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Abstract. An AG-groupoidS satisfying the identityx(yz) = z(xy) for
all x, y, z ∈ S is called a CA-AG-groupoid. In this article the notions of
equivalence relation and congruence is extended to CA-AG-groupoids and
various congruences on CA-AG-groupoid and inverse CA-AG-groupoid
are defined and investigated. Furthermore, it is shown that a suitably de-
fined relationρ on inverse CA-AG-groupoidS is a maximal idempotent-
separating congruence, thatS/ρ is fundamental and that the semilattice of
idempotents ofS is isomorphic to the semilattice of idempotents onS/ρ.
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1. INTRODUCTION

A groupoidS satisfy(xy)z = (zy)x for all x, y, z ∈ S (known as the left invertive law
[15]) is called an Abel-Grassmann groupoid (in short AG-groupoid [25]). This structure is
introduced in1972 by Kazim and Naseeruddin [15]. The said structure is called upon by
different names by different authors, such as left almost semigroup (in short LA-semigroup)
[15], right modular groupoid [7] and left invertive groupoid [9]. It is a non-associative alge-
braic structure midway between a groupoid and a commutative semigroup, and generalize
the class of commutative semigroups. AG-groupoid is a well worked area of research hav-
ing a variety of applications in various fields like flocks theory [15], matrix theory [6, 3],
geometry [29] and topology [16] etc.
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Various aspects of AG-groupoids are investigated by different researchers and many
results are available in literature (see, e.g., [3, 33, 28, 34, 18, 2, 30, 14] and the references
herein). Some new classes of AG-groupoids are discovered and investigated in [32, 24, 17,
31, 26, 1]. Iqbal et al. [10] introduced the notion of CA-AG-groupoid and enumerated it
upto order6. Further, they introduced CA-test for verification of arbitrary AG-groupoid to
be cyclic associative and studied some fundamental properties of CA-AG-groupoids. The
same authors in [11] discussed a different aspect of cancellativity of an element in CA-AG-
groupoid and provided a partial solution to an open problem mentioned in [29]. For detail
study of CA-AG-groupoids we recommend [10, 11, 12].

Mushtaq and Iqbal [21] defined the notion of partial ordering and congruence on LA-
semigroup. They defined a congruence relationη on an inverse LA-semigroupS with
a weak associative law and proved thatη is idempotent-separating and also proved that
µ = {(a, b) ∈ S×S : (∀f ∈ E(S)) (a′f)a = (b′f)b}, wherea′, b′ are the unique inverses
of a andb respectively, is the maximal idempotent-separating congruence onS. In [22]
Protíc and Bǒzinović defined some congruences on AG**-groupoid, while in [23] Protić
defined congruences on inverse AG**-groupoid via the natural partial order. Dudek and
Gigoń [8] defined some congruences on completly inverse AG**-groupoid. Božinović et
al. [4] discussed the notion of natural partial order on AG-groupoids and defined some
congruences on inverse and completly inverse AG**-groupoid. Mushtaq and Yusuf [20]
defined a congruence relationρ on a locally associative LA-semigroupS and investigated
thatρ is separative andS/ρ is maximal separative homomorphic image ofS.

Motivated by this consideration, our main focus in the present article is to extend the
notions of equivalence relation and congruence to CA-AG-groupoids, and to define dif-
ferent congruences on CA-AG-groupoids and on inverse CA-AG-groupoids and explore
different aspects of these relations. We generalize the result given in [5, Lemma 1] to the
whole class of AG-groupoids. Moreover, we explore some fundamental characteristic of
an inverse CA-AG-groupoid.

2. PRELIMINARIES

A magma(S, ·) or simplyS satisfyingxy · z = zy · x for everyx, y, z ∈ S is called an
AG-groupoid [25]. Through out the article we will denote an AG-groupoid simply byS
otherwise stated else. The medial law:xy · zt = xz · yt always holds inS [13, Lemma
1.1(i)]. Left identity may or may not be contained inS; however, ifS contains a left
identity then it is unique [19] andS with left identity always satisfies the paramedial law:
xy · zt = ty · zx [13, Lemma 1.2(ii)]. Now, we define some elementary aspects and quote
few definitions which are essential to step up this study.

An elementf ∈ S is called idempotent iff2 = f . The set of all idempotents is
represented byE(S). S having all elements as idempotent is called AG-2-band (in short
AG-band) [33]. IfS is an AG-band thenS2 = S. A commutative AG-band is called a
semilattice.S is called AG* [17] if for all x, y, z ∈ S, xy · z = y · xz (known as weak
associative law), AG** ifx · yz = y · xz [22] and is called cyclic associative AG-groupoid
(in short CA-AG-groupoid) ifx ·yz = z ·xy [10]. An AG-groupoidS is called inverse AG-
groupoid [21], if for everyx ∈ S there existsx′ ∈ S such thatx = xx′ ·x andx′ = x′x ·x′.
Henceforth, byx′ we shall mean an inverse ofx and byV (x) we shall mean the set of all
inverses ofx, i.e. V (x) = {x′ ∈ S : x = xx′ · x andx′ = x′x · x′}. An AG-groupoid
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S is called completely inverse AG-groupoid if it satisfies the identityxx′ = x′x for all
x ∈ S. The notion of an inverse AG-groupoid is a natural generalization of the notion of
an AG-group, where an inverse element (x · x−1 = e andx−1 · x = e, wheree is the left
identity) of AG-group is substituted by a generalized inverse (xx′ ·x = x andx′x ·x′ = x).
This is why the inverse AG-groupoids are called generalized AG-groups.

A relation ρ is called equivalence relation on AG-groupoidS if it satisfies the condi-
tions: (i). ρ is reflexive, i.e.xρx for everyx ∈ S (ii). ρ is symmetric, i.e.xρy ⇒ yρx
for all x, y ∈ S (iii). ρ is transitive, i.e. xρy andyρz ⇒ xρz for all x, y, z ∈ S. A
relationρ is right compatible ifxρy ⇒ xzρyz, for all x, y, z ∈ S and is left compatible
if xρy ⇒ zxρzy. A relation which is left and right compatible is called compatible. A
(left/right) compatible equivalence relation is called (left/right) congruence. A congruence
ρ on an AG-groupoid is called idempotent-separating if eachρ−class contains atmost one
idempotent, i.e. if(e, f) ∈ ρ, thene = f ∀e, f ∈ E(S). An inverse AG-groupoid is called
fundamental if(∀b ∈ S) x′b · x = y′b · y ⇒ x = y.

3. INVERSECA-AG-GROUPOID

To start with, we prove the existence of inverse CA-AG-groupoid by providing supporting
example. We also verify by counterexamples that a CA-AG-groupoid is not necessarily an
inverse CA-AG-groupoid and an inverse AG-groupoid is not necessarily an inverse CA-
AG-groupoid.

Example 3.1. (i) Let S = {1, 2, 3} and the binary operation onS be defined by the
Cayley’s Table1. ThenS is an inverse CA-AG-groupoid having1′ = 1, 2′ = 2 and3′ = 3.
(ii) CA-AG-groupoid presented in Cayley’s Table2 is not an inverse CA-AG-groupoid,
since for everya ∈ S there exists nox ∈ S such thatax · a = a andxa · x = x.
(iii) The set of integersZ is an inverse AG-groupoid under the binary operation defined by
x ¦ y = y − x, ∀x, y ∈ Z, as(x ¦ y) ¦ z = (z ¦ y) ¦ x. But sincez − y − x 6= y − x− z,
sox ¦ (y ¦ z) 6= z ¦ (x ¦ y), thus(Z, ¦) is not an inverse CA-AG-groupoid.

· 1 2 3
1 1 1 1
2 1 2 3
3 1 3 2

Table1

· 1 2 3
1 2 2 1
2 2 2 2
3 1 2 3

Table2

Mushtaq and Iqbal [21] proved that ifx′ is an inverse ofx andy′ is an inverse ofy in an
AG-groupoid, then by the medial law

(xy · x′y′)xy = (xx′ · yy′)xy = (xx′ · x)(yy′ · y) = xy,

and(x′y′ · xy)x′y′ = (x′x · y′y)x′y′ = (x′x · x′)(y′y · y′) = x′y′.

Thus(xy · x′y′)xy = xy and(x′y′ · xy)x′y′ = x′y′. Hence in an inverse AG-groupoid the
inverse ofxy is x′y′, i.e.

(xy)′ = x′y′ (3. 1)
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Remark 3.2. If S is an AG-groupoid ande, f ∈ E(S), thenef · ef = ee · ff = ef by
medial law. Thusef is an idempotent and soef ∈ E(S). Hence in AG-groupoid holds:
the product of two idempotents is an idempotent.

The following example illustrates that in an AG-groupoid, idempotent elements can be
mutually non-commutative.

Example 3.3. Table3 represents an AG-band. As1·2 6= 2·1, so1 and2 does not commute.
Similarlyxy 6= yx ∀x, y ∈ E(S) whenx 6= y.

· 1 2 3 4
1 1 3 4 2
2 4 2 1 3
3 2 4 3 1
4 3 1 2 4

Table3
However:

Lemma 3.4. In CA-AG-groupoid idempotents commute with each other.

Proof. Let S be a CA-AG-groupoid ande, f ∈ E(S). Then by Remark 3.2, medial law,
cyclic associativity and left invertive law we haveef = ef · ef = ee · ff = f(ee · f) =
f(fe · e) = e(f · fe) = e(e · ff) = ff · ee = fe, soef = fe. Hence in CA-AG-groupoid
idempotents commute with each other. ¤

As commutativity of an AG-groupoid implies associativity [10], thus from Lemma 3.4 we
have.

Corollary 3.5. For any CA-AG-groupoidS, E(S) is a semilattice.

Note that in [10] it is shown that every CA-AG-groupoid is paramedial. The following
example depicts that in an inverse AG-groupoid, the elementsxx′ andx′x are not neces-
sarily idempotents and may not be equal.

Example 3.6. LetS = {a, b, c, d} and the binary operation onS be defined by the follow-
ing Cayley’s table4.

· a b c d
a b c a d
b d a c b
c c b d a
d a d b c

Table4
ThenS is an inverse AG-groupoid. Furtherad · a = a, da · d = d, bc · b = b, cb · c = c,
thus a′ = d, d′ = a, b′ = c and c′ = b. Now (aa′)(aa′) = (ad)(ad) = c 6= d,
(dd′)(dd′) = b 6= a, thusaa′ and dd′ are not idempotent. Also(bb′)(bb′) = d 6= c,
(cc′)(cc′) = a 6= b, sobb′ andcc′ are not idempotent. Moreover,ad = d 6= a = da and
bc = c 6= b = cb. Note thatE(S) = φ.
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It is proved by M. Bǒzinović et al. [5, Lemma 1] that in an inverse AG**-groupoidS,
if V (x) = {x′} thenxx′ = x′x if and only if xx′, x′x ∈ E(S). However, there is no
clue given whether in AG-groupoidxx′, x′x belong toE(S) implies xx′ = x′x or not.
Similarly if in an AG-groupoidxx′ = x′x then whetherxx′, x′x ∈ E(S) or not. We claim
that in an AG-groupoidS, xx′ = x′x if and only if xx′ and x′x belong toE(S). We
proceed to prove our claim in the following lemma, which definitely generalize the result
of [5, Lemma 1] to the whole class of AG-groupoids instead of AG**.

Lemma 3.7. LetS be an inverse AG-groupoid. Then for everyx ∈ S,

xx′, x′x ∈ E(S) ⇐⇒ xx′ = x′x.

Proof. Let x ∈ S andx′ ∈ V (x) such thatxx′, x′x ∈ E(S). Then by definition of inverse,
left invertive law, definition of idempotent and medial law

x′x = (x′x · x′)x = xx′ · x′x = (xx′ · xx′)(x′x) = ((xx′ · x′)x)(x′x)

= (x′x · x)(xx′ · x′) = (x′x · xx′)(xx′) = ((xx′ · x)x′)(xx′)

= (xx′)(xx′) = xx′.

Conversely, supposexx′ = x′x. Then by definition of idempotent, left invertive law and
definition of inverse(xx′)2 = xx′ · xx′ = (xx′ · x′)x = (x′x · x′)x = x′x = xx′, imply
thatxx′ is an idempotent, i.e.xx′ ∈ E(S). Similarly (x′x)2 = x′x · x′x = (x′x · x)x′ =
(xx′ · x)x′ = xx′ = x′x, thusx′x ∈ E(S). ¤
If in an AG-groupoidS, xx′ 6= x′x, thenxx′ and x′x may not be inE(S), also it is not
necessary thatxx′ = x′x. To justify this we provide an example.

Example 3.8. Table5 represents an inverse AG-groupoid in which1′ = 2, 2′ = 1 and
3′ = 3. As(1 · 1′)(1 · 1′) = (1 · 2)(1 · 2) = 2 · 2 = 3 6= 2 = 1 · 1′, thus1 · 1′ /∈ E(S).
Similarly 1′ · 1, 2 · 2′, 2′ · 2 /∈ E(S). Also as1 · 1′ = 1 · 2 = 2 6= 1 = 2 · 1 = 1′ · 1, thus
1 · 1′ 6= 1′ · 1. Note that3 · 3′ = 3 = 3′ · 3. Also3 · 3′ ∈ E(S) as(3 · 3′)(3 · 3′) = 3.

· 1 2 3
1 3 2 3
2 1 3 3
3 3 3 3

Table5
However, in inverse CA-AG-groupoids bothxx′ andx′x are idempotents and alsoxx′ =
x′x, as it is proved in the following lemma.

Lemma 3.9. Let S be an inverse CA-AG-groupoid andV (x) = {x′}, thenxx′, x′x ∈
E(S) andS is completely inverse CA-AG-groupoid.

Proof. As x′ ∈ V (x), soxx′ ·x = x andx′x ·x′ = x′. Now by the paramedial and medial
laws and cyclic associativity

xx′ · xx′ = x′x′ · xx = x′x · x′x = x(x′x · x′) = xx′.

Thus,xx′ is idempotent. Similarly

x′x · x′x = xx · x′x′ = xx′ · xx′ = x′(xx′ · x) = x′x.
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This shows thatx′x is also idempotent. Hencexx′, x′x ∈ E(S). Now, it is remaining to
show thatxx′ = x′x. As

xx′ = x(x′x · x′) = x′(x · x′x) = x′(x · xx′)

= xx′ · x′x = (x′x · x′)x = x′x.

Consequently,S is completely inverse CA-AG-groupoid. ¤

Remark 3.10. If a is an idempotent element of an AG-groupoid, thena2 = a, a3 = a2a =
aa = a, a4 = a3a = (aa · a)a = (aa)a = aa = a and in generalan = a for n ∈ N.
By Lemma 3.9,xx′ and x′x are idempotents in CA-AG-groupoid, so(xx′)n = xx′ and
(x′x)n = x′x for all n ∈ N. Also, sincexx′ = x′x, so(xx′)n = (x′x)n.

Now, we proceed to prove that the inverse of an element in an inverse CA-AG-groupoid is
unique.

Lemma 3.11. The inverse of an element in inverse CA-AG-groupoid is unique.

Proof. Assume the contrary. Leta and b be the inverses of an elementx of an inverse
CA-AG-groupoid, then by definitionx = xa · x, a = ax · a, x = xb · x andb = bx · b.
Now by cyclic associativity, Lemma 3.9, left invertive law and medial law we have

a = ax · a = (a(xb · x)a) = (a(xb(xb · x)))a = ((xb · x)(a · xb))a

= ((xb · x)(b · ax))a = (ax((xb · x)b))a = (b(ax(xb · x)))a

= (a(ax(xb · x)))b = ((xb · x)(a · ax))b = ((bx · x)(a · ax))b

= ((xx · b)(a · ax))b = ((xx · a)(b · ax))b = ((ax · x)(b · ax))b

= ((xa · x)(b · ax))b = (x(b · ax))b = (ax · xb)b = (b(ax · x))b

= (b(xa · x))b = (bx)b = b.

Thus, inverse of an element in inverse CA-AG-groupoid is unique. ¤

In the following we provide an example to verify that in case of semigroup the inverse of
element may not be unique.

Example 3.12. Table6 represents an inverse semigroup havingV (a) = {a, b, c, d} =
V (b) = V (c) = V (d).

· a b c d
a a b a b
b a b a b
c c d c d
d c d c d

Table6

The following example clarify that in CA-AG-groupoidS, S * S2, thusS2 6= S.

Example 3.13. S = {a, b, c, d} with the following Cayley’s Table7 is a CA-AG-groupoid.
AsS2 = {a, b, c}, soS * S2.
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· a b c d
a a a a a
b a a a a
c a a a a
d a a b c

Table7
However:

Lemma 3.14. If S is an inverse CA-AG-groupoid, thenS2 = S.

Proof. SinceS is inverse CA-AG-groupoid, then for for allx ∈ S there existsy ∈ S such
thatx = xy · x ∈ S · S = S2. Thus for eachx ∈ S we havex ∈ S2. This means that
S ⊆ S2. But sinceS2 ⊆ S holds in general. It follows thatS2 = S. ¤

Now we provide an example to verify that in inverse AG-groupoid(xx′)′ 6= xx′.

Example 3.15. An inverse AG-groupoid is represented in Table8 havinga′ = b, b′ = a
andc′ = c. As(aa′)′ = (ab)′ = b′ = a andaa′ = ab = b, then(aa′)′ 6= aa′.

· a b c
a c b c
b a c c
c c c c

Table8
However:

Lemma 3.16. In inverse CA-AG-groupoid(xx′)′ = xx′.

Proof. By cyclic associativity, medial, left invertive and paramedial laws

(xx′ · xx′)(xx′) = (x′(xx′ · x))(xx′) = (x′x)((xx′ · x)x′)

= (x′x)(x′x · xx′) = (xx′ · x)(x′x · x′) = xx′.

Thus,xx′ is the inverse ofxx′. As by Lemma 3.11, the inverse of an element in CA-AG-
groupoid is unique, so(xx′)′ = xx′. ¤

Lemma 3.17. If S is an inverse CA-AG-groupoid, then(x′)′ = x.

Proof. Clearly x is the solution of the equationsx′ = x′y · x′ andy = yx′ · y. As by
Lemma 3.11, inverse of an element in CA-AG-groupoid is unique so(x′)′ = x. ¤

Lemma 3.18. Let S be an inverse CA-AG-groupoid. ThenA(S) = {xx′ | x ∈ S} is a
semilattice.

Proof. Let x1x
′
1, x2x

′
2 ∈ A(S). Then by Lemma 3.9, paramedial and medial lawsx1x

′
1 ·

x2x
′
2 = x′1x1 ·x′2x2 = x2x1 ·x′2x′1 = x2x

′
2 ·x1x

′
1, thus commutative law holds inA(S). As

in AG-groupoid, commutativity implies associativity [10], thusA(S) is associative. Hence
A(S) is a semilattice. ¤
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Corollary 3.19. LetS be an inverse CA-AG-groupoid. ThenA1(S) = {x′x | x ∈ S} is a
semilattice.

Lemma 3.20. LetS be an inverse CA-AG-groupoid. Thene ∈ E(S) impliese′ ∈ E(S).

Proof. As S is an inverse CA-AG-groupoid, so for allx ∈ S there existsx′ ∈ S such that
x = xx′ · x andx′ = x′x · x′. As E(S) ⊆ S, so in particular fore ∈ E(S), e = ee′ · e and
e′ = e′e · e′. We will show thate′ is an idempotent. Using the medial, left invertive and
paramedial laws, cyclic associativity, the definition of inverse and Lemma 3.9 we have

e′2 = e′e′ = (e′e · e′)(e′e · e′) = (e′e · e′e)(e′e′) = (e(e′e · e′))(e′e′)
= (ee′)(e′e′) = (ee · e′)(e′e′) = (e′e · e)(e′e′) = (ee′ · e)(e′e′)
= e(e′e′) = (ee)(e′e′) = (e′e)(e′e) = (e′e′)(ee) = (ee · e′)e′
= (ee′)e′ = (e′e)e′ = e′.

Thuse′2 = e′. Hencee′ ∈ E(S). ¤

Lemma 3.21. If S is an inverse AG-groupoid ande ∈ E(S). Then:
(i) e · xe′ = e · xe, for all x ∈ S,
(ii) ee′ = e,
(iii) e′e = e,
(iv) e′ = e.

Proof. As e ∈ E(S), soe2 = e. Also ee′ · e = e ande′e · e′ = e′.
(i) By left invertive and medial laws

e · xe′ = ee · xe′ = ((ee′ · e)e)(xe′) = (ee · ee′)(xe′) = (xe′ · ee′)(ee)
= ((ee′ · e′)x)(ee) = ((ee′ · e′)e)(xe) = (ee′ · ee′)(xe)

= (ee · e′e′)(xe) = ((e′e′ · e)e)(xe) = ((e′e′ · ee)e)(xe)

= ((e′e · e′e)e)(xe) = (((e′e · e)e′)e)(xe) = ((ee′)(e′e · e))(xe)

= ((e · e′e)(e′e))(xe) = ((ee · e′e)(e′e))(xe) = ((ee′ · ee)(e′e))(xe)

= ((ee′ · e)(e′e))(xe) = (e(e′e))(xe) = (ee · e′e)(xe)

= (ee′ · ee)(xe) = (ee′ · e)(xe) = e · xe.

(ii) By part(i) and left invertive law

ee′ = e(e′e · e′) = e(e′e · e) = e(ee · e′)
= e(ee′) = e(ee) = ee = e.

(iii) By left invertive law and part(ii)

e′e = (e′e · e′)e = ee′ · e′e = e · e′e
= ee · e′e = ee′ · ee = ee′ · e = e.

(iv) By part(iii) and part(ii)

e′ = e′e · e′ = ee′ = e,

or equivalently said the inverse ofe ∈ E(S) is e. ¤
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In the following we provide an example to verify that an AG-groupoidS, element ofS
may not commute with element ofE(S).

Example 3.22. Cayley’s Table9 represented an AG-groupoid onS = {1, 2, 3} having
E(S) = {1}. The element1 ∈ E(S) does not commute with2 ∈ S, as 1 · 2 6= 2 · 1.
However, as1 · 3 = 3 · 1, thus1 ∈ E(S) commute with3 ∈ S.

· 1 2 3
1 1 1 1
2 3 1 1
3 1 1 1

Table9

Lemma 3.23. In CA-AG-groupoidS, elements ofS andE(S) commute with each other.

Proof. Let x be an arbitrary element ofS andf ∈ E(S), then by cyclic associativity,
paramedial and left invertive laws

xf = x(ff) = x(ff · f) = f(x · ff) = ff · fx = xf · ff = xf · f = ff · x = fx.

Thus, elements ofS commute with elements ofE(S). ¤

Lemma 3.24. Let S be an inverse CA-AG-groupoid ande ∈ E(S). Then for anyx ∈ S,
the followingx′e · x ∈ E(S) is holds.

Proof. By the left invertive, medial and paramedial laws, Lemma 3.23 and cyclic associa-
tivity

(x′e · x)2 = (x′e · x)(x′e · x) = (xe · x′)(x′e · x) = (xe · x′e)(x′x)

= (ex · ex′)(x′x) = (x′x · ee)(x′x) = (x′x · x′)(ee · x)

= x((x′x · x′)(ee)) = x((ee · x′)(x′x)) = (x′x)(x(ee · x′))
= (ee · x′)(x′x · x) = (ee · x′x)(x′x) = (x · x′x)(x′ · ee)
= (ee)((x · x′x)x′) = (ee)((x′ · x′x)x) = x((ee)(x′ · x′x))

= (x′ · x′x)(x · ee) = (ee · x′x)(xx′) = (ee · x)(x′x · x′)
= (ex)(x′x · x′) = (xe)x′ = (x′e)x.

Thus,x′e · x is an idempotent, i.e.x′e · x ∈ E(S). ¤

By using Remark 3.2 and Lemma 3.24 we have.

Corollary 3.25. LetS be an inverse CA-AG-groupoid ande ∈ E(S). Then for anyx ∈ S
and any naturaln the following(x′e · x)n ∈ E(S) holds.

4. CONGRUENCES ON INVERSECA-AG-GROUPOIDS

Congruences play an important role in associative and non-associative structures. Here, we
extend the notions of equivalence relation and congruence to CA-AG-groupoids and define
different congruences on CA-AG-groupoids and on inverse CA-AG-groupoids.
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Lemma 4.1. LetS be an AG-groupoid. Then
(i) γ1 = {(x, y) ∈ S × S : (∀a ∈ S) ax = ay},
(ii) γ2 = {(x, y) ∈ S × S : (∀a ∈ S)xa = ya},
are equivalence relations onS.

Proof. (i) As ax = ax for all a ∈ S, soγ1 is reflexive. Also, ifxγ1y thenax = ay which
implies ay = ax, soγ1 is symmetric. To show thatγ1 is transitive, letxγ1y andyγ1z
wherex, y, z ∈ S then for alla ∈ S, ax = ay anday = az, which impliesax = az, thus
xγ1z, henceγ1 is transitive.
(ii) Similarly to (i). ¤
Lemma 4.2. LetS be a CA-AG-groupoid. Then the relationγ1 as defined in Lemma 4.1 is
right compatible.

Proof. For if xγ1y then ax = ay, for everya ∈ S. Now for anyz ∈ S, by cyclic
associativity

a(xz) = z(ax) = z(ay) = y(za) = a(yz).

This impliesxzγ1yz. ¤

Remark 4.3. γ1 is not left compatible. The relationγ2 as defined in Lemma 4.1 is neither
left compatible nor right compatible.

Lemma 4.4. LetS be an inverse AG-groupoid. Then the relations
(i) γ3 = {(x, y) ∈ S × S : (∀x, y ∈ S) x′x = y′y},
(ii) γ4 = {(x, y) ∈ S × S : (∀x, y ∈ S)xx′ = yy′},
are idempotent-separating congruences onS. Moreover, ifx′x ∈ E(S) for everyx ∈ S,
thenγ3 andγ4 are maximal.

Proof. (i) Clearly γ3 is reflexive and symmetric. Ifxγ3y and yγ3z, then x′x = y′y
andy′y = z′z, which impliesx′x = z′z, thusxγ3z andγ3 is transitive. Henceγ3 is
an equivalence relation. Now, ifxγ3y thenx′x = y′y, let z ∈ S then by medial law
(x′x)(z′z) = (y′y)(z′z) ⇒ (x′z′)(xz) = (y′z′)(yz) which by virtue of equation ( 3. 1 )
gives(xz)′(xz) = (yz)′(yz), soxzγ3yz, thusγ3 is right compatible. Similarlyγ3 is left
compatible. Henceγ3 is a congruence onS. To show thatγ3 is idempotent-separating, let
e, f ∈ E(S) such thateγ3f , then by Lemma 78e = ee = e′e = f ′f = ff = f ⇒ e = f.
Thusγ3 is idempotent-separating congruence. To show thatγ3 is maximal, letµ be another
idempotent-separating congruence. Letxµy thenx′µy′. Also, asµ is compatible so from
x′µy′ andxµy we havex′xµy′x andy′xµy′y. These by transitivity ofµ impliesx′xµy′y.
As for all x ∈ S, x′x ∈ E(S) (given) and sinceµ is idempotent-separating it follows that
x′x = y′y, whence it follows thatxγ3y. Hencexµy impliesxγ3y, thusµ ⊆ γ3. Hence,γ3

is the maximal idempotent-separating congruence onS.
(ii) Similar to(i). ¤
Theorem 4.5. LetS be an inverse CA-AG-groupoid. Then the relations
(i) γ5 = {(x, y) ∈ S × S : (∀x, y ∈ S) x′x = yy′},
(ii) γ6 = {(x, y) ∈ S × S : (∀x, y ∈ S)x′x = yy′},
are maximal idempotent-separating congruences onS.
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Proof. (i) As by Lemma 3.9 in inverse CA-AG-groupoidx′x = xx′, thusγ5 is reflexive.
Again, if xγ5y thenx′x = yy′, which impliesyy′ = x′x. By using Lemma 3.9,y′y = xx′,
thusyγ5x, soγ5 is symmetric. Ifxγ5y andyγ5z, thenx′x = yy′ andy′y = zz′, which
by virtue of Lemma 3.9 impliesyy′ = zz′. Thusx′x = yy′ andyy′ = zz′, which implies
x′x = zz′, thusxγ5z, consequentlyγ5 is transitive. Hence,γ5 is an equivalence relation.
Now, if xγ5y, thenx′x = yy′, let z ∈ S then(x′x)(z′z) = (yy′)(z′z), which by medial
law and Lemma 3.9 implies(x′z′)(xz) = (yy′)(zz′), which by virtue of equation ( 3. 1 )
and medial law gives(xz)′(xz) = (yz)(y′z′) implies(xz)′(xz) = (yz)(yz)′. Soxzγ5yz,
thusγ5 is right compatible. Similarly,γ5 is left compatible. Hence,γ5 is a congruence
on S. To show thatγ5 is idempotent-separating, letf, g ∈ E(S) such thatfγ5g, then
by Lemma 78f = ff = f ′f = g′g = gg = g ⇒ f = g. Thusγ5 is idempotent-
separating congruence. To show thatγ5 is maximal, letµ be another idempotent-separating
congruence. Letxµy thenx′µy′. As µ is compatible so fromx′µy′ andxµy we have
x′xµy′x andy′xµy′y. By transitivity ofµ impliesx′xµy′y. This by virtue of Lemma 75
impliesx′xµyy′. Since by Lemma 75x′x andyy′ are idempotents, and asµ is idempotent-
separating sox′x = yy′, hencexγ5y. Thereforexµy impliesxγ5y, thusµ ⊆ γ5. Hence,
γ5 is the maximal idempotent-separating congruence onS.
(ii) As by Lemma 3.9, in inverse CA-AG-groupoidx′x = xx′. Hence, the result follows.

¤

Theorem 4.6. LetS be a CA-AG-groupoid andE(S) 6= φ. Then the relation defined onS
byη = {(x, y) ∈ S × S : (∃f ∈ E(S)) (xf, yf ∈ E(S) ∧ xf = yf)} is a congruence on
S.

Proof. Clearlyη is reflexive and symmetric. To prove transitivity ofη, let xηy andyηz,
thenxg = yg andyf = zf for someg, f ∈ E(S). Now by cyclic associativity, left
invertive, paramedial and medial laws, assumption and Lemma 3.4

x · gf = f · xg = f · yg = g · fy = gg.fy = gf · gy = yf · gg = zf · gg

= g(zf · g) = g(gf · z) = z(g · gf) = z(f · gg) = z(fg) = z(gf).

As g, f ∈ E(S), so by Remark 3.2,gf ∈ E(S). Thusx(gf) = z(gf), impliesxηz. Hence
η is an equivalence relation onS. To prove thatη is right compatible, letxηy andz ∈ S,
thenxg = yg for someg ∈ E(S). Now, by the medial law

xz · g = xz · gg = xg · zg = yg · zg = yz · gg = yz · g.

Thus,xzηyz. Hence,η is right compatible. Again, by left invertive law

zx · g = gx · z = (gg · x)z = (xg · g)z = (yg · g)z = (gg · y)z = zy · gg = zy · g
⇒ zxη zy.

Thus,η is also left compatible. Hence,η is a congruence onS. ¤

Using Lemma 3.23 and Theorem 4.6, we have the following.

Corollary 4.7. LetS be a CA-AG-groupoid andE(S) 6= φ. Then the relations defined on
S by
(i) η1 = {(x, y) ∈ S × S(∃f ∈ E(S)) (fx, fy ∈ E(S) ∧ fx = fy)},
(ii) η2 = {(x, y) ∈ S × S(∃f ∈ E(S)) (xf, fy ∈ E(S) ∧ xf = fy)},
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(iii) η3 = {(x, y) ∈ S × S(∃f ∈ E(S)) (fx, yf ∈ E(S) ∧ fx = yf)},
are congruences onS.

In the following lemma we establish different relationships ofη (whereη is as defined in
Theorem 4.6) on AG-groupoid and prove that ifxηy thenx2ηy2 and then prove in general
xnηyn, wheren ∈ N. We further prove that ifxηy andaηb, thenxaηyb andaxηby.

Lemma 4.8. LetS be an AG-groupoid andE(S) 6= φ. Then
(i) xηy ⇒ x2ηy2,
(ii) xηy ∧ aηb ⇒ xaηyb ∧ axηby,
(iii) xηy ⇒ xnηyn.

Proof. (i) As xηy, soxg = yg for someg ∈ E(S). Now by the medial law

x2g = xx · gg = xg · xg = yg · yg = yy · gg = y2g

⇒ x2η y2.

(ii) As xηy andaηb, soxg = yg andaf = bf , for someg, f ∈ E(S). Now by these
results and medial law we have

xa · gf = xg · af = yg · bf = yb · gf.

As by Remark 3.2,g, f ∈ E(S) impliesgf ∈ E(S), thusxaηyb. Similarly axηby.
(iii) Let xηy then by Part(i), x2ηy2. Again by Part(ii), from x2ηy2 andxηy we have
x3ηy3. By repeated use of Part(i) and Part(ii), we get the desired result. ¤

Theorem 4.9. Let S be an AG-groupoid andE(S) 6= φ. Then, the relation defined onS
byβ = {(x, y) ∈ S × S : (∀e ∈ E(S)) xe = ye} is a congruence onS.

Proof. Clearlyβ is a reflexive and symmetric. To proveβ is transitive, letxβy andyβz,
then for alle belongs toE(S), xe = ye andye = ze, which impliesxe = ze, thusxηz.
Hence,β is an equivalence relation. To prove thatβ is right compatible, letxβy then
xe = ye ∀e ∈ E(S). Now for z ∈ S, by medial law and assumption

xz · e = xz · ee = xe · ze = ye · ze = yz · ee = yz · e
⇒ xzβ yz.

Thus,β is right compatible. Similarly,β is left compatible. Hence the result follows.¤

Note that ifβ (as defined in Theorem 4.9) is a congruence on CA-AG-groupoidS then
S/β is a CA-AG-groupoid. Also, ifβ is a congruence on inverse CA-AG-groupoidS then
S/β is an inverse CA-AG-groupoid andxβy if and only if x′βy′. Using Lemma 3.23 and
Theorem 4.9 we have the following.

Corollary 4.10. Let S be a CA-AG-groupoid andE(S) 6= φ. Then the relations defined
onS by
(i) β1 = {(x, y) ∈ S × S : (∀e ∈ E(S)) ex = ey},
(ii) β2 = {(x, y) ∈ S × S : (∀e ∈ E(S)) xe = ey},
(iii) β3 = {(x, y) ∈ S × S : (∀e ∈ E(S)) ex = ye},
are congruences onS.
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Theorem 4.11. Let S be an inverse CA-AG-groupoid andE(S) 6= φ. Then the relation
defined onS by δ = {(x, y) ∈ S × S : (∃e ∈ E(S)) (x′e · x, y′e · y ∈ E(S) ∧ x′e · x =
y′e · y)} is a congruence onS.

Proof. As x′e · x = x′e · x soxδx, thusδ is reflexive. Again, ifxδy thenx′e · x = y′e · y
which impliesy′e · y = x′e · x, soyδx, thusδ is symmetric. To prove thatδ is transitive,
let xδy andyδz thenx′e · x = y′e · y andy′f · y = z′f · z for somee, f ∈ E(S). Now
by cyclic associativity, left invertive, paramedial and medial laws, definition of idempotent,
Lemma 3.4, Lemma 3.23 and assumption

(x′ · ef)x = (f · x′e)x = (x · x′e)f = (e · xx′)f = (ee · xx′)f = (x′e · xe)f

= (e(x′e · x))f = (e(y′e · y))f = (f(y′e · y))e = (y(f · y′e))e
= (y′e · yf)e = (y′y · ef)e = (y′y · fe)e = (ey · fy′)e

= (ey · y′f)e = ((y′f · y)e)e = ((z′f · z)e)e = (ee)(z′f · z)

= (ze)(z′f · e) = (z · z′f)(ee) = (f · zz′)e = (z′ · fz)e

= (e · fz)z′ = (z · ef)z′ = (z′ · ef)z.

As by Remark 3.2, fore, f ∈ E(S)⇒ ef ∈ E(S). Thus from(x′ · ef)x = (z′ · ef)z, we
getxδz. Hence,δ is an equivalence relation onS. Now to show thatδ is compatible, let
xδy thenx′e · x = y′e · y. Now for anyz ∈ S, by equation ( 3. 1 ), medial law and the
assumption

((xz)′e)(xz) = (x′z′ · ee)(xz) = (x′e · z′e)(xz) = (x′e · x)(z′e · z)

= (y′e · y)(z′e · z) = (y′e · z′e)(yz) = (y′z′ · ee)(yz) = ((yz)′e)(yz).

Thusxzδyz, henceδ is right compatible. Similarly, one can easily shows thatδ is left
compatible. Henceδ is a congruence onS. ¤

Remark 4.12. If x is an element of an inverse CA-AG-groupoidS and e ∈ E(S), then
by Lemma 3.23 the elements ofS commute with elements ofE(S). By this result and
left invertive law fromx′e · x = xe · x′ we haveex′ · x = ex · x′, which further implies
xx′ ·e = x′x·e. Also by cyclic associativity and Lemma 3.23x′x·e = e·x′x = x·ex′ = x·
x′e = e·xx′. This by cyclic associativity and Lemma 3.23 impliese·xx′ = x′ ·ex = x′ ·xe.
Also by cyclic associativity and Lemma 3.23,x′ ·ex = x ·x′e andx ·x′e = x ·ex′. Again by
cyclic associativity, Lemma 3.23 and left invertive lawe · xx′ = x′ · ex = x′ · xe = e · x′x
andxx′ ·e = ex′ ·x = x′e ·x = xe ·x′ = ex ·x′ = x′x ·e. Similarly all other possibility of
x, x′ ande are equal tox′e · x. Alsox′e · x = x′ · ex clarify that inx, x′, e any two can by
operate by “·” first and then with the third one from left or from right. Similarly all other
cases can be tackle on similar way.

By Remark 4.12 and Theorem 4.11, the following corollary is now obvious:

Corollary 4.13. Let S be an inverse CA-AG-groupoid andE(S) 6= φ. Then the relation
defined onS by δk = {(x, y) ∈ S × S : (∃e ∈ E(S)) (xp1xp2xp3 , yq1yq2yq3 ∈ E(S) ∧
xp1xp2xp3 = yq1yq2yq3)} is a congruence onS, wherexp1xp2xp3 is any permutation of
the elementsx′, e, x andyq1yq2yq3 is any permutation of the elementsy′, e, y.
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In the following, we define a relationρ on an inverse CA-AG-groupoidS and prove thatρ
is a maximal idempotent-separating congruence. We also define a generalized form ofρ,
denoted byρk . Furthermore, we prove thatS/ρ is fundamental andE(S) is isomorphic to
E(S/ρ).

Theorem 4.14. Let S be an inverse CA-AG-groupoid andE(S) 6= φ. Then the relation
defined onS by ρ = {(x, y) ∈ S × S : (∀e ∈ E(S))x′e · x = y′e · y} is the maximal
idempotent-separating congruence onS.

Proof. Clearlyρ is reflexive, asx′e · x = x′e · x for everye ∈ E(S). Also if xρy, then
x′e ·x = y′e · y, which impliesy′e · y = x′e ·x, thusyρx, henceρ is also symmetric. Now
to show thatρ is transitive, letxρy andyρz, thenx′e · x = y′e · y andy′e · y = z′e · z
∀e ∈ E(S). Thusx′e · x = z′e · z andxρz, henceρ is transitive. Thereforeρ is an
equivalence relation onS. To prove thatρ is left compatible, letxρy, thenx′e · x = y′e · y
∀e ∈ E(S). Now for anyz ∈ S, by equation ( 3. 1 ) and medial law

((zx)′e)(zx) = (z′x′ · ee)(zx) = (z′e · x′e)(zx) = (z′e · z)(x′e · x)

= (z′e · z)(y′e · y) = (z′e · y′e)(zy) = (z′y′ · ee)(zy) = ((zy)′e)(zy).

Thuszxρzy, thereforeρ is left compatible. It can be similarly shown thatρ is right compat-
ible. Henceρ is compatible and hence is a congruence onS. To show thatρ is idempotent-
separating, letf, g ∈ E(S) be such thatfρg. Thenf ′e · f = g′e · g ∀e ∈ E(S). In
particular fore = f ande = g we havef ′f · f = g′f · g andf ′g · f = g′g · g. Now
by definition of inverses, Lemma 3.21, Remark 3.4, cyclic associativity and definition of
idempotent element

f = f ′f · f ′ = f ′f · f = g′f · g = gf · g = g · gf = f · gg = fg. (4. 2)

Now by definition of inverses, Lemma 3.21, Lemma 3.4, left invertive law, definition of
idempotent element and equation ( 4. 2 )

g = g′g · g′ = g′g · g = f ′g · f = fg · f = gf · f = ff · g = fg = f.

Henceρ is idempotent-separating. To show thatρ is maximal, letµ be another idempotent-
separating congruence. Ifxµy, thenx′µy′. As µ is right compatible, thus fore ∈ E(S)
andx′µy′ we havex′eµy′e. Also by Lemma 4.8(ii), from x′eµy′e andxµy we have
x′e · xµy′e · y. Now by medial, paramedial and left invertive laws, cyclic associativity,
definition of inverse and Lemma 3.23

(x′e · x)2 = (x′e · x)(x′e · x) = (x′e · x′e)(xx) = (ee · x′x′)(xx) = (xx · x′x′)e
= (x′x · x′x)e = (x(x′x · x′))e = (xx′)e = (ex′)x = (x′e)x.

Thus,x′e · x is an idempotent. Similarly,y′e · y is an idempotent. Sinceµ is idempotent-
separating sox′e · x = y′e · y for everye ∈ E(S), which impliesxρy. Hencexµy implies
xρy, thusµ ⊆ ρ. Therefore,ρ is the maximum idempotent-separating congruence on
S. ¤

Using Theorem 4.14 and Remark 4.12, we deduce the following.

Corollary 4.15. Let S be an inverse CA-AG-groupoid andE(S) 6= φ. Then the relation
defined onS by ρk = {(x, y) ∈ S × S : (∀e ∈ E(S)) xp1xp2xp3 = yq1yq2yq3} is the
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maximal idempotent-separating congruence onS, wherexp1xp2xp3 is any permutation of
the elementsx, e, x′ andyq1yq2yq3 is any permutation of the elementsy, e, y′.

Theorem 4.16. Let ρ be the maximal idempotent-separating congruence on an inverse
CA-AG-groupoidS with E(S) 6= φ. ThenS/ρ is fundamental.

Proof. Let x ∈ S and e ∈ E(S) such that[(x′ρ)(eρ)](xρ) = [(y′ρ)(eρ)](yρ). Then
(x′e ·x)ρ = (y′e ·y)ρ, i.e. (x′e ·x)ρ(y′e ·y). Now by medial, paramedial and left invertive
laws, cyclic associativity, definition of inverse and Lemma 3.23

(x′e · x)2 = (x′e · x)(x′e · x) = (x′e · x′e)(xx) = (ee · x′x′)(xx) = (xx · x′x′)e
= (x′x · x′x)e = (x(x′x · x′))e = (xx′)e = (ex′)x = (x′e)x.

Thus,x′e · x is an idempotent. It can be similarly shown thaty′e · y is an idempotent. Asρ
is idempotent-separating so(x′e · x)ρ(y′e · y) impliesx′e · x = y′e · y ∀e ∈ E(S), which
by definition ofρ impliesxρy. ThusS/ρ is fundamental. ¤

Theorem 4.17. Let E(S) 6= φ be the semilattice of idempotents on an inverse CA-AG-
groupoid S. If E(S/ρ) is the semilattice of idempotents ofS/ρ, whereρ is maximal
idempotent-separating congruence onS, thenE(S) andE(S/ρ) are isomorphic.

Proof. Define ρ̂ : E(S) → E(S/ρ) by eρ̂ = eρ ∀e ∈ E(S). Let f, g ∈ E(S) such
that f = g. Thenfρ = gρ, which impliesfρ̂ = gρ̂, thus ρ̂ is well-defined. Since
(fg)ρ̂ = (fg)ρ = (fρ)(gρ) = (fρ̂)(gρ̂), it follows thatρ̂ is homomorphism. For one-one,
let fρ̂ = gρ̂, thenfρ = gρ. As ρ is idempotent-separating, so fromfρ = gρ we have
f = g. Thusρ̂ is one-one. As elements ofE(S/ρ) are of the formeρ, wheree ∈ E(S)
and for eacheρ ∈ E(S/ρ) there existse ∈ E(S) such thateρ̂ = eρ, thusρ is onto. Hence
ρ̂ is an isomorphism from E(S) toE(S/ρ), i.e. E(S) ∼= E(S/ρ). ¤

5. CONCLUSION

We demonstrated that inverse CA-AG-groupoids exist. We precisely discussed some fun-
damental characteristics of inverse CA-AG-groupoid and established various properties of
this class. We also extended the notion of equivalence relation and congruences to CA-
AG-groupoids and investigated various congruences on CA-AG-groupoid and inverse CA-
AG-groupoid. Moreover, we defined a maximal idempotent-separating congruenceρ on
inverse CA-AG-groupoid and proved thatS/ρ is fundamental andE(S) ∼= E(S/ρ). We
used the modern techniques of Prover-9, Mace-4 and GAP to produce illustrative examples
and counterexamples to improve the standard of this research work.
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