tational methods of Prover-9 and Mace-4 to justify the results. The Cheban AG-
groupoids is enumerated up to order 6. Moreover, various relations of these types
are established with other algebraic structures and with other subclasses of AG-
groupoids and ideals in these AG-groupoids are discussed and investigated.
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