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Abstract. In our study, we define aggregation operators for cubic hes-
itant fuzzy sets which includes generalized cubic hesitant fuzzy aver-
aging (geometric) operator, cubic hesitant fuzzy ordered weighted av-
eraging (geometric) operator, generalized cubic hesitant fuzzy ordered
weighted averaging (geometric) operator, cubic hesitant fuzzy hybrid av-
eraging (geometric) operator, cubic hesitant fuzzy arithmetical averaging
(geometric) operator and generalized cubic hesitant fuzzy hybrid averag-
ing (geometric) operator. We also solve a multi criteria decision making
argument by using generalized cubic hesitant fuzzy hybrid averaging op-
erator and generalized cubic hesitant fuzzy hybrid geometric operator. We
choose the best alternative amongst those alternatives suggested by deci-
sion makers.
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1. INTRODUCTION

Since Zadeh [30] originated fuzzy set theory in 1965, it has become an importrant tool
to handle inaccurate and ambiguous information in different fields of prevailing civiliza-
tion. Such inaccuracies are associated with the membership function that belongs to [0, 1].
Through membership function, we get information which makes possible for us to reach
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the conclusion. In order to handle this information many extensions have been added to
the theory of fuzzy sets. These include intuitionistic fuzzy sets (IFSs) [1, 5], interval val-
ued fuzzy sets (IVFSs) [6, 31], hesitant fuzzy sets (HFSs) [17-18], interval valued hesitant
fuzzy sets (IVHFSSs) [2-3], cubic sets (CSs) [10], cubic hesitant fuzzy sets (CHFSs) [15],
etc. Torra [17-18] initially gave the notion of HFSs that allows membership grade to be
the finite set of feasible values betwegandl. IVFSs [31] allows the membership grade

of an element to closed subinterval of the [0, 1]. Jun et al. [10] defined cubic sets which
include an IVFs [31] with the fuzzy set [30]. Chen and Xu [2] introduced a structure which
generalizes the concept of HFS [17-18] to IVHFS that enables the membership grade of an
element into many feasible interval nembers. Multi criteria decision making (MCDM) [8,

9, 11, 12, 14, 16, 19, 29, 32] has to do with making being a higher position decision over
the available attributes that are represented by multiple normally conflicting properties.

When a decision maker has provided the information about a certain statement that he
may be sure about the statementlis3, 0.5, 0.8} and{[0.25, 0.35], [0.4, 0.65], [0.55, 0.85] },
such kind of information cannot be presented by using other defined tools. Therefore, to
overcome this drawback of the existing tools Mahmood et al. [15] defined CHFSs by
combining IVHFSs [2] and HFSs [17-18] and defined some basic operations, properties,
aggregation operators (AOs) and practiced them to solve a MCDM probvlem under cubic
hesitant fuzzy information. Aggregation of information is an important part in different
fields such as economics, social and management sciences, information technology and
medical diagnosis, etc. In general prospect, we claim that the aggregation of information
is a process in which we treat different sorts of information obtained from many sources
in order to get a final decision. Yager [27] provided weighted averaging (WA) operator
and the ordered weighted averaging (OWA) operator that are two noted aggregation expert
ways. The point or amount unlike of the WA and OWA operators is that the WA opera-
tor only weights the given information origin in connection with their authenticity, but the
OWA operator weights the given information with respect to their ordered position. As
an outcome of that, weights show different features in both WA and OWA operators. An-
other aggregation operator (AO) is the generalized OWA (GOWA) operator [28] which is
formulated through generalized mean [7]. Chiclana et al. [4] proposed ordered weighted
geometric (OWG) operator through geometric mean. The drawback of OWA and OWG
operators is that they only rank the arguments and do not consider the given significance
of the argument itself, for the sake of improvement of this fact Xu and Da [23] defined
hybrid weighted averaging (HWA) operator. Lindahl et al. [13] gave the generalization
of the hybrid averaging (HA) operator. Recently, many aggregation approaches for fuzzy
information have been defined. Xu [25-26], Xu and Yager [24] gave AOs for IFSs. Zhao
et al. [34] defined generalized AOs for IFSs. Xia and Xu [20-22] established AOs for the
facts obtained from HFSs. Zhang Z [33] developed AOs for IVIHFS and practiced it to
solve a MCDM problem.

The article is arranged as: Section 2 contains the primary Definitions that are used
in this paper. Section 3 defines AOs for CHFSs. Section 4 describes the algorithm to
solve a MCDM problem by using defined operators. Section 5 solves a MCDM problem
by applying the algorithm. Section 6 consists of the conclusion of the presented work.
Section 7 consists of acknowledgments.

2. NOTATIONS AND PRELIMINARIES

Definition 2.1 [30] A fuzzy set (FS) on a non-empty s&tis defined to be a function
fromXtoP =[0,1]asa: X — P.
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Definition 2.2 [31] An interval valued fuzzy set (IVFS) on a non-empty &eis defined
by the functionF' from X to the set of closed intervals in [0, 1].

Definition 2.3 [10] A cubic set (CS) on a non-empty s&t is defined byA= {<
x,D(z),a(x) > /xr € X}, whereD(z) is an IVFS inX anda(x) is a FS inX. A cubic
set is simply denoted by =< D, o > .

Definition 2.4 [17, 18]A hesitant fuzzy set (HFS) on a non-empty aeis a mapping
that while enforced otX yields a finite subset of [0, 1], which is denoted and defined by
h ={< z,n(z) > /z € X}, wheren(z) is a set of a few different values in [0, 1], that
shows the feasible membership values of the elementX.

Definition 2.5 [2] Let X be a non-empty set ar§0, 1] denote the collection of closed
subintervals of0, 1]. An interval valued hesitant fuzzy set (IVHFS) éhis denoted and
defined by = {< z;,C(z;) > /z; € X,j =1,2,...,n}, whereC(z;) : X — S[0, 1]
expresses entire feasible interval valued membership values of the eleyredt to €.

Definition 2.6 [15] AssumeX is a non-empty set. A cubic hesitant fuzzy set (for short,
CHFS) is defined by = {< z,C(z),n(x) > /x € X}, whereC(x) is an IVHFE and
n(z) is HFE. A CHFS is simply denoted By =< C, 7 >.

Definition 2.7 [15] Let X be a non-empty sét = {< z,C(x),n(z) > /= € X} and
§d ={<z,A(x),&(x) > /= € X} be any two CHFSs oX then the addition of* and
are denoted and defined as,

F®6 = {x,yeC)+A),p e n@) + &) /{ln +o, —n o, uf +of -
pi o1} {hiki} >}

Definition 2.8 [15] Let X be a non-empty sét = {< z,C(z),n(x) > /x € X} and
§d={< z, Ax),&(z) > /x € X} be any two CHFSs oX then multiplication ofl” and
0 are denoted and defined as,

T@6 = {z,7 € Cz)x A(x), p € n(x) x (@) {lu; o7 i o 1} {hithi—hiki} >},

Definition 2.9 [15] AssumeX is a non-empty set arld = {< z,C(x),n(z) > /z €
X} is the CHFS onX with A > 0, then we have the following operations,

AL = {< 2,y € (AC)(x), Ap € (An)(@)/{[L— (1 A 1= (1— )} {2} >,

I = {<a,7* € CMa), p* € (@) {(1 ), (WD} AL = (1= ha)*} >},

e = {<a,7° € Cx), p° € (@) /{[L— i, 1 — iy 1} AL — hi} >}

Definition 2.10 [15] LetT" = {< z,C(z),n(z) > /= € X} be a CHFS. The cubic
hesitant fuzzy element on a non-empty Zets defined to beh = {< w; = [u;, 1] €
C(x), pi € n(x)/{[u; , 1}, {p:} >}, whereC(x) represents IVHFE angl(z) represents
HFE. Denotes- by the set of all CHFEs.

Definition 2.11 [15] Let X be a non-empty set anch = {< w; = [u;,u/] €
C(x),pi € n(x)/{{n;, 1]}, {h:} >} be a CHFE onX, the score ofh is denoted and
defined byI'(ch) = gy (i + 1 — 8leh) 4 p,), wherep; = [u7,pf] € C(x) (an
IVHFE), h; € n(z) (HFE) for allz € X, ®(ch) is the number of elements irh.

Theorem 2.12 [15]Let ch, chq, cho be three CHFES on a non-empty sétandA > 0
thenchy @ cha, chy ® cha, Ach, ch> are also CHFESs.

3. AGGREGATIONOPERATORS FORCHFSs

Definition 3.1 (GCHFWA operator) Assumechy(k = 1,2,...,n) are the collec-
tions of CHFEs and lety = (wy, ws, ..., w,)T be the weight vector of CHFEs (k =
1,2,...,n), wherew, € [0,1], ¥7_,w, = 1 ando > 0. Then generalized cubic hesitant
fuzzy weighted averaging (for short, GCHFWA) operator is a mappiig— G defined
by,

GCHFW Ag(chy,chy, ... chy) = 67 = (&)}, (wichy))7.
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Theorem 3.2Let chi(k = 1,2,...,n) be a collection of CHFEs. Then the aggregated
result is gained through applying GCHFWA operator is also a CHFE, and:

GCHFW A, (chy,cha,. .., chy) = ﬁk = ((®)7_, (wych?)) 7

= {< {10 = Ty (1= (ug))™) %, (1= Ty (1= ()™ 513,

{1 (1 =T (1= (L= hy)7)™ )7} >

Proof By Definition 3.1 and Theorem 2.12 we have the GCHFWA operator is a CHFE.

We prove the theorem by using mathematical induction.

First, we show that the result holds fer= 2

chg = {<{l(uz,)7, ()71} {1 - (1 - hi)7} >},

chg = {< {[(u,)7, ()7 A1 = (1= hiy)7} >},

wich = {< {[1 = (1= (u;,)7)", 1= (1= ())7) "]},

{1 = (1 =hiy)7) ) >},

wachg = {< n-a- (117,)7)"2, 1= (1= (u)7) 2]}

{(1 = (1= hs,)7 “’2}>}

wych] @ wzch" = {<{l =@ = ()" +1 = (1 = (u,))™ — (1 - (1=
(ki )7) ) (X = (1 = (pz,)7)*2),

1= (1= (p)7) " +1-(1 ( i)7) = (L= (1= ()7 ) (1 = (L= (1) 7)2)]},

{1 = (1 =hi)7) (1 = (1 = hyy)7)"2} >},

wichf Gwychy = {<{[1-(1 ( —(1=(pg,)7) ) (A= (1= (1= (pg,)” ) 2)),1-(1—
(== (u)7) ) (A== (= ()72 DI A= (1=q, )7) (1= (14, )7) 2} >},

wichf Bwachg = {< {[1=((1=(uz,) )" ) (1= (p5)7) "), 1= (1= ()7 ) (1
(1) 7)) AL = (L= hyy)7) (1~ (1= i)} >,

(wich§ & wychg)7 = {< A0 = (@ = (7)) (@ — (13,)7)")) 7, (1 = (1 =
()7 ) (= ()7) =) 7 1 A1 = (1= (L= (L= hi, )7) ™ (1= (1= hiy)7)™2)) 7 } >},

(wrch] @wachg) e = {< {[(1=T17_; (1= (p;,) 7)™ )7, (=TT, (1= (g} ) 7)) 7]}, 1=
(1 =Ty (1= (1= Ry, )7)"*) 7 } >},

Now suppose that the result holds fore= ¢, then

GCHFW Ay (chy,chy, ... ch)) = ((®)L_,(wpehd))7 = {< {[(1 = TL_, (1 —
(i)Y )% (1= Ty (1 ()7 5]} AL — (1= Ty (1 (1= By, )7)™) 7 } >}

We prove that the result holds far=t¢ + 1,

(©)fmr (Wi k] )D(wig1chiy ) = {< {111y (1—(p, )7) " +1-(1 —(pz,,)7)0 =
(1= Ty (1= (g )7) ) (1 = (1= (g, 7)), L= Ty (1= (gl )7) % + 1= (1 =
(i )7) e = (L= Ty (1= (g )7) ) (L= (L= (e, )) )T A, (1= (1 -

Bi)7) )1~ (1= i, )7) ™))} >,

(®) k=1 (wikT)B(weprchyy) = {< {1=(1= (=TT 2y (1= (g, )7)"* ) (1= (1—(1—
(#5,,,)7)")), 1= (1= (1= (1= (pf)7) ™)) (1= (1= (1= (uLl)") A (-
(1 hy, 7))} >},

(®) ke (Wrch)B(weprchfyy) = {< {I= My (1= (g )7) ™) (1= (g, ) 7)), 1=
(g (1= () ) (L = (i, D7) )AL (1= (1= hay )7) %)} >},

(@)fmr (wieh]) ® (wrachfyy) = {< {1 = AL = (uz)7)*), 1 = (G (1~
() 7)) AT (1 = (1 = Ry )7))} >3,

(®)hoy (wiekf) @ (wesrchfiy))s = {< {[(1 - (HZ“l(l — (15,)7)")) 7, (1 =
(I = () )) 718 AL = (1= IR (L = (1= Ry, )7)™) 7 } >,
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= ((®)k:1(wk6kg) o

((®)£H, (weh)) s :
; L= )7 I 1

GCHFW A, (chy,cha, ... chy,chiyr) =
)77, (1= (e

(wes1chfy)) 7 = {< {[(1 (Ht“( —(u
(1= T (1= (1= Ry )7)™) 7} >,

so the result holds fou =t+ 1

Definition 3.3 (GCHFWG operator) Let chi(k = 1,2,...,n) be the collection of
CHFEs andu (wy,wa, ..., w,)T be the weight vector ofhy(k = 1,2,...,n), where
wg € [0,1], 87 _jw, =1 anda > 0. Then the generalized cubic heS|tant fuzzy weighted
geometric (for short, GCHFWG) operator is a mappi¥i§— G defined by,

GCHFWGy(chy, chs, ... chy) =10 = 2((®)1_, (0chy)" ).

Theorem 3.4Let chi(k = 1,2,...,n) be the collection of CHFEs. Then the aggre-
gated result is obtained by applying GCHFWG operator is also a CHFE, and:

GCHFWG,(chy,chy, ... chy) = 77 = 2((®)p_,(ochy)*) = {< {[1 - (1 -
Ty (1= (1= p5)7)™%) 7, 1= (1= T, (1= (1 — pf)7)*) 7 ]} {(1 = T, (1 —
(ha)7)™ )7} >},

Proof By Definition 3.3 and Theorem 2.12 we have the GCHFWG operator is a CHFE.

We prove the theorem by using mathematical induction.

First, we show that the result holds for= 2

ochy ={<{[l - (1 —p;)71 -1~ uil) 13, {hi,} >},

ochy = {< {[1 = (1= p)7, 1= (1= )71}, {hg,} >},

(ochy)" ={<A{[(1 = (1 —pg,)7), (1 - (1 - ull)”) '}

{1—=(1—=h7)"} >},

(ocha) = {< {[(1 = (1= pz,)7)", (1= (1= p})7) 2]},

{1 = (1 —=hg,)=} >},

(ochi)t @ (och)™? = {< {[(1 = (1 = p)7)" (1 — (L — p;))7)*>, (1 = (1 —
i) A= (L= pd)7) 2 AL = (1= RG )" + 1= (1= h{,)" = (1= (1= hg)*1)(1 -

(1 —hZ,)"2)} >},
(ochy)™t @ (ocha)™ = {< {{(1 = (1 = p;))7)* (1 = (1 = p,))7)"> (1 = (1 =
)7 (= (L= p)7) b AL = (L= (1= (1= h7)")) (1 = (1= (1= hF,)**))} >},
(ochy)™ @ (achg)™ = {< {{(1 = (1 — p)7) (1 — (1 = pg,))7)*> (1 — (1 =

pa )7 (L= (1= p)7) 2] {1 = (1= hg )™ (1 — hg,)"2} >}, 1
(1—

> ((ochy) "t @ (oche)?) = {< {[1= (1= (1= (1—p;)7) " (1= (1= pz,)7)" )7 1=
(1= (1= (1= p)o) (1= (1= u)7)™2) 7 ]} AL = (1= hg)™ (1= h,)"2) 7} >,

S ((och1)™ @ (oche)™) = {< {[1 = (1 - TF_4(1 - (= )7)E) 7,1 — (1 —
7 (1= (1= p)7)) o 1h (L = IR (1 = (hiy)7)"*) 7} >}

Now suppose that the result holds for= ¢, then

GCHFWG,(chy,chy, ... ,chy) = 77 = 2((®)L_;(ochy)**) = {< {1 - (1 -
I,y (1= (1= p)7)™) 7, 1= (L= Th_y (1= (1= p)7)™) = )3 {(1 = T0f (1 —
(hiy)7)™)7 } >}

We prove that the result is valid fer=¢ + 1,

(@)k=i (ochp) @ (ochypr) "+t = {< {{Ioy (1= (L—pg ) 7)) A= (L=p, ) 7) 0

(I (1= (1= pf )7y ) (= (1= )oY [h AL =TIy (1= b, )+ 1= (1=
hg )t = (L= Ty (L= A7) ) (1 = (1 = hg )W)} >},

(@) (ochi)** @ (ochyr) e+t = {< {1 = (1= p)7) I (1 - (1 -
pd )7 AL = IRE (L= hg )} >3,
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2((@)hor (0chr) ™ @ (gchp) ) = {< {[1 = (1=TIE, (1= (1= pg, )7) %) 7, 1=
(1= T (1= (1= )= 1 (1 = T (1= g )ms) =) >,

GOHFWG,(chy,cha, ... chy,chiir) =77 = (@)1 (ochy) )

= 2 ((®)f=y(ochy) @ (ocher1) )

= {< {1 = (=T (1 = (1= p)7) )7, 1= (L= T (1= (1= g )7) )]},

{(1 = I (1 = (Ry, o)) 7} >,

thus the result holds for = ¢ + 1.

Definition 3.5 (CHFOWA) Let chi(k = 1,2,...,n) be a collection of CHFEs. The
cubic hesitant fuzzy ordered weighted averaging (briefly, CHFOWA) operator is denoted
and defined by the mapping" — G such that,

CHFOW A(chy, cha, ..., chy) = AR, = By = (B)[21¢ich],

whereg = (¢1, ¢, ..., ¢,)" is a weight vector affiliated with the mappidg® — G
havingg; € [0, 1] and¥}_,¢; = 1. ch}” is obtained a&h largest ofn-cubic hesitant fuzzy
elementsh,(k = 1,2,...,n) by Definition 2.11 as score function ranking method.

Theorem 3.6Let chy(k = 1,2,...,n) be a collection of CHFEs. Then the aggregated
result is gained through applying CHFOWA operator is also a CHFE, and:

CHFOW A(chy, chy, ... chy) = ARy = B7 = (@)=, guchy” = {< {[1 - T, (1 -

p, )P = I (1= g ™) 2 AT (RG) ) >

wherechy” = {< {[u;~, 1 ™1}, {hs;} >} is thelth largest ofn—cubic hesitant fuzzy
elementghy(k = 1,2,...,n) which is obtained by using Definition 2.11 as score function
ranking method.

Proof Omitted (same as Theorem 3.2).

Definition 3.7 (CHFOWG) Let chi(k = 1,2,...,n) be a collection of CHFEs. The
cubic hesitant fuzzy ordered weighted geometric (briefly, CHFOWG) operator is defined
by the functionG™ — G as follows,

CHFOWG(chy,cha, ... chy) = Dg, =78 = (®)1ch;,

where¢ = (¢1, ¢, ..., ¢,)T is a weight vector affiliated with the mappidg® — G
havingg; € [0,1] andX} ,¢; = 1. ch;” is obtained agth largest ofn—cubic hesitant
fuzzy elementgh,(k = 1,2,...,n) by Definition 2.11 as score function ranking method.

Theorem 3.8Letchy(k = 1,2,...,n) be a collection of CHFEs. Then the aggregated
result is gained through applying CHFOWG operator is also a CHFE, and:

CHFOWG(chy,cha, ... chy) = Dg, =10 = (®)f_ ch; "

= {< Iy (g, ™) T (g, ™) ™1 A1 = T (1= B3) ™} >,

wherech)” = {< {[u;~, ni ™1}, {h;} >} is thelth largest ofn—cubic hesitant fuzzy
elementshy(k = 1,2,...,n) which is obtained by using Definition 2.11 as score function
ranking method.

Proof Omitted (same as Theorem 3.4).

Definition 3.9 (GCHFOWA operator) Let chi(k = 1,2,...,n) be the collection of
CHFEs. Letp = (¢1,¢9,...,¢,)T be the weighting vector affiliated with the mapping
G™ — G havingg¢y, € [0,1] andX?_, ¢, = 1. Then the generalized cubic hesitant fuzzy
ordered weighted averaging (for short, GCHFOWA) operator is a mafggihg- G de-
fined by,

GCHFOW Ay (chy, cha, ..., chy) = 27 = (@)1, (dich;?))7,

whereo > 0 andchy” = {< {[i;,~, u; ™1}, {h7/} >} is thelth largest ofn—cubic
hesitant fuzzy elementsi,(k = 1,2,...,n) which is obtained by using Definition 2.11
as score function ranking method.
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Theorem 3.10Let chi(k = 1,2,...,n) be the collection of CHFEs. Then the aggre-
gated result is obtained by applying GCHFOWA operator is also a CHFE, and:

GCOHFOW A, (chy,chy, ... chy) = B = (&), (dichi?))7 = {< {{(1 —
Ty (1= (3, ™)) )% (110 (1= (™) 7)) 1), (1= (1-TEL (1= (1-h5)7)#) 7 } >

whereo > 0 andchy” = {< {[i;~, i ™1}, {h7’} >} is thelth largest ofn—cubic
hesitant fuzzy elementsi,(k = 1,2,...,n) which is obtained by using Definition 2.11
as score function ranking method.

Proof Omitted (same as Theorem 3.2).

Definition 3.11 (GCHFOWG operator) Let chi(k = 1,2, ..., n) be the collection of
CHFEs. Letp = (¢1,9,...,¢,)" be the weighting vector affiliated with the function
G™ — G having¢;, € [0,1] andX?_, ¢, = 1. Then the generalized cubic hesitant fuzzy
ordered weighted geometric (for short, GCHFOWG) operator is a magpihg— G
defined by,

GCHFOW Gy (chy,cha, ... chy) =17 = 2((@)1 (och]”)?),

whereo > 0 andchy” = {< {[u;~, ™1}, {h7’} >} is thelth largest ofn—cubic
hesitant fuzzy elementsi,(k = 1,2,...,n) which is obtained by using Definition 2.11
as score function ranking method.

Theorem 3.12Let chi(k = 1,2,...,n) be the collection of CHFEs. Then the aggre-
gated result is obtained by applying GCHFOWG operator is also a CHFE, and:

GCHFOW G, (chi,ch, ... chy) = 707 = (@)1 (och)?) = {< {[1 - (1 -
TPy (1= (1= ™)) 7 1= (1= Iy (1= (1= ™) 7)) e 1h (1 = T, (1 -
(hi)7)?)7} >},

wheres > 0 andch)” = {< {[pi‘lw,,ujl“}},{h;} >} is thelth largest ofn—cubic
hesitant fuzzy elementsi(k = 1,2, ..., n) which is obtained by using Definition 2.11
as score function ranking method.

Proof Omitted (same as Theorem 3.4).

Definition 3.13 (CHFHA operator) Let chi(k = 1,2,...,n) be the collection of
CHFEs.The cubic hesitant fuzzy hybrid averaging (for short, CHFHA) operator is defined
by the mapping=" — G such that,

CHFHA(chy,chg, ... ,ch,) = %,gﬁ’w = = (D), (dich?™),

where¢ = (¢1, ¢, . .., ¢,)T Weighting vector is associated with the mapp@Ey —

G with ¢, € [0,1] andX}_, ¢, = 1, ch?™ is obtained asgth largest ofn—cubic hesitant
fuzzy elementsh), = nwychy, by the ranking method defined by Definition 2.11 as scor-
ing function ranking method. Hereis a balance factor and = (wy, ws,...,w,)T is a
weight vector of CHFEshy (k = 1,2,...,n) with wy, € [0,1] andX}_,wy = 1.

Theorem 3.14Let chi(k = 1,2,...,n) be the collection of CHFEs. Then the ag-
gregated result of CHFESs calculated through applying CHFHA operator is also a CHFE,
and:

CHFHA(chy,cha,...,chy,) = %,ﬁ‘;)’w =y = (@) (dichy™) = {< {[1-1I, (1—
p, )01 =T (1= ot )P AT () ?) >,

wherech?” = {< {[u; ", 1" 1}, {h¢"} >} is thelth largest ofn—cubic hesitant
fuzzy elementsh) = nwkchk(k = 1,2,...,n) which is obtained by using Definition
2.11 defined as scoring function ranking method.

Proof Omitted (same Theorem 3.2).
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Definition 3.15 (CHFHG operator) Let chi(k = 1,2,...,n) be the collection of
CHFESs.The cubic hesitant fuzzy hybrid geometric (for short, CHFHG) operator is defined
by the functionG™ — G such that,

CHFHG(chy,cha, ..., ch,) = GH¢7w = xr = (@)1, ((ch§™)?),

whereg= (¢1, ¢2, ..., ¢,)T weighting vector is associated with the mappiifty — G
with ¢ € [0,1] andX}_, ¢, = 1, ch;’N is obtained agth largest ofn—cubic hesitant
fuzzy elementgh), = ch,"* by the ranking method defined by Definition 2.11 as scoring
function ranking method. Here is a balance factor and = (w;,ws,...,w,)T is a
weight vector of CHFEshy (k = 1,2, ...,n) with w, € [0,1] andX}_,wy = 1.

Theorem 3.16Letch,(k = 1,2,...,n) be a collection of CHFEs. Then the aggregated
result is gained through applying CHFHG operator is also a CHFE, and:

CHFHG(Chla Ch27 ceey Chn) = GkH¢,w =Xk = (®)?:1((Chlo~)¢l)

= {< {7 (k7 )2 I ()P AL = T (1= hg )1} >,

wherech?” = {< {[u;* . i 1}, {h¢"} >} is thelth largest ofn—cubic hesitant
fuzzy elementgh), = ch,"*(k = 1,2,...,n) which is obtained by using Definition 2.11
defined as scoring function ranking method.

Proof Omitted (same as Theorem 3.4).

Definition 3.17 (GCHFHA operator) Let chi(k = 1,2,...,n) be the collection of
CHFEs. The generalized cubic hesitant fuzzy hybrid averaging (for short, GCHFHA) op-
erator is a mapping™ — G defined by,

GCHFHA,(chy,cha, ..., chy,) =97 = (@), (¢r(chy™)?))7,

whereo > 0,¢ = (¢1, b2, ..., ¢,)T weighting vector is associated with the mapping
G" — G with ¢y, € [0,1] andX?_, ¢, = 1, ch?” is obtained agth largest ofn—cubic
hesitant fuzzy elements:? = nwychy by using Definition 2.11 as scoring function rank-
ing method. Here: is a balance factor and = (wy,ws, ..., w,)T is a weight vector of
CHFEschi(k =1,2,...,n) with wy, € [0,1] andX}_,wy = 1.

Remark 3.18In special cases whep = (+, L, ..., 1)T then the GCHFHA operator
becomes GCHFWA operator, ib =(1,1 ... 1)7 then GCHFHA operator becomes
GCHFOWA operator and i# = 1 then GCHFHA operator becomes CHFHA operator.

Theorem 3.19Letchy(k = 1,2,...,n) be a collection of CHFEs. Then the aggregated
result is gained through applying GCHFHA operator is also a CHFE, and:

GCHFHAy(chy,cha,... chy) = ¥ = (@)L, (dulchi )7)7 = {< {[(1 -
Ty (1= (%)) 7, (1= TR (1 = (uh7)7)0) 7 A1 — (1 = T, (1 = (1 —
hg )7 e} >t

wherech?” = {< {[u;° i 1}, {h¢"} >} is thelth largest ofn—cubic hesitant
fuzzy elementsh) = nwychi(k = 1,2,...,n) which is obtained by using Definition
2.11 as scoring function ranking method.

Proof Omitted (same as Theorem 3.2).

Definition 3.20 (GCHFHG operator) Let chy(k = 1,2,...,n) be the collection of
CHFEs. The generalized cubic hesitant fuzzy hybrid geometric (for short, GCHFHG)
operator is a mapping™ — G defined by,

GCHFHG,(chy,chs,... chy) =X = 1((®)1 (ochy™)?),

whereo > 0,¢ = (1,1 ... 1)T weighting vector is associated with the mapping
G" — G with ¢y, € [0,1] andX}_, ¢, = 1, cth is obtained agth largest ofn—cubic
hesitant fuzzy elements:} = ch;* by using Definition 2.11 as scoring function ranking
method. Here: is a balance factor ang = (w1, ws,...,w,)T is a weight vector of
CHFEschi(k =1,2,...,n) with wy € [0,1] andX}_,wy = 1.
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Remark 3.21In special cases whep = (1,1 ... 1)T then the GCHFHG operator

becomes GCHFWG operator,if = (1,1 ... 1)7 then GCHFHG operator becomes
GCHFOWG operator and = 1 then GCHFHG operator becomes CHFHG operator.

Theorem 3.22Letch,(k = 1,2,...,n) be a collection of CHFEs. Then the aggregated
result calculated through GCHFHG operator is also a CHFE, and:

GCHFHG (chy,chs, ... ,chy,) = X7 = (@) (och?)?) = {< {1 - (1 —

TPy (1= (L= 41,7 ) 7)) 7, 1= (1= Ty (1= (1= i) 7)) w1 (1 = T (1 -
(hg7)7)?) 7} >},

wherech?” = {< {[u; ", 1t 1}, {h$"} >} is thelth largest ofn—cubic hesitant
fuzzy elementsh) = ch,"*(k = 1,2,...,n) which is obtained by using Definition 2.11
as scoring function ranking method.

Proof Omitted (same as Theorem 3.4).

CHFHA and CHFHG operators do not satisfy the property of idempotency for aggrega-
tion operators, so in order to remove this deficiency we developed new operators as shown
below in Definition 3.23 and Definition 3.26.

Definition 3.23 (CHFHAA operator) Let chi(k = 1,2,...,n) be the collection of
CHFEs. The cubic hesitant fuzzy hybrid arithmetical averaging (for short, CHFHAA)
operator is a functio’™ — G denoted and defined as,

CHFHAA(chy, chy, . .., chy) = = @niwimm
=1

whereg= (¢1,¢,...,¢,)7 is a weight vector that is associated with the mapping
G" — G,¢, € [0,1] andX}_,¢r = 1, ch] is obtained agth largest ofn—cubic
hesitant fuzzy elementsy;, by using Definition 2.11 as scoring function ranking method.
Heren is a balance factor and = (w1, ws,...,w,)T is a weight vector of CHFEs
chi(k=1,2,...,n)withwy € [0,1] andX}_,wy = 1.

Theorem 3.24Letch,(k = 1,2,...,n) be a collection of CHFEs. Then the aggregated
result calculated through CHFHAA operator is also a CHFE, and:

CHFHAA(chy, chy,... chy,) = ¥ = @%55”7;%"7) = {< {1 -1,(1 -

wi by wi by w g

pg, ) B L= T (1 — g™ ) B [ (T (B B} >,

whereg= (¢1,¢,...,¢,)" is a weight vector that is associated with the mapping
G" — G,¢r € [0,1] andX}?_ ¢ = 1, ch;” is obtained agth largest ofn—cubic
hesitant fuzzy elementsy;, by using Definition 2.11 as scoring function ranking method.
Heren is a balance factor and = (w1, ws,...,w,)T is a weight vector of CHFEs
chi(k=1,2,...,n)withwy € [0,1] andX}_,wy = 1.

Proof By Theorem 2.12, it is clear that the aggregated result obtained by applying
CHFHAA operator is a CHFE.

wy Py wy Py

wypchy ST wiéy ~) B
st = {< {1 = (1= g ™) T 1 — (1 — g™ T
_wid
{(h) ey >,
CHFHAA(chy,chs, ..., chy) = %72;%7”)
w,d, wyég

= @< A1 = (1= ™) Torim 1 — (1= ™) T ],

wy ¢

{(n7) "o} >4,
CHFHAA(chy,chg,...,chy)
wy b

_widy _widy

= {< {0 = T (1= gy ™) T2 1 = T (1= ) STt ],
w d),

{H?:l(hﬂ) EZ’/:fw'm } >}’
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Theorem 3.25 (Idempotency)f ch)” = ch™~(l=1,2...,n),
thenCHFHAA(chy,cha, ..., ch,) = ch™.

Proof CHFEHAA(chy, cha, . .., chy) = (&lizi(wiéichi’)

S wign
_ (@), (widich™) ~ (@) (wid) _ N2 wig ~
- ZZzTIL:lli’lél ch l" lwzfﬁzl =ch l" 1wi¢i =ch
Definition 3.26 (CHFHAG operator) Let chk(k: =1,2,... ,n) be the collection of
CHFEs. The cubic hesitant fuzzy hybrid arithmetical geometric (for short, CHFHAG)

operator is a functior™ — G denoted and defined as,
wy ¢

CHFHAG(chy, cha, ..., chn) = X} = (&)} (chi*) o1

whereg= (¢1, oo, ..., 6,)7 is aweight vector that is affiliated with the mappigf —
G,¢r € [0,1] andX}_ ¢, = 1, ch]” is obtained agth largest ofn—cubic hesitant
fuzzy elements:h;, by using Definition 2.11 as scoring function ranking method. Here
n is a balance factor and = (wy, ws,...,w,)T is a weight vector of CHFE&h (k =
1,2,...,n) withwy € [0,1] andX}_,w; = 1.

Theorem 3.27Suppose we have a collection of CHREg,.(k = 1,2,...,n). Then the
aggregated result is gained through applying CHFHAG operator is also a CHFE, and:

wy ¢

CHFHAG(chy, cha, .., chn) = X = (@)1, (chi*) Tereid

wy ¢ w

) 0 S P 0 S

= {< ML (™) 7= :”’l Ly (uf ™) P ]y,

(L T (1 ) T ) ),

wherech)” = {< {[u;,~, ui ™1}, {hi/} >} is thelth largest ofn—cubic hesitant fuzzy
elementsh,(k = 1,2,...,n)which is obtained by using Definition 2.11 as score function
ranking method.

Proof From Theorem 2.12 it is clear that the aggregated result obtained by applying
CHFHAG operator is a CHFE.

wy Py

L wy by
(ChN)El":Nuzd)L — {< {[(/L;N)Zlnzlwl‘m ) (M:N)Zlﬂ’:lwlqsl ]}’
{1— (1= hgy)==m i F>h
w) Py
CHFHAG(chy,chs, ..., chy,) = (®)5(chy) Szt

w

L<1> wi by wy g
= (@) < {[(w, ™) T, (™) P}, {1 = (1= hyy) M=y >,

wy ¢
CHFHAG(chy, cha, ..., chy) = (@), (chi*) Toavie

"z¢l wz¢l

= {< AL, (uy, )E“ B R (T R

{1-12, (1 = A7) EZL:WM >}
Theorem 3.28 (Idempotency)f ch)” = ch™~(l=1,2...,n),
thenCHFHAG(chy,cha,...,chy,) = ch™.
Proof .

wy Pl
CHFHAG((chy,chs, ..., chy,) = (®)], (ch]) Zi=1*1%

wy d; wy b

= {< {0y (g, ™) P T (™) S ],

wy g

{1 =T, (1 = h) ™= T >,

sincech;” = ch™~(l=1,2...,n)sou; "~ = p; ™, puf™ = p™ andh” =hy,
T widy wl¢l
CHFHAG(chy, ch, ..., chy) = {< {{(u;™)"ormo, (u™) e ey, {1 (1 —
ET” Lwidg

Y >} = (< (s ) ) = ey
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4. MULTI CRITERIA DECISION MAKING USING GENERALIZED HYBRID
AGGREGATIONOPERATORSBASED ON CUBIC HESITANT FuzzY SETS

We are giving a method for tackling a MCDM problem based on CHFSs by applying
GCHFHA and GCHFHG operators. We are allocating the weights to both CHFEs and the
vector associated with the mappit§® — G. Suppose thath = {chy,chs,...,ch,}
be collection of alternatives and also assume that {R;, Ro, ..., R,,} be a set of cri-
teria. Considering the criteri®; (1 < j < m), recommended by the decision maker
having weightsw, € [0,1] and¢, € [0,1]. Herewy, is the weight vector of CHFEs
chi(k = 1,2,...,n) and¢r(1 < k < n) is the weighting vector associated with the
mappingG™ — G, also we haves?_ w, = 1 andXy_ ¢, = 1. Thusch, = {<
(R, {lui,,(Ry), iy, (R}, {hay, (R;)} >}. The CHFE which is a pair of IVHFE and
HFE is denoted byh, = di; = {< {[u;}”,u;;j]}, {hi,,} >}. Hence we obtain a deci-
sion matrixD = dy;. We are giving the notation to generalized cubic hesitant fuzzy hybrid
averaging CHFE ag{ for chg, (1 < k < n,1 <1 < m), herechg, is obtained a$th
largest ofm—CHFEschj; = ch;** by using score function (see Definition 2.11) ranking
method. These CHFEs are obtained by using GCHFHA operator and GCHFHG operator
through each row in the decision matrix. First, we weight the CHFESs by using the weights
of CHFEs assigned to each criterion and then rank the CHFEs through a score function
(see Definition 2.11) by usingth row andjth column in the matrix. Then aggregate the
CHFEs by applying GCHFHA or GCHFHG operator through weighting vector associated
with the mapping=" — G on eachkth row in the matrix. Then after we use score func-
tion (see Definition 2.11) in order to obtaif(y7 ) for ¢7 or T'(x{) for x7. In view of the
score function, we rankh,(k = 1,2,...,n) and choose the optimum alternative. The
decision making process is followed through the steps given below.

Step 1Weight the CHFEs by using the weights of CHFEs assigned to each criterion
throughkth row andjth columns in the matrix.

Step 2Rank the CHFESs through a score function (see Definition 2.11).

Step 3Calculate GCHFHA or GCHFHG values by applying Theorem 3.19 or Theorem
3.22 respectively through weighting vector associated with the majgging: G on every
kth row in the matrix.

Step 4 Determine the accuracy by using a scoring function of CHFE (see Definition
2.11) to getl'(vy) or T'(x7), rankchy(k = 1,2,...,n) and choose the best alternative by
comparing eacl'(v7) or T'(x7).

5. DESCRIPTIVEEXAMPLE

We are providing an example, in order to solve a multi criteria decision making (MCDM)
problem for CHFSs using generalized cubic hesitant fuzzy hybrid aggregation operators.
Suppose that there is a group of people those are planning to invest in an international bank.
The four alternatives arg:; ) National Australia BanKc,) Barclays(c;) Royal Bank of
Canad&(c4) Bank of New York Mellon, under four criteriéh;) country Risk(hz) credit
Risk (h3) banking performancéh,) portfolio selection and management. Now we will
find the best alternative through the algorithm as defined in Section 4. We are considering
the matrix); consisting of CHFS values as follows,
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hi ho hs ha
e {<{0.1,04], {<{[0.2,04], {<{[0.1,0.3]}, {< {[0.15,0.35],
[0.5,0.7]}, [0.5,0.6], {0.2} >} [0.4,0.7]},
{0.3,0.6} >} [0.7,0.8]}, {0.2,0.6} >}
{0.3,0.55,
0.75} >}
co {<{[04,0.7]}, {<{[0.2,0.3], {<{[0.1,0.2], {<{[0.4,0.5],
{0.5} >} [0.4,0.6]}, [0.3,0.5], [0.55,0.6],
{0.25,0.5} >} [0.6,0.7], [0.7,0.9]},
[0.8,0.9]}, {0.45,0.55,
{0.15,0.4, 0.8} >}
0.65,0.85} >}
ez {<{[0.1,0.3], {<{[0.6,0.9]}, {<{[0.4,0.6], {<{[0.2,0.4],
[0.4,0.6], {0.8} >} [0.7,0.9]}, [0.5,0.6],
[0.7,0.8]}, {0.5,0.8} >} [0.7,0.9],
{0.2,0.5, [0.92,1]},
0.75} >} {0.3,0.55,
0.8,0.95} >}
ci {<{[0.3,04], {<{[0.1,0.2], {<{[0.5,0.7]}, {<{[0.3,0.5],
[0.5,0.6], 0.3,0.4], {0.6} >} [0.6,0.9]},
[0.7,0.8], [0.6,0.8]}, {0.4,0.7} >}
[0.9,1]}, {0.15,0.35,
{0.35,0.55, 0.7} >}
0.75,0.95} >}

Suppose the weight vector bf, h, h3 andh, isw = (0.1,0.2,0.3,0.4)T. Considering
the aspect that different alternatives can spotlight some different characteristics, in order
to demonstrate this concern, we have one more weighting vector of each critetios as
(0.15,0.25,0.5,1)T and we use the algorithm as follows,

Step 1

chip = {< {[0.1,0.4],]0.5,0.7]},{0.3,0.6} >},

chia = {< {[0.2,0.4],[0.5,0.6],[0.7,0.8]}, {0.3,0.55,0.75} >},

chyz = {< {[01,03]}, {02} >},

ch14 = {< {[0.15,0.35],[0.4,0.7]},{0.2,0.6} >},

ch§, = nwichyy = {< {[0.0413,0.1848],[0.2421,0.3822]},

{0.6178,0.8152} >},

ch$y = nwychis = {< {[0.1635,0.3355],[0.4257,0.5196], [0.6183, 0.7241]},

{0.3817,0.6199,0.7944} >},

ch9s = nwschyg = {< {]0.1188,0.3482]}, {0.1450} >},

ch$, = nwschiy = {< {[0.2290, 0.4980], [0.5584, 0.8543] },

{0.0761,0.4416} >},

chay = {< {[0.4,0.7]},{0.5} >},

chas = {< {[0.2,0.3],[0.4,0.6]},{0.25,0.5} >},

chas = {< {[0.1,0.2],[0.3,0.5], [0.6,0.7],[0.8,0.9]},

{0.15,0.4,0.65,0.85} >},

chay = {< {[0.4,0.5],[0.55,0.6],[0.7,0.9]}, {0.45,0.55,0.8} >},
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ch$, = nwichyy = {< {[0.1848,0.3822]}, {0.7579} >},

ch$y = nwachgy = {< {[0.1635,0.2482], [0.3355, 0.5196] },

{0.3299,0.5743} >},

ch$y = nwschys = {< {[0.1188,0.2349], [0.3482, 0.5647], [0.6670, 0.7642],
[0.8550,0.9369]}, {0.1026,0.3330, 0.5963, 0.8228} >1,

ch$, = nwychyy = {< {[0.5584,0.6701],[0.7213, 0.7692], [0.8543,0.9749] },
{0.2787,0.3842,0.6998} >1,

chs1 = {< {[0.1,0.3],]0.4,0.6],[0.7,0.8]},{0.2,0.5,0.75} >},

chsy = {< {[0.6,0.9]},{0.8} >},

chsz = {< {[0.4,0.6],]0.7,0.9]}, {0.5,0.8} >},

chay = {< {[0.2,0.4],]0.5,0.6],[0.7,0.9],[0.92, 1]}, {0.3,0.55,0.8,0.95} >},
ch$; = nwichz = {< {[0.0413,0.1330], [0.1848, 0.3069], [0.3822, 0.4747]},
{0.5253,0.7579,0.8913} >1,

ch$y = nwachas = {< {[0.5196,0.8415]}, {0.8365} >},

ch$s = nwschaz = {< {[0.4583,0.6670], [0.7642, 0.9369]},

{0.4353,0.7651} >},

chg, = nwychzy = {< {[0.3002,0.5584], [0.6701, 0.7692], [0.8543,0.9749], [0.9824, 1]},
{0.1457,0.3842, 0.6998,0.9212} >},

cha1 = {< {[0.3,0.4],]0.5,0.6],[0.7,0.8],[0.9, 1]},

{0.35,0.55,0.75,0.95} >},

chas = {< {[0.1,0.2],]0.3,0.4],[0.6,0.8]}, {0.15,0.35,0.7} >},

chaz = {< {[0.5,0.7]},{0.6} >},

chay = {< {[0.3,0.5],]0.6,0.9]}, {0.4,0.7} >},

ch$; = nwichy = {< {[0.1330,0.1848], [0.2421, 0.3069], [0.3822, 0.4747], [0.6019, 1]},
{0.6571,0.7873,0.8913,0.9797} >},

chgy = nwachys = {< {[0.0808,0.1635],[0.2482, 0.3355], [0.5196,0.7241]},
{0.2192,0.4318,0.7518} >},

ch3s = nwschyy = {< {[0.5647,0.7642]}, {0.5417} >},

chg, = nwychyy = {< {[0.4349,0.6701], [0.7692, 0.9749]}, {0.2308, 0.5651} >},
Step 2

T(chg,) = 0.0709, T(ch$,) = 0.2638, T (ch$3) = —0.1940, T (ch$,) = 0.1644,
clearly we have by ranking methedl{, > ch{, > ch{; > ch{s.

Thus we havech, = ch$y,chiy = ch,, ch{s = ch$,,ch$, = chis.
Thuschg;, = {< {[0.1635,0.3355], [0.4257,0.5196], [0.6183, 0.7241]},
{0.3817,0.6199, 0.7944} >},

ch$y = {< {[0.2290,0.4980], [0.5584, 0.8543]}, {0.0761,0.4416} >},

ch$s = {< {[0.0413,0.1848], [0.2421,0.3822]}, {0.6178,0.8152} >},

chg, = {< {[0.1188,0.3482]}, {0.1450} >1,

T(ch$,;) = 0.1625,T(chg,) = 0.0428, T(ch$;) = 0.2931,T(chg,) = 0.4852,
clearly we have by ranking methe@ls, > chg; > ch$; > chi,.

Thus we havechs, = ch$y,chSy = chs, chgs = ch$,,chS, = ch$,.
Thuschg;, = {< {[0.5584,0.6701],[0.7213,0.7692], [0.8543, 0.9749]},
{0.2787,0.3842,0.6998} >1,

chgy = {< {[0.1188,0.2349], [0.3482, 0.5647],[0.6770,0.7642], [0.8550, 0.9369]},
{0.1026, 0.3330, 0.5963, 0.8228} >},

chgy = {< {[0.1848,0.3822]}, {0.7579} >},

chg, = {< {[0.1635,0.2482], [0.3355,0.5196]}, {0.3299, 0.5743} >},
T(chg,) = 0.1162, T(chg,) = 0.5988, T(chg;) = 0.5067,T(chg,) = 0.5326,
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clearly we have by ranking methed$, > ch§, > ch§s; > chg;.

Thus we havechg, = ch$y,chSy = chy, chgs = chls,chg, = ch$.
Sochg, = {< {[0.5196,0.8415]},{0.8365} >},

chgy = {< {[0.3002,0.5584], [0.6701, 0.7692], [0.8543,0.9749], [0.9824, 1]},
{0.1457,0.3842,0.6998,0.9212} >},

chgs = {< {[0.4583,0.6770], [0.7642,0.9369]}, {0.4353,0.7651} >},

chg, = {< {[[0.0413,0.1330],[0.1848,0.3069], [0.3822, 0.4747]},
{0.5253,0.7579,0.8913} >},

T(chgy) = 0.3301, T(chgy) = 0.0791, T(chg;) = 0.4353, T(chg,) = 0.4113,
clearly we have by ranking methedl§,; > ch}, > ch$; > chj,.

Thus we havechs, = ch$s,chly = chy,chls = ch$y,chl, = chis.
Hencechy, = {< {[0.5647,0.7642]}, {0.5417} >},

chgy = {< {[0.4349,0.6701], [0.7692,0.9749]}, {0.2308,0.5651} >},

ch3s = {< {[0.1330,0.1848], [0.2421,0.3069], [0.3822, 0.4747], [0.6019, 1]},
{0.6571,0.7873,0.8913,0.9797} >},

chg, = {< {[0.0808,0.1635], [0.2482,0.3355],[0.5196,0.7241]},
{0.2192,0.4318,0.7518} >},

Step 3

By Theorem 3.19 we have,

GOHFHA, (chi)},_, = ¥] = (((es)" Dz (i(chg )7)7 = {< {{(1- T3 1= (1=

1
(7P (1T 1= ) (=0T (1 0-H)7))3) >
for o = 1 we have,
GCHFHAl(Ch11,0h12,Ch13,6h14) = ¢1 = (( )l 1) ((ﬁlchz;) = {< {[1 —
T (1= g )0 L= T (U= 7)) (I, (R9)%) >,
GOHFH A (chyy. chyg chys, chay) = 6 — {< {01180, 0.3152], [0.2158, 0.4038],
[0.8509,0.4973],[0.3178,0.5624], [0.1664, 0.3477], [0.2588, 0.4321], [0.2748, 0.5212],
[0.3552,0.5832], [0.2159, 0.3997], [0.3028, 0.4775], [0.3179, 0.5594], [0.3935, 0.6165] },
{0.2946, 0.3384, 0.4572,0.5252, 0.3168, 0.3639, 0.4917,0.5648, 0.3288, 0.3777,
0.5103, 0.5862} >},
GCHFHAl(Ch21,0h227Ch23,0h24) = ¢2 = (( )l l)k 2(¢lchzl~) = {< {[1 —
T (1= )% 1 =TI (1= ) 0), (I (R, )™} >,
GCHFHAl(Chgl, Chgg, Ch23, Ch24) 1/)2 = {< {[0 2398, 03950], [025717 04215],
[0.2906, 0.4266], [0.3067,0.4517], [0.3563, 0.5889], [0.3710, 0.6069], [0.2950, 0.4746],
[0.3111,0.4976], [0.3412, 0.5020], [0.3570, 0.5237], [0.4031, 0.6430], [0.4167, 0.6586],
[0.4040, 0.5493], [0.4176,0.5690], [0.4438, 0.5728], [0.4564, 0.5915], [0.4953,0.6937],
[0.5068,0.7071], [0.5159, 0.6758], [0.5269, 0.6900], [0.5482, 0.6927], [0.5584, 0.7062],
[0.5900,0.7797], [0.5994,0.7894] }, {0.3641, 0.3848, 0.3820, 0.4038, 0.4180, 0.4418,
0.4887,0.5165,0.5128, 0.5420, 0.5610, 0.5930, 0.5653, 0.5975, 0.5932, 0.6270,
0.6490,0.5930, 0.6127,0.6476, 0.6429, 0.6796, 0.7034, 0.7435} >},
GCHFHAl(Chgl,Ch32,Ch33,Ch342 = ’(ZJ?l) = (( )? 1)k 3(@5[0}1%;) = {< {[1 —
Iy (1= gy )? 1 =Ty (1= gty ) AT (RE,) ™} >,
GCHFHAl(Chgl, Ch32, Ch33, Ch34) = w?l) = {< {[0 3995, 0.6482], [0.40917 0.6560],
[0.4253, 0.6654], [0.6038, 0.8469], [0.6102, 0.8503], [0.6208, 0.8543], [0.5024, 0.7009)],
[0.5104,0.7075], [0.5238, 0.7155], [0.6717, 0.8698], [0.6770, 0.8727], [0.6858, 0.8762],
[0.5943,0.8282], [0.6009, 0.8320], [0.6118, 0.8366], [0.7324, 0.9252], [0.7367, 0.9269],
[0.7439,0.9289], [0.7609, 1], [0.7647, 1], [0.7711, 1], [0.8422, 1], [0.8448, 1], [0.8490, 1]},
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{0.3721, 0.3860, 0.3923,0.4933,0.5117,0.5201, 0.4742,0.4919, 0.4999, 0.6287, 0.6521,
0.6628, 0.5509, 0.5714, 0.5808, 0.7303, 0.7576, 0.7700, 0.5901,0.6121, 0.6221, 0.7823,
0.8115,0.8247} >1,

GCHFHA:(chay, chaz, chaz, chay) = ¥} = (©){=))k=a(duchyy ) = {< {[1 -

Iy (1= gy )% 1 =T (1= py )23 AT (Rg, )%} > ),

Q41 141

GCHFHA1 (Ch41, Ch42, Ch43, Ch44) = i = {< {[02934, 04588], [03074, 0.4711],
[0.3378,0.5156], [0.3393, 0.5010], [0.3525, 0.5123], [0.3808, 0.5534], [0.4035, 0.5656],
[0.4154,0.5754],[0.4410,0.6112], [0.5212, 1], [0.5307, 1], [0.5512, 1], [0.4351, 0.7158],
[0.4463,0.7222],[0.4706, 0.7456], [0.4718,0.7379], [0.4823, 0.7439], [0.5050, 0.7654],
[0.5231,0.7718],[0.5326, 0.7770], [0.5531, 0.7958], [0.6172, 1], [0.6248, 1], [0.6413, 1]},
{0.4403,0.4712,0.4981, 0.4820, 0.5158,0.5452, 0.5128, 0.5488, 0.5801, 0.5377, 0.5754,
0.6082,0.5508, 0.5894, 0.6230, 0.6029, 0.6452, 0.6820, 0.6415, 0.6670, 0.7256, 0.6726,
0.7197,0.7608} >}.

By Threome 3.19 ana = 2 we get,

GCHFH Ay (chi)} 1—y = 2 = (®)[=))p_y (di(chgy )7 = {< {[(1-10} ., (1-

(g )P %, (L= (L= () 21 L= (=TI (L= (1R )2)?) 2} >,

GCHFH Ay (chyy, chiz, chis, chis) = 3 = (8){; )e=1(¢(chg; )?) 7 = {< {[(1-

I (L= () )20 %, (LTI (L= ()2 ™) 2] {L- (LTI (1= (1=hg,)%) ) 2} >

GOHFHAQ(Chll, Ch12, Ch13, Ch14) = w% = {< {[0.1400, 0.3356], [0.2190, 0.4069],
[0.3018, 0.5594], [0.3480, 0.5950], [0.2114, 0.3718], [0.2689, 0.4355], [0.3437, 0.5769],
[0.3790,0.6105], [0.2902, 0.4380], [0.3328, 0.4900], [0.3932, 0.6118], [0.4232, 0.6416]},
{0.2695, 0.2900, 0.4402, 0.4806, 0.2856, 0.3078, 0.4718, 0.5171, 0.2915, 0.4703, 0.4836,
0.5309} >},

GCHF H Ay(chay, chas, chas, chas) = 3 = (@)1 )k=2(¢1(chy )?)) = {< {[(1-

I (L= ()22, (LTI (L= (e )?) ™) 3] {L- (LTI (1= (1=hg,)?) ) 2} >

GOHFHAQ(Cth, Chgg, Ch23, Ch24) = w% = {< {[0.2768, 0.4149], [0.2917, 0.4389],
[0.3206,0.4870], [0.3332, 0.5061], [0.4473, 0.5707], [0.4555, 0.5851], [0.5767, 0.7096]
[0.5820,0.7182], [0.3539, 0.4566], [0.3651, 0.4777], [0.3874, 0.5203], [0.3973, 0.5374]
[0.4922,0.5961], [0.4992, 0.6093], [0.6065, 0.7248], [0.6112, 0.7329], [0.4443, 0.6505)]
[0.4526,0.6614], [0.4692, 0.6844], [0.4768, 0.6940], [0.5521, 0.7281], [0.5578, 0.7360],
[0.6480,0.8087],[0.6521.0.8140] }, {0.3246, 0.3411, 0.4584, 0.4855, 0.5343, 0.5697,
0.5666,0.6064,0.3407,0.3582, 0.4848, 0.5145, 0.5687, 0.6087, 0.6054, 0.6513, 0.3664
0.3858,0.5287,0.5634, 0.6285,0.6789, 0.6746,0.7358} >},

GCHFHAQ(Chgl,Ch32,Ch33,Ch34) = ’l/)g = ((69)?:1%:3(@(0}12;)2))% = {< {[(1_

)
)
)

)

T (L= () )220 %, (LTI (L= (e )?)®) 2 3 {1= (=TT (1= (1=hg,)%) ) 2} >

b

131

GCHFHAQ(Chgh Ch327 Chgg7 Ch34) = wg = {< {[04149, 06609], [041817 06644]7
[0.4300,0.6709], [0.6318, 0.8578], [0.6334, 0.8590], [0.6392, 0.8614], [0.5193,0.7112
[0.5216, 0.7140], [0.5301, 0.7193], [0.6856, 0.8764], [0.6869, 0.8775], [0.6916, 0.8795],
[0.6236,0.8416], [0.6252, 0.8430], [0.6311, 0.8456], [0.7460, 0.9290], [0.7470, 0.9296],
[0.7506,0.9308], [0.7960, 1], [0.7968, 1], [0.7996, 1], [0.8568, 1], [0.8573, 1], [0.8592, 1]},
{0.3502, 0.3589, 0.3612, 0.4346, 0.4466, 0.4496, 0.4626, 0.4758, 0.4791, 0.5970, 0.6180,
0.6236, 0.5336, 0.5504, 0.5548, 0.7202, 0.7546, 0.7642, 0.5528, 0.5707, 0.5754, 0.7596,
0.8020,0.8140} >},

B
]
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GCOHFHAy((chay, chag, chaz, chas) = Vi = ((@)?zl)k:zl(@(‘fhi;)z))% = {<
{100 = T (1 = (g )?)?)2, (1= (L = Gy )2)?) 2]} {1 = (1 - T (1~
(1—hg,)?))2} >},

GOHFHAQ((C/hﬂ, Ch42, Ch43, Ch44) = ¢E = {< {[03357, 0.5096], [0.34327 0.5162],

[0.3737,0.5575], [0.3625, 0.5320], [0.3692, 0.5382], [0.3972, 0.5767], [0.4156, 0.5805],

[0.4212,0.5857], [0.4448, 0.6187], [0.5339, 1], [0.5377, 1], [0.5539, 1], [0.5026, 0.7711],

[0.5068,0.7735], [0.5246, 0.7890], [0.5180, 0.7793], [0.5220, 0.7816], [0.5390, 0.7965],

[0.5506,0.7980], [0.5541, 0.8001], [0.5694, 0.8136], [0.6307, 1], [0.6334, 1], [0.6450, 1]},

{0.4166,0.4496, 0.4710, 0.4399, 0.4757, 0.4992, 0.4506, 0.4778, 0.5124, 0.4543, 0.4920,

0.5196,0.5344,0.5847,0.6192, 0.5694, 0.6269, 0.6673, 0.5862, 0.6474, 0.6915, 0.5921,

0.6547,0.7000} >}.

Now by using Theorem 3.22 we have,

GCHFHG,(chi)f oy = X7 = (@) (oehy)™) = {< {1 - (1 -
Iy (L= (L= )07 1= (=1 (= (L= gy 7)) 7 1 {10 (1
(hg)7)?) 7} >1,

for o = 1 we have,

GCHFHGl (Chll, Chlg, Ch13, Ch14) = X%

= ((®)i=)r=1((chi")?) = {< {[IMy (pgyy )P Iy (i )P AL = Ty (1 —
B} >,

GCHFHG (chiy, chya, chis, chis) = x4 = {< {]0.0866, 0.2759], [0.2096, 0.3967],

[0.1082,0.3157], [0.2620, 0.4540], [0.0999, 0.2946], [0.2420, 0.4236], [0.1249, 0.3371],

[0.3024, 0.4848], [0.1057, 0.3096], [0.2559, 0.4453], [0.1321, 0.3543], [0.3198, 0.5096] },

{0.4448,0.6140,0.5105, 0.6596, 0.4839, 0.6411, 0.5449, 0.6836, 0.5293, 0.6727,

0.5850,0.7114} >},

GCHFHGl (Chgl, Chgg, Ch237 Ch24) = X%

= (@) )r=2((chf™)?) = {< (I (g ) T ()P A1 = T, (1 —

hg )%} >1,
GCHFHG (chay, chas, chaz, chas) = x4 = {< {[0.1930,0.3526], [0.2073, 0.3796],
[0.2005, 0.3600], [0.2154, 0.3876], [0.2057,0.3730], [0.2210, 0.4016], [0.2525, 0.4390],
[0.2713,0.4727], [0.2623, 0.4482], [0.2819, 0.4826], [0.2691, 0.4644], [0.2891, 0.5000],
[0.2970,0.4735], [0.3191, 0.5098], [0.3086, 0.4834], [0.3316, 0.5205], [0.3166, 0.5009],
03402, 0.5393], [0.3160, 0.4983], [0.3396, 0.5365], [0.3284, 0.5087], [0.3529, 0.5477],
[0.3368, 0.5271], [0.3620, 0.5675]}, {0.5619, 0.5813, 0.5722, 0.5911, 0.6159, 0.6329,
0.5932,0.6113, 0.6028, 0.6204, 0.6433, 0.6592, 0.6412, 0.6571, 0.6496, 0.6652, 0.6854,
0.6592, 0.7080, 0.7209, 0.7148, 0.7275,0.7439,0.7553} >},

GCHFHGl(Chgl, Ch32,6h33, Ch34) = X%
= ((@)i=)r=3((chi )?") = {< {[IMy (pgyy )? Iy (g )™ 1AL — Ty (1 —

BE)P Y >
GCHFHGl (Chgl, Chgg, Ch33, Ch34) = X% = {< {[03303, 0.5623], [03837, 0.6113],
[0.4126,0.6386], [0.4265, 0.6664], [0.4954, 0.7245], [0.5328, 0.7568], [0.4037, 0.6091],
[0.4690, 0.6623], [0.5043, 0.6918], [0.5213, 0.7219], [0.6056, 0.7849], [0.6512, 0.8199],
[0.4290, 0.6463], [0.4983, 0.7027], [0.5359, 0.7340], [0.5539, 0.7660], [0.6435, 0.8328],
[0.6920, 0.8699], [0.4442, 0.6504], [0.5160, 0.7072], [0.5549, 0.7387], [0.5736, 0.7709],
[0.6663,0.8381],[0.7166, 0.8755] }, {0.4889, 0.5222, 0.5590, 0.6704, 0.6918, 0.7156,
0.5291, 0.5598, 0.5936, 0.6963, 0.7161, 0.7379, 0.6065, 0.6321, 0.6604, 0.7462, 0.7627,
0.7810,0.7183,0.7367,0.7570,0.8183, 0.8302, 0.8432} >},
GCHFHGl (Ch41, Ch42, Ch437 Ch44) = X}l
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= ((®)iz)e=a((chi™)?) = {< {[I_y (g )P Iy () )31 — T, (1 -
BE)P Y >

GCHFHGl(Ch41, Ch42, Ch43, Ch44) == Xéll == {< {[02114, 03117], [02365, 03349],

[0.2546,0.3617], [0.2852,0.4017], [0.3190, 0.4316], [0.3435, 0.4661], [0.3583, 0.4995],

[0.4009, 0.5368], [0.4316,0.5797], [0.4496, 0.7250], [0.5031, 0.7791], [0.5416, 0.8414],

[0.2438,0.3423], [0.2727,0.3678], [0.2936, 0.3972], [0.3289, 0.4411], [0.3679, 0.4740],

[0.3961,0.5119], [0.4132, 0.5486], [0.4623, 0.5895], [0.4977, 0.6367], [0.5185, 0.7963],

[0.5801,0.8556], [0.6246, 0.9241]}, {0.5241, 0.5390, 0.5756, 0.6252, 0.6369, 0.6658,

0.7321,0.7404,0.7611, 0.8842, 0.8878,0.8967, 0.5873, 0.6002, 0.6320, 0.6750, 0.6851,

0.7102,0.7677,0.7280, 0.7928, 0.8996, 0.9027,0.9105} >}.

By Threome 3.22 and = 2 we get,

GOHFHG:(chu)} 1=y = X} = (@)1, )y (2ch™)*) = {< {[1-(1-TIg ,_, (1~
(Lg%, 1= (LI oy (L= (L)) 2 ) {(L-TIR oy (1= (Rg,)%) )2} >

GCHFHGQ(ChH, chi2, chys, Ch14) = X% = %(((@)?:1)k:1(20hlow)¢l> = {< {[1 -
(=T (L= (L= g )% 2, 1= (LTI (L= (L= 7)) %) 2] (LT, (1 -
(hg)?)?)2} >1,

GCHFHG2 (Chll, Chlg, Chlg, Ch14) = X% = {< {[0.0852, 0.2699], [0.20857 0.3950],

[0.1020,0.2902], [0.2544, 0.4326], [0.0967, 0.5100], [0.2397, 0.4214], [0.1159, 0.3101],

[0.2936,0.4629], [0.1004, 0.2954], [0.2501, 0.4377], [0.1205, 0.3207], [0.3068, 0.4816] },

{0.4845,0.6606, 0.5235, 0.6822, 0.5210, 0.6807, 0.5558, 0.7007, 0.5704, 0.7093, 0.6000,

0.7271} >},

GCHFHGQ(Cth, Cﬁzg,chgg, Ch24) = X% = %(((@)?:1)12:2(26}1?N)¢1) = {< {[1 -
(L=T0 (L= (L= ))?) 2, 1= (=T (1= (L= )?)?) 2] {(1 - T, (1~
(hg,)?)™)2} >),

GCHF HG5(cha, chaa, chag, chay) = X3 = {< {[0.1887,0.3447], [0.2023, 0.3708],

[0.2469, 0.4296], [0.2656, 0.4655], [0.2808, 0.4532], [0.3026, 0.4923], [0.2890, 0.4619],

[0.3116,0.5021], [0.1930, 0.3487], [0.2070, 0.3752], [0.2529, 0.4351], [0.2721, 0.4716],

[0.2877,0.4591], [0.3102, 0.4989], [0.2962, 0.4679], [0.3196, 0.5091], [0.1950, 0.3523],

[0.2091,0.3792], [0.2556, 0.4400], [0.2749, 0.4772], [0.2908, 0.4645], [0.3136, 0.5050],

[0.2994,0.4734],[0.3231,0.5153]}, {0.6038,0.6184,0.6175,0.6314, 0.6551, 0.6672,

0.7209, 0.7302, 0.6099, 0.6242, 0.6234, 0.6370, 0.6602, 0.6721, 0.7248, 0.7339, 0.6470,

0.6595, 0.6587,0.6707,0.6911,0.7017, 0.7487,0.7569} >},

GCHFHGQ(Chgl, Czlgg,chgg, Ch34) = X% = %(((@)?:1)E:3(26h?N)¢1) = {< {[1 -
(=T (1= (L= )P L= (L= T, (L= (L= )33 {1~ T, (1 -
(hg,)?)™)2} >),

GCHF HG5(chz1, chaa, chas, chsy) = x2 = {< {[0.3153,0.5246], [0.3773,0.5918],

[0.4092, 0.6278], [0.3788, 0.5749], [0.4595, 0.6565], [0.5026, 0.7030], [0.3760, 0.5597],

[0.4558,0.6365], [0.4983,0.6792], [0.4577, 0.6169], [0.5685, 0.7145], [0.6328, 0.7753],

[0.3877,0.5723], [0.4714, 0.6532], [0.5164, 0.6988], [0.4734, 0.6323], [0.5915, 0.7375],

[0.6619, 0.8064], [0.3904, 1], [0.4751, 1], [0.5205, 1], [0.4770, 1], [0.5970, 1], [0.6689, 1]},

{0.5255,0.5600, 0.6015,0.6945,0.7135,0.7372, 0.5484, 0.5804, 0.6192, 0.7070, 0.7251,

0.7477,0.6204, 0.6456,0.6765,0.7484,0.7634, 0.7824,0.7390, 0.7547, 0.7744, 0.8218,

0.8319,0.8448} >},
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GCHFHGs(chay, chaz, chas, chas) = X1 = (@) 1)k 2(2chy™)P) = {< {[1 -
(1-TI 1(1*(1 )P = (=TI, (1= (1= 7)) ) 2]}, { (1 - TIE, (1 -
(h9,)2)?)2} >},

GCHFHGy(chay, chag, chas, chas) = X3 = {< {[0.2025,0.2892],[0.2277,0.3117],

[0.2432,0.3318], [0.2765, 0.3801], [0.3132, 0.4127], [0.3361, 0.4422], [0.3476, 0.4773],

[0.3973,0.5239], [0.4292, 0.5678], [0.4256, 1], [0.4929, 1], [0.5379, 1], [0.2224, 0.2994],

[0.2505, 0.3229], [0.2679, 0.3440], [0.3054, 0.3947], [0.3471,0.4291], [0.3734, 0.4605],

[0.3866, 0.4979), [0.4446, 0.5481], [0.4824,0.5961], [0.4782, 1], [0.5603, 1], [0.6180, 1]},

{0.5456, 0.5555, 0.5921,0.6523, 0.6591, 0.6847, 0.7600, 0.7643, 0.7806, 0.9018, 0.9034,

0.9096, 0.5944, 0.6028, 0.6340, 0.6863, 0.6923,0.7148, 0.7817, 0.7855, 0.8002, 0.9099,

0.9114,0.9170} >}.

Step 4

T (1) = 0.1108, T(1h1) = 0.2808, T(1)1) = 0.5484, T(¥}) = 0.3940,
T(12) = 0.1071, T(12) = 0.3061, T(¢2) = 0.5453, T (¢2) = 0.3967,
T(x}) = 0.0805, T(x1) = 0.2022, T(x}) = 0.4649, T(x}) = 0.3302,
T(x?) = 0.0924, T(x2) = 0.1905, T(x2) = 0.4622, T(x2) = 0.3403,
T(y3) > T(¥3) > T(3) > T (1),
T(¥3) > TW3) > T(¥3) > T(y37),
T(x3) > T(x4) > T(x5) > T(x1),
T(x3) > T(x3) >T(x3) > T(x3),

so we conclude that; > ¢4 > ¢» > ¢; and hences is the best choice.

6. CONCLUSION

In our work we defined aggregation operators for cubic hesitant fuzzy sets (CHFSs)
which includes generalized cubic hesitant fuzzy averaging (geometric) operator, cubic
hesitant fuzzy ordered weighted averaging (geometric) operator, generalized cubic hesi-
tant fuzzy ordered weighted averaging (geometric) operator, cubic hesitant fuzzy hybrid
averaging (geometric) operator, cubic hesitant fuzzy arithmetical averaging (geometric)
operator, generalized cubic hesitant fuzzy hybrid averaging (geometric) operator. We also
solved a multi criteria decision making argument by applying generalized cubic hesitant
fuzzy hybrid averaging (geometric) operator. In future we shall apply CHFSs in pattern
recognition, medical diagnosis and also define distance measures for CHFSs.
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