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Abstract. In our study, we define aggregation operators for cubic hes-
itant fuzzy sets which includes generalized cubic hesitant fuzzy aver-
aging (geometric) operator, cubic hesitant fuzzy ordered weighted av-
eraging (geometric) operator, generalized cubic hesitant fuzzy ordered
weighted averaging (geometric) operator, cubic hesitant fuzzy hybrid av-
eraging (geometric) operator, cubic hesitant fuzzy arithmetical averaging
(geometric) operator and generalized cubic hesitant fuzzy hybrid averag-
ing (geometric) operator. We also solve a multi criteria decision making
argument by using generalized cubic hesitant fuzzy hybrid averaging op-
erator and generalized cubic hesitant fuzzy hybrid geometric operator. We
choose the best alternative amongst those alternatives suggested by deci-
sion makers.
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1. INTRODUCTION

Since Zadeh [30] originated fuzzy set theory in 1965, it has become an importrant tool
to handle inaccurate and ambiguous information in different fields of prevailing civiliza-
tion. Such inaccuracies are associated with the membership function that belongs to [0, 1].
Through membership function, we get information which makes possible for us to reach
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the conclusion. In order to handle this information many extensions have been added to
the theory of fuzzy sets. These include intuitionistic fuzzy sets (IFSs) [1, 5], interval val-
ued fuzzy sets (IVFSs) [6, 31], hesitant fuzzy sets (HFSs) [17-18], interval valued hesitant
fuzzy sets (IVHFSs) [2-3], cubic sets (CSs) [10], cubic hesitant fuzzy sets (CHFSs) [15],
etc. Torra [17-18] initially gave the notion of HFSs that allows membership grade to be
the finite set of feasible values between0 and1. IVFSs [31] allows the membership grade
of an element to closed subinterval of the [0, 1]. Jun et al. [10] defined cubic sets which
include an IVFs [31] with the fuzzy set [30]. Chen and Xu [2] introduced a structure which
generalizes the concept of HFS [17-18] to IVHFS that enables the membership grade of an
element into many feasible interval nembers. Multi criteria decision making (MCDM) [8,
9, 11, 12, 14, 16, 19, 29, 32] has to do with making being a higher position decision over
the available attributes that are represented by multiple normally conflicting properties.

When a decision maker has provided the information about a certain statement that he
may be sure about the statement is{0.3, 0.5, 0.8} and{[0.25, 0.35], [0.4, 0.65], [0.55, 0.85]},
such kind of information cannot be presented by using other defined tools. Therefore, to
overcome this drawback of the existing tools Mahmood et al. [15] defined CHFSs by
combining IVHFSs [2] and HFSs [17-18] and defined some basic operations, properties,
aggregation operators (AOs) and practiced them to solve a MCDM probvlem under cubic
hesitant fuzzy information. Aggregation of information is an important part in different
fields such as economics, social and management sciences, information technology and
medical diagnosis, etc. In general prospect, we claim that the aggregation of information
is a process in which we treat different sorts of information obtained from many sources
in order to get a final decision. Yager [27] provided weighted averaging (WA) operator
and the ordered weighted averaging (OWA) operator that are two noted aggregation expert
ways. The point or amount unlike of the WA and OWA operators is that the WA opera-
tor only weights the given information origin in connection with their authenticity, but the
OWA operator weights the given information with respect to their ordered position. As
an outcome of that, weights show different features in both WA and OWA operators. An-
other aggregation operator (AO) is the generalized OWA (GOWA) operator [28] which is
formulated through generalized mean [7]. Chiclana et al. [4] proposed ordered weighted
geometric (OWG) operator through geometric mean. The drawback of OWA and OWG
operators is that they only rank the arguments and do not consider the given significance
of the argument itself, for the sake of improvement of this fact Xu and Da [23] defined
hybrid weighted averaging (HWA) operator. Lindahl et al. [13] gave the generalization
of the hybrid averaging (HA) operator. Recently, many aggregation approaches for fuzzy
information have been defined. Xu [25-26], Xu and Yager [24] gave AOs for IFSs. Zhao
et al. [34] defined generalized AOs for IFSs. Xia and Xu [20-22] established AOs for the
facts obtained from HFSs. Zhang Z [33] developed AOs for IVIHFS and practiced it to
solve a MCDM problem.

The article is arranged as: Section 2 contains the primary Definitions that are used
in this paper. Section 3 defines AOs for CHFSs. Section 4 describes the algorithm to
solve a MCDM problem by using defined operators. Section 5 solves a MCDM problem
by applying the algorithm. Section 6 consists of the conclusion of the presented work.
Section 7 consists of acknowledgments.

2. NOTATIONS AND PRELIMINARIES

Definition 2.1 [30] A fuzzy set (FS) on a non-empty setX is defined to be a function
from X to P = [0, 1] asα : X → P.
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Definition 2.2 [31]An interval valued fuzzy set (IVFS) on a non-empty setX is defined
by the functionF from X to the set of closed intervals in [0, 1].

Definition 2.3 [10] A cubic set (CS) on a non-empty setX is defined by∆= {<
x,D(x), α(x) > /x ∈ X}, whereD(x) is an IVFS inX andα(x) is a FS inX. A cubic
set is simply denoted by∆ =< D, α > .

Definition 2.4 [17, 18]A hesitant fuzzy set (HFS) on a non-empty setX is a mapping
that while enforced onX yields a finite subset of [0, 1], which is denoted and defined by
h = {< x, η(x) > /x ∈ X}, whereη(x) is a set of a few different values in [0, 1], that
shows the feasible membership values of the elementx ∈ X.

Definition 2.5 [2] Let X be a non-empty set andS[0, 1] denote the collection of closed
subintervals of[0, 1]. An interval valued hesitant fuzzy set (IVHFS) onX is denoted and
defined byΩ = {< xj , C(xj) > /xj ∈ X, j = 1, 2, . . . , n}, whereC(xj) : X → S[0, 1]
expresses entire feasible interval valued membership values of the elementxj ∈ X to Ω.

Definition 2.6 [15] AssumeX is a non-empty set. A cubic hesitant fuzzy set (for short,
CHFS) is defined byΓ = {< x,C(x), η(x) > /x ∈ X}, whereC(x) is an IVHFE and
η(x) is HFE. A CHFS is simply denoted byΓ =< C, η >.

Definition 2.7 [15] Let X be a non-empty setΓ = {< x,C(x), η(x) > /x ∈ X} and
δ = {< x,A(x), ξ(x) > /x ∈ X} be any two CHFSs onX then the addition ofΓ andδ
are denoted and defined as,

Γ ⊕ δ = {x, γ ∈ C(x) + A(x), ρ ∈ η(x) + ξ(x)/{[µ−i + σ−i − µ−i σ−i , µ+
i + σ+

i −
µ+

i σ+
i ]}, {hiki} >}.

Definition 2.8 [15] Let X be a non-empty setΓ = {< x,C(x), η(x) > /x ∈ X} and
δ = {< x, A(x), ξ(x) > /x ∈ X} be any two CHFSs onX then multiplication ofΓ and
δ are denoted and defined as,

Γ⊗δ = {x, γ ∈ C(x)×A(x), ρ ∈ η(x)×ξ(x)/{[µ−i σ−i , µ+
i σ+

i ]}, {hi+ki−hiki} >}.
Definition 2.9 [15] AssumeX is a non-empty set andΓ = {< x, C(x), η(x) > /x ∈

X} is the CHFS onX with λ > 0, then we have the following operations,
λΓ = {< x, λγ ∈ (λC)(x), λρ ∈ (λη)(x)/{[1−(1−µ−i )λ, 1−(1−µ+

i )λ]}, {hλ
i } >},

Γλ = {< x, γλ ∈ Cλ(x), ρλ ∈ ηλ(x)/{[(µ−i )λ, (µ+
i )λ]}, {1− (1− hi)λ} >},

Γc = {< x, γc ∈ Cc(x), ρc ∈ ηc(x)/{[1− µ+
i , 1− µ−i ]}, {1− hi} >}.

Definition 2.10 [15] Let Γ = {< x,C(x), η(x) > /x ∈ X} be a CHFS. The cubic
hesitant fuzzy element on a non-empty setX is defined to bech = {< µi = [µ−i , µ+

i ] ∈
C(x), ρi ∈ η(x)/{[µ−i , µ+

i ]}, {ρi} >}, whereC(x) represents IVHFE andη(x) represents
HFE. DenotesG by the set of all CHFEs.

Definition 2.11 [15] Let X be a non-empty set andch = {< µi = [µ−i , µ+
i ] ∈

C(x), ρi ∈ η(x)/{[µ−i , µ+
i ]}, {hi} >} be a CHFE onX, the score ofch is denoted and

defined byT (ch) = 1
~(ch) (µ

−
i + µ+

i − ~(ch)
2 + hi), whereµi = [µ−i , µ+

i ] ∈ C(x) (an
IVHFE), hi ∈ η(x) (HFE) for allx ∈ X, ~(ch) is the number of elements inch.

Theorem 2.12 [15]Let ch, ch1, ch2 be three CHFEs on a non-empty setX andλ > 0
thench1 ⊕ ch2, ch1 ⊗ ch2, λch, chλ are also CHFEs.

3. AGGREGATIONOPERATORS FORCHFSS

Definition 3.1 (GCHFWA operator) Assumechk(k = 1, 2, . . . , n) are the collec-
tions of CHFEs and letw = (w1, w2, . . . , wn)T be the weight vector of CHFEschk(k =
1, 2, . . . , n), wherewk ∈ [0, 1], Σn

k=1wk = 1 andσ > 0. Then generalized cubic hesitant
fuzzy weighted averaging (for short, GCHFWA) operator is a mappingGn → G defined
by,

GCHFWAσ(ch1, ch2, . . . , chn) = βσ
k = ((⊕)n

k=1(wkchσ
k))

1
σ .
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Theorem 3.2Let chk(k = 1, 2, . . . , n) be a collection of CHFEs. Then the aggregated
result is gained through applying GCHFWA operator is also a CHFE, and:

GCHFWAσ(ch1, ch2, . . . , chn) = βσ
k = ((⊕)n

k=1(wkchσ
k))

1
σ

= {< {[(1−Πn
k=1(1− (µ−ik

)σ)wk)
1
σ , (1−Πn

k=1(1− (µ+
ik

)σ)wk)
1
σ ]},

{1− (1−Πn
k=1(1− (1− hik

)σ)wk)
1
σ } >}.

Proof By Definition 3.1 and Theorem 2.12 we have the GCHFWA operator is a CHFE.
We prove the theorem by using mathematical induction.
First, we show that the result holds forn = 2.
chσ

1 = {< {[(µ−i1)σ, (µ+
i1

)σ]}, {1− (1− hi1)
σ} >},

chσ
2 = {< {[(µ−i2)σ, (µ+

i2
)σ]}, {1− (1− hi2)

σ} >},
w1ch

σ
1 = {< {[1− (1− (µ−i1)

σ)w1 , 1− (1− (µ+
i1

)σ)w1 ]},
{(1− (1− hi1)

σ)w1} >},
w2ch

σ
2 = {< {[1− (1− (µ−i2)

σ)w2 , 1− (1− (µ+
i2

)σ)w2 ]},
{(1− (1− hi2)

σ)w2} >},
w1ch

σ
1 ⊕ w2ch

σ
2 = {< {[1 − (1 − (µ−i1)

σ)w1 + 1 − (1 − (µ−i2)
σ)w2 − (1 − (1 −

(µ−i1)
σ)w1)(1− (1− (µ−i2)

σ)w2),
1− (1− (µ+

i1
)σ)w1 +1− (1− (µ+

i2
)σ)w2− (1− (1− (µ+

i1
)σ)w1)(1− (1− (µ+

i2
)σ)w2)]},

{(1− (1− hi1)
σ)w1(1− (1− hi2)

σ)w2} >},
w1ch

σ
1⊕w2ch

σ
2 = {< {[1−(1−(1−(1−(µ−i1)

σ)w1))(1−(1−(1−(µ−i2)
σ)w2)), 1−(1−

(1−(1−(µ+
i1

)σ)w1))(1−(1−(1−(µ+
i2

)σ)w2))]}, {(1−(1−hi1)
σ)w1(1−(1−hi2)

σ)w2} >},
w1ch

σ
1⊕w2ch

σ
2 = {< {[1−((1−(µ−i1)

σ)w1)((1−(µ−i2)
σ)w2), 1−((1−(µ+

i1
)σ)w1)((1−

(µ+
i2

)σ)w2)]}, {(1− (1− hi1)
σ)w1(1− (1− hi2)

σ)w2} >},
(w1ch

σ
1 ⊕ w2ch

σ
2 )

1
σ = {< {[(1 − ((1 − (µ−i1)

σ)w1)((1 − (µ−i2)
σ)w2))

1
σ , (1 − ((1 −

(µ+
i1

)σ)w1)((1−(µ+
i2

)σ)w2))
1
σ ]}, {1−(1−((1−(1−hi1)

σ)w1(1−(1−hi2)
σ)w2))

1
σ } >},

(w1ch
σ
1⊕w2ch

σ
2 )

1
σ = {< {[(1−Π2

k=1(1−(µ−ik
)σ)wk)

1
σ , (1−Π2

k=1(1−(µ+
ik

)σ)wk)
1
σ ]}, {1−

(1−Π2
k=1(1− (1− hik

)σ)wk)
1
σ } >}.

Now suppose that the result holds forn = t, then
GCHFWAσ(ch1, ch2, . . . , cht) = ((⊕)t

k=1(wkchσ
k))

1
σ = {< {[(1 − Πt

k=1(1 −
(µ−ik

)σ)wk)
1
σ , (1−Πt

k=1(1− (µ+
ik

)σ)wk)
1
σ ]}, {1− (1−Πt

k=1(1− (1−hik
)σ)wk)

1
σ } >}.

We prove that the result holds forn = t + 1,
(⊕)t

k=1(wkckσ
k )⊕(wt+1ch

σ
t+1) = {< {[1−Πt

k=1(1−(µ−ik
)σ)wk+1−(1−(µ−it+1

)σ)wt+1−
(1−Πt

k=1(1− (µ−ik
)σ)wk)(1− (1− (µ−it+1

)σ)wt+1), 1−Πt
k=1(1− (µ+

ik
)σ)wk + 1− (1−

(µ+
it+1

)σ)wt+1 − (1−Πt
k=1(1− (µ+

ik
)σ)wk)(1− (1− (µ+

it+1
)σ)wt+1)]}, {(Πt

k=1(1− (1−
hik

)σ)wk)(1− (1− hit+1)
σ)wk))} >},

(⊕)t
k=1(wkckσ

k )⊕(wt+1ch
σ
t+1) = {< {[1−(1−(1−Πt

k=1(1−(µ−ik
)σ)wk))(1−(1−(1−

(µ−it+1
)σ)wk)), 1−(1−(1−Πt

k=1(1−(µ+
ik

)σ)wk))(1−(1−(1−(µ+
it+1

)σ)wk))]}, {Πt+1
k=1(1−

(1− hik
)σ)wk)} >},

(⊕)t
k=1(wkckσ

k )⊕(wt+1ch
σ
t+1) = {< {[1−(Πt

k=1(1−(µ−ik
)σ)wk)(1−(µ−it+1

)σ)wk), 1−
(Πt

k=1(1− (µ+
ik

)σ)wk)(1− (µ+
it+1

)σ)wk)]}, {Πt+1
k=1(1− (1− hik

)σ)wk)} >},
(⊕)t

k=1(wkckσ
k ) ⊕ (wt+1ch

σ
t+1) = {< {[1 − (Πt+1

k=1(1 − (µ−ik
)σ)wk), 1 − (Πt+1

k=1(1 −
(µ+

ik
)σ)wk)]}, {Πt+1

k=1(1− (1− hik
)σ)wk)} >},

((⊕)t
k=1(wkckσ

k ) ⊕ (wt+1ch
σ
t+1))

1
σ = {< {[(1 − (Πt+1

k=1(1 − (µ−ik
)σ)wk))

1
σ , (1 −

(Πt+1
k=1(1− (µ+

ik
)σ)wk))

1
σ ]}, {1− (1−Πt+1

k=1(1− (1− hik
)σ)wk)

1
σ } >},
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GCHFWAσ(ch1, ch2, . . . , cht, cht+1) = ((⊕)t+1
k=1(wkchσ

k))
1
σ = ((⊕)t

k=1(wkckσ
k )⊕

(wt+1ch
σ
t+1))

1
σ = {< {[(1−(Πt+1

k=1(1−(µ−ik
)σ)wk))

1
σ , (1−(Πt+1

k=1(1−(µ+
ik

)σ)wk))
1
σ ]}, {1−

(1−Πt+1
k=1(1− (1− hik

)σ)wk)
1
σ } >},

so the result holds forn = t + 1.
Definition 3.3 (GCHFWG operator) Let chk(k = 1, 2, . . . , n) be the collection of

CHFEs andw = (w1, w2, . . . , wn)T be the weight vector ofchk(k = 1, 2, . . . , n), where
wk ∈ [0, 1],Σn

k=1wk = 1 andσ > 0. Then the generalized cubic hesitant fuzzy weighted
geometric (for short, GCHFWG) operator is a mappingGn → G defined by,

GCHFWGσ(ch1, ch2, . . . , chn) = τσ
k = 1

σ ((⊗)n
k=1(σchk)wk).

Theorem 3.4Let chk(k = 1, 2, . . . , n) be the collection of CHFEs. Then the aggre-
gated result is obtained by applying GCHFWG operator is also a CHFE, and:

GCHFWGσ(ch1, ch2, . . . , chn) = τσ
k = 1

σ ((⊗)n
k=1(σchk)wk) = {< {[1 − (1 −

Πn
k=1(1 − (1 − µ−ik

)σ)wk)
1
σ , 1 − (1 − Πn

k=1(1 − (1 − µ+
ik

)σ)wk)
1
σ ]}, {(1 − Πn

k=1(1 −
(hik

)σ)wk)
1
σ } >}.

Proof By Definition 3.3 and Theorem 2.12 we have the GCHFWG operator is a CHFE.
We prove the theorem by using mathematical induction.
First, we show that the result holds forn = 2.
σch1 = {< {[1− (1− µ−i1)

σ, 1− (1− µ+
i1

)σ]}, {hσ
i1
} >},

σch2 = {< {[1− (1− µ−i2)
σ, 1− (1− µ+

i1
)σ]}, {hσ

i2
} >},

(σch1)w1 = {< {[(1− (1− µ−i1)
σ)w1 , (1− (1− µ+

i1
)σ)w1 ]},

{1− (1− hσ
i1

)w1} >},
(σch2)w2 = {< {[(1− (1− µ−i2)

σ)w2 , (1− (1− µ+
i2

)σ)w2 ]},
{1− (1− hσ

i2
)w2} >},

(σch1)w1 ⊗ (σch2)w2 = {< {[(1 − (1 − µ−i1)
σ)w1(1 − (1 − µ−i2)

σ)w2 , (1 − (1 −
µ+

i1
)σ)w1(1− (1−µ+

i2
)σ)w2 ]}, {1− (1−hσ

i1
)w1 +1− (1−hσ

i2
)w2− (1− (1−hσ

i1
)w1)(1−

(1− hσ
i2

)w2)} >},
(σch1)w1 ⊗ (σch2)w2 = {< {[(1 − (1 − µ−i1)

σ)w1(1 − (1 − µ−i2)
σ)w2 , (1 − (1 −

µ+
i1

)σ)w1(1− (1−µ+
i2

)σ)w2 ]}, {1− (1− (1− (1−hσ
i1

)w1))(1− (1− (1−hσ
i2

)w2))} >},
(σch1)w1 ⊗ (σch2)w2 = {< {[(1 − (1 − µ−i1)

σ)w1(1 − (1 − µ−i2)
σ)w2 , (1 − (1 −

µ+
i1

)σ)w1(1− (1− µ+
i2

)σ)w2 ]}, {1− (1− hσ
i1

)w1(1− hσ
i2

)w2} >},
1
σ ((σch1)w1⊗(σch2)w2) = {< {[1−(1−(1−(1−µ−i1)

σ)w1(1−(1−µ−i2)
σ)w2)

1
σ , 1−

(1− (1− (1− µ+
i1

)σ)w1(1− (1− µ+
i2

)σ)w2)
1
σ ]}, {(1− (1− hσ

i1
)w1(1− hσ

i2
)w2)

1
σ } >},

1
σ ((σch1)w1 ⊗ (σch2)w2) = {< {[1 − (1 − Π2

k=1(1 − (1 − µ−ik
)σ)wk)

1
σ , 1 − (1 −

Π2
k=1(1− (1− µ+

ik
)σ)wk)

1
σ ]}, {(1−Π2

k=1(1− (hik
)σ)wk)

1
σ } >}.

Now suppose that the result holds forn = t, then
GCHFWGσ(ch1, ch2, . . . , cht) = τσ

k = 1
σ ((⊗)t

k=1(σchk)wk) = {< {[1 − (1 −
Πt

k=1(1 − (1 − µ−ik
)σ)wk)

1
σ , 1 − (1 − Πt

k=1(1 − (1 − µ+
ik

)σ)wk)
1
σ ]}, {(1 − Πt

k=1(1 −
(hik

)σ)wk)
1
σ } >}.

We prove that the result is valid forn = t + 1,
(⊗)t

k=1(σchk)wk⊗(σcht+1)wt+1 = {< {[(Πt
k=1(1−(1−µ−ik

)σ)wk)(1−(1−µ−it+1
)σ)wt+1 ,

(Πt
k=1(1− (1−µ+

ik
)σ)wk)(1− (1−µ+

it+1
)σ)wt+1 ]}, {1−Πt

k=1(1−hσ
ik

)wk +1− (1−
hσ

it+1
)wt+1 − (1−Πt

k=1(1− hσ
ik

)wk)(1− (1− hσ
it+1

)wt+1)} >},
(⊗)t

k=1(σchk)wk ⊗ (σcht+1)wt+1 = {< {[Πt+1
k=1(1 − (1 − µ−ik

)σ)wk ,Πt+1
k=1(1 − (1 −

µ+
ik

)σ)wk ]}, {1−Πt+1
k=1(1− hσ

ik
)wk} >},
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1
σ ((⊗)t

k=1(σchk)wk⊗(σcht+1)wt+1) = {< {[1−(1−Πt+1
k=1(1−(1−µ−ik

)σ)wk)
1
σ , 1−

(1−Πt+1
k=1(1− (1− µ+

ik
)σ)wk)

1
σ ]}, {(1−Πt+1

k=1(1− hσ
ik

)wk)
1
σ } >},

GCHFWGσ(ch1, ch2, . . . , cht, cht+1) = τσ
k = 1

σ ((⊗)t+1
k=1(σchk)wk)

= 1
σ ((⊗)t

k=1(σchk)wk ⊗ (σcht+1)wt+1)
= {< {[1− (1−Πt+1

k=1(1− (1− µ−ik
)σ)wk)

1
σ , 1− (1−Πt+1

k=1(1− (1− µ+
ik

)σ)wk)
1
σ ]},

{(1−Πt+1
k=1(1− (hik

)σ)wk)
1
σ } >},

thus the result holds forn = t + 1.
Definition 3.5 (CHFOWA) Let chk(k = 1, 2, . . . , n) be a collection of CHFEs. The

cubic hesitant fuzzy ordered weighted averaging (briefly, CHFOWA) operator is denoted
and defined by the mappingGn → G such that,

CHFOWA(ch1, ch2, . . . , chn) = Ao
kφ = βo

k = (⊕)n
l=1φlch

∼
l ,

whereφ = (φ1, φ2, . . . , φn)T is a weight vector affiliated with the mappingGn → G
havingφl ∈ [0, 1] andΣn

l=1φl = 1. ch∼l is obtained aslth largest ofn-cubic hesitant fuzzy
elementschk(k = 1, 2, . . . , n) by Definition 2.11 as score function ranking method.

Theorem 3.6Let chk(k = 1, 2, . . . , n) be a collection of CHFEs. Then the aggregated
result is gained through applying CHFOWA operator is also a CHFE, and:

CHFOWA(ch1, ch2, . . . , chn) = Ao
kφ = βo

k = (⊕)n
l=1φlch

∼
l = {< {[1− Πn

l=1(1−
µ−∼il

)φl , 1−Πn
l=1(1− µ+∼

il
)φl ]}, {Πn

l=1(h
∼
il

)φl} >},
wherech∼l = {< {[µ−∼il

, µ+∼
il

]}, {h∼il
} >} is thelth largest ofn−cubic hesitant fuzzy

elementschk(k = 1, 2, . . . , n) which is obtained by using Definition 2.11 as score function
ranking method.

Proof Omitted (same as Theorem 3.2).
Definition 3.7 (CHFOWG) Let chk(k = 1, 2, . . . , n) be a collection of CHFEs. The

cubic hesitant fuzzy ordered weighted geometric (briefly, CHFOWG) operator is defined
by the functionGn → G as follows,

CHFOWG(ch1, ch2, . . . , chn) = Do
kφ = τo

k = (⊗)n
l=1ch

∼φl

l ,
whereφ = (φ1, φ2, . . . , φn)T is a weight vector affiliated with the mappingGn → G

havingφl ∈ [0, 1] andΣn
l=1φl = 1. ch∼l is obtained aslth largest ofn−cubic hesitant

fuzzy elementschk(k = 1, 2, . . . , n) by Definition 2.11 as score function ranking method.
Theorem 3.8Let chk(k = 1, 2, . . . , n) be a collection of CHFEs. Then the aggregated

result is gained through applying CHFOWG operator is also a CHFE, and:
CHFOWG(ch1, ch2, . . . , chn) = Do

kφ = τo
k = (⊗)n

l=1ch
∼φl

l

= {< {[Πn
l=1(µ

−∼
il

)φl ,Πn
l=1(µ

+∼
il

)φl ]}, {1−Πn
l=1(1− h∼il

)φl} >},
wherech∼l = {< {[µ−∼il

, µ+∼
il

]}, {h∼il
} >} is thelth largest ofn−cubic hesitant fuzzy

elementschk(k = 1, 2, . . . , n) which is obtained by using Definition 2.11 as score function
ranking method.

Proof Omitted (same as Theorem 3.4).
Definition 3.9 (GCHFOWA operator) Let chk(k = 1, 2, . . . , n) be the collection of

CHFEs. Letφ = (φ1, φ2, . . . , φn)T be the weighting vector affiliated with the mapping
Gn → G havingφk ∈ [0, 1] andΣn

k=1φk = 1. Then the generalized cubic hesitant fuzzy
ordered weighted averaging (for short, GCHFOWA) operator is a mappingGn → G de-
fined by,

GCHFOWAσ(ch1, ch2, . . . , chn) = βoσ
k = ((⊕)n

l=1(φlch
∼σ
l ))

1
σ ,

whereσ > 0 andch∼l = {< {[µ−∼il
, µ+∼

il
]}, {h∼il

} >} is the lth largest ofn−cubic
hesitant fuzzy elementschk(k = 1, 2, . . . , n) which is obtained by using Definition 2.11
as score function ranking method.
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Theorem 3.10Let chk(k = 1, 2, . . . , n) be the collection of CHFEs. Then the aggre-
gated result is obtained by applying GCHFOWA operator is also a CHFE, and:

GCHFOWAσ(ch1, ch2, . . . , chn) = βoσ
k = ((⊕)n

l=1(φlch
∼σ
l ))

1
σ = {< {[(1 −

Πn
l=1(1−(µ−∼il

)σ)φl)
1
σ , (1−Πn

l=1(1−(µ+∼
il

)σ)φl)
1
σ ]}, {1−(1−Πn

l=1(1−(1−h∼il
)σ)φl)

1
σ } >

},
whereσ > 0 andch∼l = {< {[µ−∼il

, µ+∼
il

]}, {h∼il
} >} is the lth largest ofn−cubic

hesitant fuzzy elementschk(k = 1, 2, . . . , n) which is obtained by using Definition 2.11
as score function ranking method.

Proof Omitted (same as Theorem 3.2).
Definition 3.11 (GCHFOWG operator) Let chk(k = 1, 2, . . . , n) be the collection of

CHFEs. Letφ = (φ1, φ2, . . . , φn)T be the weighting vector affiliated with the function
Gn → G havingφk ∈ [0, 1] andΣn

k=1φk = 1. Then the generalized cubic hesitant fuzzy
ordered weighted geometric (for short, GCHFOWG) operator is a mappingGn → G
defined by,

GCHFOWGσ(ch1, ch2, . . . , chn) = τoσ
k = 1

σ ((⊗)n
l=1(σch∼l )φl),

whereσ > 0 andch∼l = {< {[µ−∼il
, µ+∼

il
]}, {h∼il

} >} is the lth largest ofn−cubic
hesitant fuzzy elementschk(k = 1, 2, . . . , n) which is obtained by using Definition 2.11
as score function ranking method.

Theorem 3.12Let chk(k = 1, 2, . . . , n) be the collection of CHFEs. Then the aggre-
gated result is obtained by applying GCHFOWG operator is also a CHFE, and:

GCHFOWGσ(ch1, ch2, . . . , chn) = τoσ
k = 1

σ ((⊗)n
l=1(σch∼l )φl) = {< {[1 − (1 −

Πn
l=1(1 − (1 − µ−∼il

)σ)φl)
1
σ , 1 − (1 − Πn

l=1(1 − (1 − µ+∼
il

)σ)φl)
1
σ ]}, {(1 − Πn

l=1(1 −
(h∼il

)σ)φl)
1
σ } >},

whereσ > 0 andch∼l = {< {[µ−∼il
, µ+∼

il
]}, {h∼il

} >} is the lth largest ofn−cubic
hesitant fuzzy elementschk(k = 1, 2, . . . , n) which is obtained by using Definition 2.11
as score function ranking method.

Proof Omitted (same as Theorem 3.4).
Definition 3.13 (CHFHA operator) Let chk(k = 1, 2, . . . , n) be the collection of

CHFEs.The cubic hesitant fuzzy hybrid averaging (for short, CHFHA) operator is defined
by the mappingGn → G such that,

CHFHA(ch1, ch2, . . . , chn) = κH
kφ,w = ψk = (⊕)n

l=1(φlch
o∼
l ),

whereφ = (φ1, φ2, . . . , φn)T weighting vector is associated with the mappingGn →
G with φk ∈ [0, 1] andΣn

k=1φk = 1, cho∼
l is obtained aslth largest ofn−cubic hesitant

fuzzy elementscho
k = nwkchk by the ranking method defined by Definition 2.11 as scor-

ing function ranking method. Heren is a balance factor andw = (w1, w2, . . . , wn)T is a
weight vector of CHFEschk(k = 1, 2, . . . , n) with wk ∈ [0, 1] andΣn

k=1wk = 1.
Theorem 3.14Let chk(k = 1, 2, . . . , n) be the collection of CHFEs. Then the ag-

gregated result of CHFEs calculated through applying CHFHA operator is also a CHFE,
and:

CHFHA(ch1, ch2, . . . , chn) = κH
kφ,w = ψk = (⊕)n

l=1(φlch
o∼
l ) = {< {[1−Πn

l=1(1−
µ−o∼

il
)φl , 1−Πn

l=1(1− µ+o∼
il

)φl ]}, {Πn
l=1(h

o∼
il

)φl} >},
wherecho∼

l = {< {[µ−o∼
il

, µ+o∼
il

]}, {ho∼
il
} >} is the lth largest ofn−cubic hesitant

fuzzy elementscho
k = nwkchk(k = 1, 2, . . . , n) which is obtained by using Definition

2.11 defined as scoring function ranking method.
Proof Omitted (same Theorem 3.2).
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Definition 3.15 (CHFHG operator) Let chk(k = 1, 2, . . . , n) be the collection of
CHFEs.The cubic hesitant fuzzy hybrid geometric (for short, CHFHG) operator is defined
by the functionGn → G such that,

CHFHG(ch1, ch2, . . . , chn) = GH
kφ,w = χk = (⊗)n

l=1((ch
o∼
l )φl),

whereφ= (φ1, φ2, . . . , φn)T weighting vector is associated with the mappingGn → G
with φk ∈ [0, 1] andΣn

k=1φk = 1, cho∼
l is obtained aslth largest ofn−cubic hesitant

fuzzy elementscho
k = chnwk

k by the ranking method defined by Definition 2.11 as scoring
function ranking method. Heren is a balance factor andw = (w1, w2, . . . , wn)T is a
weight vector of CHFEschk(k = 1, 2, . . . , n) with wk ∈ [0, 1] andΣn

k=1wk = 1.
Theorem 3.16Let chk(k = 1, 2, . . . , n) be a collection of CHFEs. Then the aggregated

result is gained through applying CHFHG operator is also a CHFE, and:
CHFHG(ch1, ch2, . . . , chn) = GH

kφ,w = χk = (⊗)n
l=1((ch

o∼
l )φl)

= {< {[Πn
l=1(µ

−o∼
il

)φl ,Πn
l=1(µ

+o∼
il

)φl ]}, {1−Πn
l=1(1− ho∼

il
)φl} >},

wherecho∼
l = {< {[µ−o∼

il
, µ+o∼

il
]}, {ho∼

il
} >} is the lth largest ofn−cubic hesitant

fuzzy elementscho
k = chnwk

k (k = 1, 2, . . . , n) which is obtained by using Definition 2.11
defined as scoring function ranking method.

Proof Omitted (same as Theorem 3.4).
Definition 3.17 (GCHFHA operator) Let chk(k = 1, 2, . . . , n) be the collection of

CHFEs. The generalized cubic hesitant fuzzy hybrid averaging (for short, GCHFHA) op-
erator is a mappingGn → G defined by,

GCHFHAσ(ch1, ch2, . . . , chn) = ψσ
k = ((⊕)n

l=1(φl(cho∼
l )σ))

1
σ ,

whereσ > 0, φ = (φ1, φ2, . . . , φn)T weighting vector is associated with the mapping
Gn → G with φk ∈ [0, 1] andΣn

k=1φk = 1, cho∼
l is obtained aslth largest ofn−cubic

hesitant fuzzy elementscho
k = nwkchk by using Definition 2.11 as scoring function rank-

ing method. Heren is a balance factor andw = (w1, w2, . . . , wn)T is a weight vector of
CHFEschk(k = 1, 2, . . . , n) with wk ∈ [0, 1] andΣn

k=1wk = 1.
Remark 3.18 In special cases whenφ = ( 1

n , 1
n , . . . , 1

n )T then the GCHFHA operator
becomes GCHFWA operator, ifw =( 1

n , 1
n , . . . , 1

n )T then GCHFHA operator becomes
GCHFOWA operator and ifσ = 1 then GCHFHA operator becomes CHFHA operator.

Theorem 3.19Let chk(k = 1, 2, . . . , n) be a collection of CHFEs. Then the aggregated
result is gained through applying GCHFHA operator is also a CHFE, and:

GCHFHAσ(ch1, ch2, . . . , chn) = ψσ
k = ((⊕)n

l=1(φl(cho∼
l )σ))

1
σ = {< {[(1 −

Πn
l=1(1 − (µ−o∼

il
)σ)φl)

1
σ , (1 − Πn

l=1(1 − (µ+o∼
il

)σ)φl)
1
σ ]}, {1 − (1 − Πn

l=1(1 − (1 −
ho∼

il
)σ)φl)

1
σ } >},

wherecho∼
l = {< {[µ−o∼

il
, µ+o∼

il
]}, {ho∼

il
} >} is the lth largest ofn−cubic hesitant

fuzzy elementscho
k = nwkchk(k = 1, 2, . . . , n) which is obtained by using Definition

2.11 as scoring function ranking method.
Proof Omitted (same as Theorem 3.2).
Definition 3.20 (GCHFHG operator) Let chk(k = 1, 2, . . . , n) be the collection of

CHFEs. The generalized cubic hesitant fuzzy hybrid geometric (for short, GCHFHG)
operator is a mappingGn → G defined by,

GCHFHGσ(ch1, ch2, . . . , chn) = χσ
k = 1

σ ((⊗)n
l=1(σcho∼

l )φl),
whereσ > 0, φ = ( 1

n , 1
n , . . . , 1

n )T weighting vector is associated with the mapping
Gn → G with φk ∈ [0, 1] andΣn

k=1φk = 1, cho∼
l is obtained aslth largest ofn−cubic

hesitant fuzzy elementscho
k = chnwk

k by using Definition 2.11 as scoring function ranking
method. Heren is a balance factor andw = (w1, w2, . . . , wn)T is a weight vector of
CHFEschk(k = 1, 2, . . . , n) with wk ∈ [0, 1] andΣn

k=1wk = 1.
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Remark 3.21 In special cases whenφ = ( 1
n , 1

n , . . . , 1
n )T then the GCHFHG operator

becomes GCHFWG operator, ifw = ( 1
n , 1

n , . . . , 1
n )T then GCHFHG operator becomes

GCHFOWG operator and ifσ = 1 then GCHFHG operator becomes CHFHG operator.
Theorem 3.22Let chk(k = 1, 2, . . . , n) be a collection of CHFEs. Then the aggregated

result calculated through GCHFHG operator is also a CHFE, and:
GCHFHGσ(ch1, ch2, . . . , chn) = χσ

k = 1
σ ((⊗)n

l=1(σcho∼
l )φl) = {< {[1 − (1 −

Πn
l=1(1 − (1 − µ−o∼

il
)σ)φl)

1
σ , 1 − (1 − Πn

l=1(1 − (1 − µ+o∼
il

)σ)φl)
1
σ ]}, {(1 − Πn

l=1(1 −
(ho∼

il
)σ)φl)

1
σ } >},

wherecho∼
l = {< {[µ−o∼

il
, µ+o∼

il
]}, {ho∼

il
} >} is the lth largest ofn−cubic hesitant

fuzzy elementscho
k = chnwk

k (k = 1, 2, . . . , n) which is obtained by using Definition 2.11
as scoring function ranking method.

Proof Omitted (same as Theorem 3.4).
CHFHA and CHFHG operators do not satisfy the property of idempotency for aggrega-

tion operators, so in order to remove this deficiency we developed new operators as shown
below in Definition 3.23 and Definition 3.26.

Definition 3.23 (CHFHAA operator) Let chk(k = 1, 2, . . . , n) be the collection of
CHFEs. The cubic hesitant fuzzy hybrid arithmetical averaging (for short, CHFHAA)
operator is a functionGn → G denoted and defined as,

CHFHAA(ch1, ch2, . . . , chn) = ψ+
k = (⊕)n

l=1(wlφlch∼l )
Σn

l=1wlφl
,

whereφ= (φ1, φ2, . . . , φn)T is a weight vector that is associated with the mapping
Gn → G,φk ∈ [0, 1] and Σn

k=1φk = 1, ch∼l is obtained aslth largest ofn−cubic
hesitant fuzzy elementschk by using Definition 2.11 as scoring function ranking method.
Here n is a balance factor andw = (w1, w2, . . . , wn)T is a weight vector of CHFEs
chk(k = 1, 2, . . . , n) with wk ∈ [0, 1] andΣn

k=1wk = 1.
Theorem 3.24Let chk(k = 1, 2, . . . , n) be a collection of CHFEs. Then the aggregated

result calculated through CHFHAA operator is also a CHFE, and:
CHFHAA(ch1, ch2, . . . , chn) = ψ+

k = (⊕)n
l=1(wlφlch∼l )
Σn

l=1wlφl
= {< {[1 − Πn

l=1(1 −
µ−∼il

)
wlφl

Σn
l=1wlφl , 1−Πn

l=1(1− µ+∼
il

)
wlφl

Σn
l=1wlφl ]}, {Πn

l=1(h
∼
il

)
wlφl

Σn
l=1wlφl } >},

whereφ= (φ1, φ2, . . . , φn)T is a weight vector that is associated with the mapping
Gn → G,φk ∈ [0, 1] and Σn

k=1φk = 1, ch∼l is obtained aslth largest ofn−cubic
hesitant fuzzy elementschk by using Definition 2.11 as scoring function ranking method.
Here n is a balance factor andw = (w1, w2, . . . , wn)T is a weight vector of CHFEs
chk(k = 1, 2, . . . , n) with wk ∈ [0, 1] andΣn

k=1wk = 1.
Proof By Theorem 2.12, it is clear that the aggregated result obtained by applying

CHFHAA operator is a CHFE.
wlφlch∼l
Σn

l=1wlφl
= {< {[1− (1− µ−∼il

)
wlφl

Σn
l=1wlφl , 1− (1− µ+∼

il
)

wlφl
Σn

l=1wlφl ]},
{(h∼il

)
wlφl

Σn
l=1wlφl } >},

CHFHAA(ch1, ch2, . . . , chn) = (⊕)n
l=1(wlφlch∼l )
Σn

l=1wlφl

= (⊕)n
l=1{< {[1− (1− µ−∼il

)
wlφl

Σn
l=1wlφl , 1− (1− µ+∼

il
)

wlφl
Σn

l=1wlφl ]},
{(h∼il

)
wlφl

Σn
l=1wlφl } >},

CHFHAA(ch1, ch2, . . . , chn)

= {< {[1−Πn
l=1(1− µ−∼il

)
wlφl

Σn
l=1wlφl , 1−Πn

l=1(1− µ+∼
il

)
wlφl

Σn
l=1wlφl ]},

{Πn
l=1(h

∼
il

)
wlφl

Σn
l=1wlφl } >},
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Theorem 3.25 (Idempotency)If ch∼l = ch∼(l = 1, 2 . . . , n),
thenCHFHAA(ch1, ch2, . . . , chn) = ch∼.

Proof CHFHAA(ch1, ch2, . . . , chn) = (⊕)n
l=1(wlφlch∼l )
Σn

l=1wlφl

= (⊕)n
l=1(wlφlch∼)
Σn

l=1wlφl
= ch∼ (⊕)n

l=1(wlφl)
Σn

l=1wlφl
= ch∼Σn

l=1wlφl

Σn
l=1wlφl

= ch∼.

Definition 3.26 (CHFHAG operator) Let chk(k = 1, 2, . . . , n) be the collection of
CHFEs. The cubic hesitant fuzzy hybrid arithmetical geometric (for short, CHFHAG)
operator is a functionGn → G denoted and defined as,

CHFHAG(ch1, ch2, . . . , chn) = χ+
k = (⊗)n

l=1(ch
∼
l )

wlφl
Σn

l=1wlφl ,
whereφ= (φ1, φ2, . . . , φn)T is a weight vector that is affiliated with the mappingGn →

G,φk ∈ [0, 1] and Σn
k=1φk = 1, ch∼l is obtained aslth largest ofn−cubic hesitant

fuzzy elementschk by using Definition 2.11 as scoring function ranking method. Here
n is a balance factor andw = (w1, w2, . . . , wn)T is a weight vector of CHFEschk(k =
1, 2, . . . , n) with wk ∈ [0, 1] andΣn

k=1wk = 1.
Theorem 3.27Suppose we have a collection of CHFEschk(k = 1, 2, . . . , n). Then the

aggregated result is gained through applying CHFHAG operator is also a CHFE, and:

CHFHAG(ch1, ch2, . . . , chn) = χ+
k = (⊗)n

l=1(ch
∼
l )

wlφl
Σn

l=1wlφl

= {< {[Πn
l=1(µ

−∼
il

)
wlφl

Σn
l=1wlφl , Πn

l=1(µ
+∼
il

)
wlφl

Σn
l=1wlφl ]},

{1−Πn
l=1(1− h∼il

)
wlφl

Σn
l=1wlφl } >},

wherech∼l = {< {[µ−∼il
, µ+∼

il
]}, {h∼il

} >} is thelth largest ofn−cubic hesitant fuzzy
elementschk(k = 1, 2, . . . , n) which is obtained by using Definition 2.11 as score function
ranking method.

Proof From Theorem 2.12 it is clear that the aggregated result obtained by applying
CHFHAG operator is a CHFE.

(ch∼l )
wlφl

Σn
l=1wlφl = {< {[(µ−∼il

)
wlφl

Σn
l=1wlφl , (µ+∼

il
)

wlφl
Σn

l=1wlφl ]},
{1− (1− h∼il

)
wlφl

Σn
l=1wlφl } >},

CHFHAG(ch1, ch2, . . . , chn) = (⊗)n
l=1(ch

∼
l )

wlφl
Σn

l=1wlφl

= (⊗)n
l=1{< {[(µ−∼il

)
wlφl

Σn
l=1wlφl , (µ+∼

il
)

wlφl
Σn

l=1wlφl ]}, {1− (1− h∼il
)

wlφl
Σn

l=1wlφl } >},
CHFHAG(ch1, ch2, . . . , chn) = (⊗)n

l=1(ch
∼
l )

wlφl
Σn

l=1wlφl

= {< {[Πn
l=1(µ

−∼
il

)
wlφl

Σn
l=1wlφl , Πn

l=1(µ
+∼
il

)
wlφl

Σn
l=1wlφl ]},

{1−Πn
l=1(1− h∼il

)
wlφl

Σn
l=1wlφl } >}.

Theorem 3.28 (Idempotency)If ch∼l = ch∼(l = 1, 2 . . . , n),
thenCHFHAG(ch1, ch2, . . . , chn) = ch∼.
Proof

CHFHAG(ch1, ch2, . . . , chn) = (⊗)n
l=1(ch

∼
l )

wlφl
Σn

l=1wlφl

= {< {[Πn
l=1(µ

−∼
il

)
wlφl

Σn
l=1wlφl , Πn

l=1(µ
+∼
il

)
wlφl

Σn
l=1wlφl ]},

{1−Πn
l=1(1− h∼il

)
wlφl

Σn
l=1wlφl } >},

sincech∼l = ch∼(l = 1, 2 . . . , n) soµ−∼il
= µ−∼i , µ+∼

il
= µ+∼

i andh∼il
= h∼i ,

CHFHAG(ch1, ch2, . . . , chn) = {< {[(µ−∼il
)

Σn
l=1wlφl

Σn
l=1wlφl , (µ+∼

il
)

Σn
l=1wlφl

Σn
l=1wlφl ]}, {1 − (1 −

h∼i )
Σn

l=1wlφl
Σn

l=1wlφl } >} = {< {[µ−∼il
, µ+∼

il
]}, {h∼il

} >} = ch∼l .
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4. MULTI CRITERIA DECISION MAKING USING GENERALIZED HYBRID

AGGREGATIONOPERATORSBASED ON CUBIC HESITANT FUZZY SETS

We are giving a method for tackling a MCDM problem based on CHFSs by applying
GCHFHA and GCHFHG operators. We are allocating the weights to both CHFEs and the
vector associated with the mappingGn → G. Suppose thatch = {ch1, ch2, . . . , chn}
be collection of alternatives and also assume thatR = {R1, R2, . . . , Rm} be a set of cri-
teria. Considering the criteriaRj(1 ≤ j ≤ m), recommended by the decision maker
having weightswk ∈ [0, 1] and φk ∈ [0, 1]. Here wk is the weight vector of CHFEs
chk(k = 1, 2, . . . , n) andφk(1 ≤ k ≤ n) is the weighting vector associated with the
mappingGn → G, also we haveΣn

k=1wk = 1 and Σn
k=1φk = 1. Thus chk = {<

{Rj , {[µ−ikj
(Rj), µ+

ikj
(Rj)]}, {hikj

(Rj)} >}. The CHFE which is a pair of IVHFE and

HFE is denoted bychk = dkj = {< {[µ−ikj
, µ+

ikj
]}, {hikj

} >}. Hence we obtain a deci-
sion matrixD = dkj . We are giving the notation to generalized cubic hesitant fuzzy hybrid
averaging CHFE asψσ

k for cho∼
kl (1 ≤ k ≤ n, 1 ≤ l ≤ m), herecho∼

kl is obtained aslth
largest ofm−CHFEscho

kj = chmwk

kj by using score function (see Definition 2.11) ranking
method. These CHFEs are obtained by using GCHFHA operator and GCHFHG operator
through each row in the decision matrix. First, we weight the CHFEs by using the weights
of CHFEs assigned to each criterion and then rank the CHFEs through a score function
(see Definition 2.11) by usingkth row andjth column in the matrix. Then aggregate the
CHFEs by applying GCHFHA or GCHFHG operator through weighting vector associated
with the mappingGn → G on eachkth row in the matrix. Then after we use score func-
tion (see Definition 2.11) in order to obtainT (ψσ

k ) for ψσ
k or T (χσ

k) for χσ
k . In view of the

score function, we rankchk(k = 1, 2, . . . , n) and choose the optimum alternative. The
decision making process is followed through the steps given below.

Step 1Weight the CHFEs by using the weights of CHFEs assigned to each criterion
throughkth row andjth columns in the matrix.

Step 2Rank the CHFEs through a score function (see Definition 2.11).
Step 3Calculate GCHFHA or GCHFHG values by applying Theorem 3.19 or Theorem

3.22 respectively through weighting vector associated with the mappingGn → G on every
kth row in the matrix.

Step 4Determine the accuracy by using a scoring function of CHFE (see Definition
2.11) to getT (ψσ

k ) or T (χσ
k), rankchk(k = 1, 2, . . . , n) and choose the best alternative by

comparing eachT (ψσ
k ) or T (χσ

k).

5. DESCRIPTIVEEXAMPLE

We are providing an example, in order to solve a multi criteria decision making (MCDM)
problem for CHFSs using generalized cubic hesitant fuzzy hybrid aggregation operators.
Suppose that there is a group of people those are planning to invest in an international bank.
The four alternatives are(c1) National Australia Bank(c2) Barclays(c3) Royal Bank of
Canada(c4) Bank of New York Mellon, under four criteria(h1) country Risk(h2) credit
Risk (h3) banking performance(h4) portfolio selection and management. Now we will
find the best alternative through the algorithm as defined in Section 4. We are considering
the matrixM1 consisting of CHFS values as follows,
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h1 h2 h3 h4

c1 {< {[0.1, 0.4], {< {[0.2, 0.4], {< {[0.1, 0.3]}, {< {[0.15, 0.35],
[0.5, 0.7]}, [0.5, 0.6], {0.2} >} [0.4, 0.7]},
{0.3, 0.6} >} [0.7, 0.8]}, {0.2, 0.6} >}

{0.3, 0.55,
0.75} >}

c2 {< {[0.4, 0.7]}, {< {[0.2, 0.3], {< {[0.1, 0.2], {< {[0.4, 0.5],
{0.5} >} [0.4, 0.6]}, [0.3, 0.5], [0.55, 0.6],

{0.25, 0.5} >} [0.6, 0.7], [0.7, 0.9]},
[0.8, 0.9]}, {0.45, 0.55,
{0.15, 0.4, 0.8} >}
0.65, 0.85} >}

c3 {< {[0.1, 0.3], {< {[0.6, 0.9]}, {< {[0.4, 0.6], {< {[0.2, 0.4],
[0.4, 0.6], {0.8} >} [0.7, 0.9]}, [0.5, 0.6],
[0.7, 0.8]}, {0.5, 0.8} >} [0.7, 0.9],
{0.2, 0.5, [0.92, 1]},
0.75} >} {0.3, 0.55,

0.8, 0.95} >}

c4 {< {[0.3, 0.4], {< {[0.1, 0.2], {< {[0.5, 0.7]}, {< {[0.3, 0.5],
[0.5, 0.6], [0.3, 0.4], {0.6} >} [0.6, 0.9]},
[0.7, 0.8], [0.6, 0.8]}, {0.4, 0.7} >}
[0.9, 1]}, {0.15, 0.35,
{0.35, 0.55, 0.7} >}
0.75, 0.95} >}

Suppose the weight vector ofh1, h2, h3 andh4 isw = (0.1, 0.2, 0.3, 0.4)T . Considering
the aspect that different alternatives can spotlight some different characteristics, in order
to demonstrate this concern, we have one more weighting vector of each criterion asφ =
(0.15, 0.25, 0.5, 1)T and we use the algorithm as follows,

Step 1
ch11 = {< {[0.1, 0.4], [0.5, 0.7]}, {0.3, 0.6} >},
ch12 = {< {[0.2, 0.4], [0.5, 0.6], [0.7, 0.8]}, {0.3, 0.55, 0.75} >},
ch13 = {< {[0.1, 0.3]}, {0.2} >},
ch14 = {< {[0.15, 0.35], [0.4, 0.7]}, {0.2, 0.6} >},
cho

11 = nw1ch11 = {< {[0.0413, 0.1848], [0.2421, 0.3822]},
{0.6178, 0.8152} >},
cho

12 = nw2ch12 = {< {[0.1635, 0.3355], [0.4257, 0.5196], [0.6183, 0.7241]},
{0.3817, 0.6199, 0.7944} >},
cho

13 = nw3ch13 = {< {[0.1188, 0.3482]}, {0.1450} >},
cho

14 = nw4ch14 = {< {[0.2290, 0.4980], [0.5584, 0.8543]},
{0.0761, 0.4416} >},
ch21 = {< {[0.4, 0.7]}, {0.5} >},
ch22 = {< {[0.2, 0.3], [0.4, 0.6]}, {0.25, 0.5} >},
ch23 = {< {[0.1, 0.2], [0.3, 0.5], [0.6, 0.7], [0.8, 0.9]},
{0.15, 0.4, 0.65, 0.85} >},
ch24 = {< {[0.4, 0.5], [0.55, 0.6], [0.7, 0.9]}, {0.45, 0.55, 0.8} >},
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cho
21 = nw1ch21 = {< {[0.1848, 0.3822]}, {0.7579} >},

cho
22 = nw2ch22 = {< {[0.1635, 0.2482], [0.3355, 0.5196]},

{0.3299, 0.5743} >},
cho

23 = nw3ch23 = {< {[0.1188, 0.2349], [0.3482, 0.5647], [0.6670, 0.7642],
[0.8550, 0.9369]}, {0.1026, 0.3330, 0.5963, 0.8228} >},
cho

24 = nw4ch24 = {< {[0.5584, 0.6701], [0.7213, 0.7692], [0.8543, 0.9749]},
{0.2787, 0.3842, 0.6998} >},
ch31 = {< {[0.1, 0.3], [0.4, 0.6], [0.7, 0.8]}, {0.2, 0.5, 0.75} >},
ch32 = {< {[0.6, 0.9]}, {0.8} >},
ch33 = {< {[0.4, 0.6], [0.7, 0.9]}, {0.5, 0.8} >},
ch34 = {< {[0.2, 0.4], [0.5, 0.6], [0.7, 0.9], [0.92, 1]}, {0.3, 0.55, 0.8, 0.95} >},
cho

31 = nw1ch31 = {< {[0.0413, 0.1330], [0.1848, 0.3069], [0.3822, 0.4747]},
{0.5253, 0.7579, 0.8913} >},
cho

32 = nw2ch32 = {< {[0.5196, 0.8415]}, {0.8365} >},
cho

33 = nw3ch33 = {< {[0.4583, 0.6670], [0.7642, 0.9369]},
{0.4353, 0.7651} >},
cho

34 = nw4ch34 = {< {[0.3002, 0.5584], [0.6701, 0.7692], [0.8543, 0.9749], [0.9824, 1]},
{0.1457, 0.3842, 0.6998, 0.9212} >},
ch41 = {< {[0.3, 0.4], [0.5, 0.6], [0.7, 0.8], [0.9, 1]},
{0.35, 0.55, 0.75, 0.95} >},
ch42 = {< {[0.1, 0.2], [0.3, 0.4], [0.6, 0.8]}, {0.15, 0.35, 0.7} >},
ch43 = {< {[0.5, 0.7]}, {0.6} >},
ch44 = {< {[0.3, 0.5], [0.6, 0.9]}, {0.4, 0.7} >},
cho

41 = nw1ch41 = {< {[0.1330, 0.1848], [0.2421, 0.3069], [0.3822, 0.4747], [0.6019, 1]},
{0.6571, 0.7873, 0.8913, 0.9797} >},
cho

42 = nw2ch42 = {< {[0.0808, 0.1635], [0.2482, 0.3355], [0.5196, 0.7241]},
{0.2192, 0.4318, 0.7518} >},
cho

43 = nw3ch43 = {< {[0.5647, 0.7642]}, {0.5417} >},
cho

44 = nw4ch44 = {< {[0.4349, 0.6701], [0.7692, 0.9749]}, {0.2308, 0.5651} >},
Step 2
T (cho

11) = 0.0709, T (cho
12) = 0.2638, T (cho

13) = −0.1940, T (cho
14) = 0.1644,

clearly we have by ranking methodcho
12 > cho

14 > cho
11 > cho

13.
Thus we have,cho∼

11 = cho
12, ch

o∼
12 = cho

14, ch
o∼
13 = cho

11, ch
o∼
14 = cho

13.
Thuscho∼

11 = {< {[0.1635, 0.3355], [0.4257, 0.5196], [0.6183, 0.7241]},
{0.3817, 0.6199, 0.7944} >},
cho∼

12 = {< {[0.2290, 0.4980], [0.5584, 0.8543]}, {0.0761, 0.4416} >},
cho∼

13 = {< {[0.0413, 0.1848], [0.2421, 0.3822]}, {0.6178, 0.8152} >},
cho∼

14 = {< {[0.1188, 0.3482]}, {0.1450} >},
T (cho

21) = 0.1625, T (cho
22) = 0.0428, T (cho

23) = 0.2931, T (cho
24) = 0.4852,

clearly we have by ranking methodcho
24 > cho

23 > cho
21 > cho

22.
Thus we have,cho∼

21 = cho
24, ch

o∼
22 = cho

23, ch
o∼
23 = cho

21, ch
o∼
24 = cho

22.
Thuscho∼

21 = {< {[0.5584, 0.6701], [0.7213, 0.7692], [0.8543, 0.9749]},
{0.2787, 0.3842, 0.6998} >},
cho∼

22 = {< {[0.1188, 0.2349], [0.3482, 0.5647], [0.6770, 0.7642], [0.8550, 0.9369]},
{0.1026, 0.3330, 0.5963, 0.8228} >},
cho∼

23 = {< {[0.1848, 0.3822]}, {0.7579} >},
cho∼

24 = {< {[0.1635, 0.2482], [0.3355, 0.5196]}, {0.3299, 0.5743} >},
T (cho

31) = 0.1162, T (cho
32) = 0.5988, T (cho

33) = 0.5067, T (cho
34) = 0.5326,
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clearly we have by ranking methodcho
32 > cho

34 > cho
33 > cho

31.
Thus we have,cho∼

31 = cho
32, ch

o∼
32 = cho

34, ch
o∼
33 = cho

33, ch
o∼
34 = cho

31.
Socho∼

31 = {< {[0.5196, 0.8415]}, {0.8365} >},
cho∼

32 = {< {[0.3002, 0.5584], [0.6701, 0.7692], [0.8543, 0.9749], [0.9824, 1]},
{0.1457, 0.3842, 0.6998, 0.9212} >},
cho∼

33 = {< {[0.4583, 0.6770], [0.7642, 0.9369]}, {0.4353, 0.7651} >},
cho∼

34 = {< {[[0.0413, 0.1330], [0.1848, 0.3069], [0.3822, 0.4747]},
{0.5253, 0.7579, 0.8913} >},
T (cho

41) = 0.3301, T (cho
42) = 0.0791, T (cho

43) = 0.4353, T (cho
44) = 0.4113,

clearly we have by ranking methodcho
43 > cho

44 > cho
41 > cho

42.
Thus we have,cho∼

41 = cho
43, ch

o∼
42 = cho

44, ch
o∼
43 = cho

41, ch
o∼
44 = cho

42.
Hencecho∼

41 = {< {[0.5647, 0.7642]}, {0.5417} >},
cho∼

42 = {< {[0.4349, 0.6701], [0.7692, 0.9749]}, {0.2308, 0.5651} >},
cho∼

43 = {< {[0.1330, 0.1848], [0.2421, 0.3069], [0.3822, 0.4747], [0.6019, 1]},
{0.6571, 0.7873, 0.8913, 0.9797} >},
cho∼

44 = {< {[0.0808, 0.1635], [0.2482, 0.3355], [0.5196, 0.7241]},
{0.2192, 0.4318, 0.7518} >},
Step 3
By Theorem 3.19 we have,
GCHFHAσ(chkl)n

k,l=1 = ψσ
k = (((⊕)n

l=1)
n
k=1(φl(cho∼

kl )σ))
1
σ = {< {[(1−Πn

k,l=1(1−
(µ−o∼

ikl
)σ)φl)

1
σ , (1−Πn

k,l=1(1−(µ+o∼
ikl

)σ)φl)
1
σ ]}, {1−(1−Πn

k,l=1(1−(1−ho∼
ikl

)σ)φl)
1
σ } >

},
for σ = 1 we have,
GCHFHA1(ch11, ch12, ch13, ch14) = ψ1

1 = ((⊕)4l=1)k=1(φlch
o∼
kl ) = {< {[1 −

Π4
l=1(1− µ−o∼

i1l
)φl , 1−Π4

l=1(1− µ+o∼
i1l

)φl ]}, {Π4
l=1(h

o∼
i1l

)φl} >},
GCHFHA1(ch11, ch12, ch13, ch14) = ψ1

1 = {< {[0.1180, 0.3152], [0.2158, 0.4038],
[0.8509, 0.4973], [0.3178, 0.5624], [0.1664, 0.3477], [0.2588, 0.4321], [0.2748, 0.5212],
[0.3552, 0.5832], [0.2159, 0.3997], [0.3028, 0.4775], [0.3179, 0.5594], [0.3935, 0.6165]},
{0.2946, 0.3384, 0.4572, 0.5252, 0.3168, 0.3639, 0.4917, 0.5648, 0.3288, 0.3777,
0.5103, 0.5862} >},
GCHFHA1(ch21, ch22, ch23, ch24) = ψ1

2 = ((⊕)4l=1)k=2(φlch
o∼
kl ) = {< {[1 −

Π4
l=1(1− µ−o∼

i2l
)φl , 1−Π4

l=1(1− µ+o∼
i2l

)φl ]}, {Π4
l=1(h

o∼
i2l

)φl} >},
GCHFHA1(ch21, ch22, ch23, ch24) = ψ1

2 = {< {[0.2398, 0.3950], [0.2571, 0.4215],
[0.2906, 0.4266], [0.3067, 0.4517], [0.3563, 0.5889], [0.3710, 0.6069], [0.2950, 0.4746],
[0.3111, 0.4976], [0.3412, 0.5020], [0.3570, 0.5237], [0.4031, 0.6430], [0.4167, 0.6586],
[0.4040, 0.5493], [0.4176, 0.5690], [0.4438, 0.5728], [0.4564, 0.5915], [0.4953, 0.6937],
[0.5068, 0.7071], [0.5159, 0.6758], [0.5269, 0.6900], [0.5482, 0.6927], [0.5584, 0.7062],
[0.5900, 0.7797], [0.5994, 0.7894]}, {0.3641, 0.3848, 0.3820, 0.4038, 0.4180, 0.4418,
0.4887, 0.5165, 0.5128, 0.5420, 0.5610, 0.5930, 0.5653, 0.5975, 0.5932, 0.6270,
0.6490, 0.5930, 0.6127, 0.6476, 0.6429, 0.6796, 0.7034, 0.7435} >},
GCHFHA1(ch31, ch32, ch33, ch34) = ψ1

3 = ((⊕)4l=1)k=3(φlch
o∼
kl ) = {< {[1 −

Π4
l=1(1− µ−o∼

i3l
)φl , 1−Π4

l=1(1− µ+o∼
i3l

)φl ]}, {Π4
l=1(h

o∼
i3l

)φl} >},
GCHFHA1(ch31, ch32, ch33, ch34) = ψ1

3 = {< {[0.3995, 0.6482], [0.4091, 0.6560],
[0.4253, 0.6654], [0.6038, 0.8469], [0.6102, 0.8503], [0.6208, 0.8543], [0.5024, 0.7009],
[0.5104, 0.7075], [0.5238, 0.7155], [0.6717, 0.8698], [0.6770, 0.8727], [0.6858, 0.8762],
[0.5943, 0.8282], [0.6009, 0.8320], [0.6118, 0.8366], [0.7324, 0.9252], [0.7367, 0.9269],
[0.7439, 0.9289], [0.7609, 1], [0.7647, 1], [0.7711, 1], [0.8422, 1], [0.8448, 1], [0.8490, 1]},
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{0.3721, 0.3860, 0.3923, 0.4933, 0.5117, 0.5201, 0.4742, 0.4919, 0.4999, 0.6287, 0.6521,
0.6628, 0.5509, 0.5714, 0.5808, 0.7303, 0.7576, 0.7700, 0.5901, 0.6121, 0.6221, 0.7823,
0.8115, 0.8247} >},
GCHFHA1(ch41, ch42, ch43, ch44) = ψ1

4 = ((⊕)4l=1)k=4(φlch
o∼
kl ) = {< {[1 −

Π4
l=1(1− µ−o∼

i4l
)φl , 1−Π4

l=1(1− µ+o∼
i4l

)φl ]}, {Π4
l=1(h

o∼
i4l

)φl} >},
GCHFHA1(ch41, ch42, ch43, ch44) = ψ1

4 = {< {[0.2934, 0.4588], [0.3074, 0.4711],
[0.3378, 0.5156], [0.3393, 0.5010], [0.3525, 0.5123], [0.3808, 0.5534], [0.4035, 0.5656],
[0.4154, 0.5754], [0.4410, 0.6112], [0.5212, 1], [0.5307, 1], [0.5512, 1], [0.4351, 0.7158],
[0.4463, 0.7222], [0.4706, 0.7456], [0.4718, 0.7379], [0.4823, 0.7439], [0.5050, 0.7654],
[0.5231, 0.7718], [0.5326, 0.7770], [0.5531, 0.7958], [0.6172, 1], [0.6248, 1], [0.6413, 1]},
{0.4403, 0.4712, 0.4981, 0.4820, 0.5158, 0.5452, 0.5128, 0.5488, 0.5801, 0.5377, 0.5754,
0.6082, 0.5508, 0.5894, 0.6230, 0.6029, 0.6452, 0.6820, 0.6415, 0.6670, 0.7256, 0.6726,
0.7197, 0.7608} >}.
By Threome 3.19 andσ = 2 we get,
GCHFHA2(chkl)n

k,l=1 = ψ2
k = (((⊕)n

l=1)
n
k=1(φl(cho∼

kl )2))
1
2 = {< {[(1−Πn

k,l=1(1−
(µ−o∼

ikl
)2)φl)

1
2 , (1−Πn

k,l=1(1−(µ+o∼
ikl

)2)φl)
1
2 ]}, {1−(1−Πn

k,l=1(1−(1−ho∼
ikl

)2)φl)
1
2 } >},

GCHFHA2(ch11, ch12, ch13, ch14) = ψ2
1 = ((⊕)4l=1)k=1(φl(cho∼

kl )2))
1
2 = {< {[(1−

Π4
l=1(1−(µ−o∼

i1l
)2)φl)

1
2 , (1−Π4

l=1(1−(µ+o∼
i1l

)2)φl)
1
2 ]}, {1−(1−Π4

l=1(1−(1−ho∼
i1l

)2)φl)
1
2 } >

},
GCHFHA2(ch11, ch12, ch13, ch14) = ψ2

1 = {< {[0.1400, 0.3356], [0.2190, 0.4069],
[0.3018, 0.5594], [0.3480, 0.5950], [0.2114, 0.3718], [0.2689, 0.4355], [0.3437, 0.5769],
[0.3790, 0.6105], [0.2902, 0.4380], [0.3328, 0.4900], [0.3932, 0.6118], [0.4232, 0.6416]},
{0.2695, 0.2900, 0.4402, 0.4806, 0.2856, 0.3078, 0.4718, 0.5171, 0.2915, 0.4703, 0.4836,
0.5309} >},
GCHFHA2(ch21, ch22, ch23, ch24) = ψ2

2 = ((⊕)4l=1)k=2(φl(cho∼
kl )2))

1
2 = {< {[(1−

Π4
l=1(1−(µ−o∼

i2l
)2)φl)

1
2 , (1−Π4

l=1(1−(µ+o∼
i2l

)2)φl)
1
2 ]}, {1−(1−Π4

l=1(1−(1−ho∼
i2l

)2)φl)
1
2 } >

},
GCHFHA2(ch21, ch22, ch23, ch24) = ψ2

2 = {< {[0.2768, 0.4149], [0.2917, 0.4389],
[0.3206, 0.4870], [0.3332, 0.5061], [0.4473, 0.5707], [0.4555, 0.5851], [0.5767, 0.7096],
[0.5820, 0.7182], [0.3539, 0.4566], [0.3651, 0.4777], [0.3874, 0.5203], [0.3973, 0.5374],
[0.4922, 0.5961], [0.4992, 0.6093], [0.6065, 0.7248], [0.6112, 0.7329], [0.4443, 0.6505],
[0.4526, 0.6614], [0.4692, 0.6844], [0.4768, 0.6940], [0.5521, 0.7281], [0.5578, 0.7360],
[0.6480, 0.8087], [0.6521.0.8140]}, {0.3246, 0.3411, 0.4584, 0.4855, 0.5343, 0.5697,
0.5666, 0.6064, 0.3407, 0.3582, 0.4848, 0.5145, 0.5687, 0.6087, 0.6054, 0.6513, 0.3664,
0.3858, 0.5287, 0.5634, 0.6285, 0.6789, 0.6746, 0.7358} >},
GCHFHA2(ch31, ch32, ch33, ch34) = ψ2

3 = ((⊕)4l=1)k=3(φl(cho∼
kl )2))

1
2 = {< {[(1−

Π4
l=1(1−(µ−o∼

i3l
)2)φl)

1
2 , (1−Π4

l=1(1−(µ+o∼
i3l

)2)φl)
1
2 ]}, {1−(1−Π4

l=1(1−(1−ho∼
i3l

)2)φl)
1
2 } >

},
GCHFHA2(ch31, ch32, ch33, ch34) = ψ2

3 = {< {[0.4149, 0.6609], [0.4181, 0.6644],
[0.4300, 0.6709], [0.6318, 0.8578], [0.6334, 0.8590], [0.6392, 0.8614], [0.5193, 0.7112],
[0.5216, 0.7140], [0.5301, 0.7193], [0.6856, 0.8764], [0.6869, 0.8775], [0.6916, 0.8795],
[0.6236, 0.8416], [0.6252, 0.8430], [0.6311, 0.8456], [0.7460, 0.9290], [0.7470, 0.9296],
[0.7506, 0.9308], [0.7960, 1], [0.7968, 1], [0.7996, 1], [0.8568, 1], [0.8573, 1], [0.8592, 1]},
{0.3502, 0.3589, 0.3612, 0.4346, 0.4466, 0.4496, 0.4626, 0.4758, 0.4791, 0.5970, 0.6180,
0.6236, 0.5336, 0.5504, 0.5548, 0.7202, 0.7546, 0.7642, 0.5528, 0.5707, 0.5754, 0.7596,
0.8020, 0.8140} >},
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GCHFHA2((ch41, ch42, ch43, ch44) = ψ2
4 = ((⊕)4l=1)k=4(φl(cho∼

kl )2))
1
2 = {<

{[(1 − Π4
l=1(1 − (µ−o∼

i4l
)2)φl)

1
2 , (1 − Π4

l=1(1 − (µ+o∼
i4l

)2)φl)
1
2 ]}, {1 − (1 − Π4

l=1(1 −
(1− ho∼

i4l
)2)φl)

1
2 } >},

GCHFHA2((ch41, ch42, ch43, ch44) = ψ2
4 = {< {[0.3357, 0.5096], [0.3432, 0.5162],

[0.3737, 0.5575], [0.3625, 0.5320], [0.3692, 0.5382], [0.3972, 0.5767], [0.4156, 0.5805],
[0.4212, 0.5857], [0.4448, 0.6187], [0.5339, 1], [0.5377, 1], [0.5539, 1], [0.5026, 0.7711],
[0.5068, 0.7735], [0.5246, 0.7890], [0.5180, 0.7793], [0.5220, 0.7816], [0.5390, 0.7965],
[0.5506, 0.7980], [0.5541, 0.8001], [0.5694, 0.8136], [0.6307, 1], [0.6334, 1], [0.6450, 1]},
{0.4166, 0.4496, 0.4710, 0.4399, 0.4757, 0.4992, 0.4506, 0.4778, 0.5124, 0.4543, 0.4920,
0.5196, 0.5344, 0.5847, 0.6192, 0.5694, 0.6269, 0.6673, 0.5862, 0.6474, 0.6915, 0.5921,
0.6547, 0.7000} >}.
Now by using Theorem 3.22 we have,
GCHFHGσ(chkl)n

k,l=1 = χσ
k = 1

σ (((⊗)n
l=1)

n
k=1(σcho∼

l )φl) = {< {[1 − (1 −
Πn

k,l=1(1−(1−µ−o∼
ikl

)σ)φl)
1
σ , 1−(1−Πn

k,l=1(1−(1−µ+o∼
ikl

)σ)φl)
1
σ ]}, {(1−Πn

k,l=1(1−
(ho∼

ikl
)σ)φl)

1
σ } >},

for σ = 1 we have,
GCHFHG1(ch11, ch12, ch13, ch14) = χ1

1

= ((⊕)4l=1)k=1((cho∼
l )φl) = {< {[Π4

l=1(µ
−o∼
i1l

)φl , Π4
l=1(µ

+o∼
i1l

)φl ]}, {1 − Π4
l=1(1 −

ho∼
i1l

)φl} >},
GCHFHG1(ch11, ch12, ch13, ch14) = χ1

1 = {< {[0.0866, 0.2759], [0.2096, 0.3967],
[0.1082, 0.3157], [0.2620, 0.4540], [0.0999, 0.2946], [0.2420, 0.4236], [0.1249, 0.3371],
[0.3024, 0.4848], [0.1057, 0.3096], [0.2559, 0.4453], [0.1321, 0.3543], [0.3198, 0.5096]},
{0.4448, 0.6140, 0.5105, 0.6596, 0.4839, 0.6411, 0.5449, 0.6836, 0.5293, 0.6727,
0.5850, 0.7114} >},
GCHFHG1(ch21, ch22, ch23, ch24) = χ1

2

= ((⊕)4l=1)k=2((cho∼
l )φl) = {< {[Π4

l=1(µ
−o∼
i2l

)φl , Π4
l=1(µ

+o∼
i2l

)φl ]}, {1 − Π4
l=1(1 −

ho∼
i2l

)φl} >},
GCHFHG1(ch21, ch22, ch23, ch24) = χ1

2 = {< {[0.1930, 0.3526], [0.2073, 0.3796],
[0.2005, 0.3600], [0.2154, 0.3876], [0.2057, 0.3730], [0.2210, 0.4016], [0.2525, 0.4390],
[0.2713, 0.4727], [0.2623, 0.4482], [0.2819, 0.4826], [0.2691, 0.4644], [0.2891, 0.5000],
[0.2970, 0.4735], [0.3191, 0.5098], [0.3086, 0.4834], [0.3316, 0.5205], [0.3166, 0.5009],
[0.3402, 0.5393], [0.3160, 0.4983], [0.3396, 0.5365], [0.3284, 0.5087], [0.3529, 0.5477],
[0.3368, 0.5271], [0.3620, 0.5675]}, {0.5619, 0.5813, 0.5722, 0.5911, 0.6159, 0.6329,
0.5932, 0.6113, 0.6028, 0.6204, 0.6433, 0.6592, 0.6412, 0.6571, 0.6496, 0.6652, 0.6854,
0.6592, 0.7080, 0.7209, 0.7148, 0.7275, 0.7439, 0.7553} >},
GCHFHG1(ch31, ch32, ch33, ch34) = χ1

3

= ((⊕)4l=1)k=3((cho∼
l )φl) = {< {[Π4

l=1(µ
−o∼
i3l

)φl , Π4
l=1(µ

+o∼
i3l

)φl ]}, {1 − Π4
l=1(1 −

ho∼
i3l

)φl} >},
GCHFHG1(ch31, ch32, ch33, ch34) = χ1

3 = {< {[0.3303, 0.5623], [0.3837, 0.6113],
[0.4126, 0.6386], [0.4265, 0.6664], [0.4954, 0.7245], [0.5328, 0.7568], [0.4037, 0.6091],
[0.4690, 0.6623], [0.5043, 0.6918], [0.5213, 0.7219], [0.6056, 0.7849], [0.6512, 0.8199],
[0.4290, 0.6463], [0.4983, 0.7027], [0.5359, 0.7340], [0.5539, 0.7660], [0.6435, 0.8328],
[0.6920, 0.8699], [0.4442, 0.6504], [0.5160, 0.7072], [0.5549, 0.7387], [0.5736, 0.7709],
[0.6663, 0.8381], [0.7166, 0.8755]}, {0.4889, 0.5222, 0.5590, 0.6704, 0.6918, 0.7156,
0.5291, 0.5598, 0.5936, 0.6963, 0.7161, 0.7379, 0.6065, 0.6321, 0.6604, 0.7462, 0.7627,
0.7810, 0.7183, 0.7367, 0.7570, 0.8183, 0.8302, 0.8432} >},
GCHFHG1(ch41, ch42, ch43, ch44) = χ1

4
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= ((⊕)4l=1)k=4((cho∼
l )φl) = {< {[Π4

l=1(µ
−o∼
i4l

)φl , Π4
l=1(µ

+o∼
i4l

)φl ]}, {1 − Π4
l=1(1 −

ho∼
i4l

)φl} >},
GCHFHG1(ch41, ch42, ch43, ch44) = χ1

4 = {< {[0.2114, 0.3117], [0.2365, 0.3349],
[0.2546, 0.3617], [0.2852, 0.4017], [0.3190, 0.4316], [0.3435, 0.4661], [0.3583, 0.4995],
[0.4009, 0.5368], [0.4316, 0.5797], [0.4496, 0.7250], [0.5031, 0.7791], [0.5416, 0.8414],
[0.2438, 0.3423], [0.2727, 0.3678], [0.2936, 0.3972], [0.3289, 0.4411], [0.3679, 0.4740],
[0.3961, 0.5119], [0.4132, 0.5486], [0.4623, 0.5895], [0.4977, 0.6367], [0.5185, 0.7963],
[0.5801, 0.8556], [0.6246, 0.9241]}, {0.5241, 0.5390, 0.5756, 0.6252, 0.6369, 0.6658,
0.7321, 0.7404, 0.7611, 0.8842, 0.8878, 0.8967, 0.5873, 0.6002, 0.6320, 0.6750, 0.6851,
0.7102, 0.7677, 0.7280, 0.7928, 0.8996, 0.9027, 0.9105} >}.
By Threome 3.22 andσ = 2 we get,
GCHFHG2(chkl)n

k,l=1 = χ2
k = 1

2 (((⊗)n
l=1)

n
k=1(2cho∼

l )φl) = {< {[1−(1−Πn
k,l=1(1−

(1−µ−o∼
ikl

)2)φl)
1
2 , 1−(1−Πn

k,l=1(1−(1−µ+o∼
ikl

)2)φl)
1
2 ]}, {(1−Πn

k,l=1(1−(ho∼
ikl

)2)φl)
1
2 } >

},
GCHFHG2(ch11, ch12, ch13, ch14) = χ2

1 = 1
2 (((⊕)4l=1)k=1(2cho∼

l )φl) = {< {[1 −
(1−Π4

l=1(1− (1−µ−o∼
i1l

)2)φl)
1
2 , 1− (1−Π4

l=1(1− (1−µ+o∼
i1l

)2)φl)
1
2 ]}, {(1−Π4

l=1(1−
(ho∼

i1l
)2)φl)

1
2 } >},

GCHFHG2(ch11, ch12, ch13, ch14) = χ2
1 = {< {[0.0852, 0.2699], [0.2085, 0.3950],

[0.1020, 0.2902], [0.2544, 0.4326], [0.0967, 0.5100], [0.2397, 0.4214], [0.1159, 0.3101],
[0.2936, 0.4629], [0.1004, 0.2954], [0.2501, 0.4377], [0.1205, 0.3207], [0.3068, 0.4816]},
{0.4845, 0.6606, 0.5235, 0.6822, 0.5210, 0.6807, 0.5558, 0.7007, 0.5704, 0.7093, 0.6000,
0.7271} >},
GCHFHG2(ch21, ch22, ch23, ch24) = χ2

2 = 1
2 (((⊕)4l=1)k=2(2cho∼

l )φl) = {< {[1 −
(1−Π4

l=1(1− (1−µ−o∼
i2l

)2)φl)
1
2 , 1− (1−Π4

l=1(1− (1−µ+o∼
i2l

)2)φl)
1
2 ]}, {(1−Π4

l=1(1−
(ho∼

i2l
)2)φl)

1
2 } >},

GCHFHG2(ch21, ch22, ch23, ch24) = χ2
2 = {< {[0.1887, 0.3447], [0.2023, 0.3708],

[0.2469, 0.4296], [0.2656, 0.4655], [0.2808, 0.4532], [0.3026, 0.4923], [0.2890, 0.4619],
[0.3116, 0.5021], [0.1930, 0.3487], [0.2070, 0.3752], [0.2529, 0.4351], [0.2721, 0.4716],
[0.2877, 0.4591], [0.3102, 0.4989], [0.2962, 0.4679], [0.3196, 0.5091], [0.1950, 0.3523],
[0.2091, 0.3792], [0.2556, 0.4400], [0.2749, 0.4772], [0.2908, 0.4645], [0.3136, 0.5050],
[0.2994, 0.4734], [0.3231, 0.5153]}, {0.6038, 0.6184, 0.6175, 0.6314, 0.6551, 0.6672,
0.7209, 0.7302, 0.6099, 0.6242, 0.6234, 0.6370, 0.6602, 0.6721, 0.7248, 0.7339, 0.6470,
0.6595, 0.6587, 0.6707, 0.6911, 0.7017, 0.7487, 0.7569} >},
GCHFHG2(ch31, ch32, ch33, ch34) = χ2

3 = 1
2 (((⊕)4l=1)k=3(2cho∼

l )φl) = {< {[1 −
(1−Π4

l=1(1− (1−µ−o∼
i3l

)2)φl)
1
2 , 1− (1−Π4

l=1(1− (1−µ+o∼
i3l

)2)φl)
1
2 ]}, {(1−Π4

l=1(1−
(ho∼

i3l
)2)φl)

1
2 } >},

GCHFHG2(ch31, ch32, ch33, ch34) = χ2
3 = {< {[0.3153, 0.5246], [0.3773, 0.5918],

[0.4092, 0.6278], [0.3788, 0.5749], [0.4595, 0.6565], [0.5026, 0.7030], [0.3760, 0.5597],
[0.4558, 0.6365], [0.4983, 0.6792], [0.4577, 0.6169], [0.5685, 0.7145], [0.6328, 0.7753],
[0.3877, 0.5723], [0.4714, 0.6532], [0.5164, 0.6988], [0.4734, 0.6323], [0.5915, 0.7375],
[0.6619, 0.8064], [0.3904, 1], [0.4751, 1], [0.5205, 1], [0.4770, 1], [0.5970, 1], [0.6689, 1]},
{0.5255, 0.5600, 0.6015, 0.6945, 0.7135, 0.7372, 0.5484, 0.5804, 0.6192, 0.7070, 0.7251,
0.7477, 0.6204, 0.6456, 0.6765, 0.7484, 0.7634, 0.7824, 0.7390, 0.7547, 0.7744, 0.8218,
0.8319, 0.8448} >},
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GCHFHG2(ch41, ch42, ch43, ch44) = χ2
4 = 1

2 (((⊕)4l=1)k=4(2cho∼
l )φl) = {< {[1 −

(1−Π4
l=1(1− (1−µ−o∼

i4l
)2)φl)

1
2 , 1− (1−Π4

l=1(1− (1−µ+o∼
i4l

)2)φl)
1
2 ]}, {(1−Π4

l=1(1−
(ho∼

i4l
)2)φl)

1
2 } >},

GCHFHG2(ch41, ch42, ch43, ch44) = χ2
4 = {< {[0.2025, 0.2892], [0.2277, 0.3117],

[0.2432, 0.3318], [0.2765, 0.3801], [0.3132, 0.4127], [0.3361, 0.4422], [0.3476, 0.4773],
[0.3973, 0.5239], [0.4292, 0.5678], [0.4256, 1], [0.4929, 1], [0.5379, 1], [0.2224, 0.2994],
[0.2505, 0.3229], [0.2679, 0.3440], [0.3054, 0.3947], [0.3471, 0.4291], [0.3734, 0.4605],
[0.3866, 0.4979], [0.4446, 0.5481], [0.4824, 0.5961], [0.4782, 1], [0.5603, 1], [0.6180, 1]},
{0.5456, 0.5555, 0.5921, 0.6523, 0.6591, 0.6847, 0.7600, 0.7643, 0.7806, 0.9018, 0.9034,
0.9096, 0.5944, 0.6028, 0.6340, 0.6863, 0.6923, 0.7148, 0.7817, 0.7855, 0.8002, 0.9099,
0.9114, 0.9170} >}.
Step 4
T (ψ1

1) = 0.1108, T (ψ1
2) = 0.2808, T (ψ1

3) = 0.5484, T (ψ1
4) = 0.3940,

T (ψ2
1) = 0.1071, T (ψ2

2) = 0.3061, T (ψ2
3) = 0.5453, T (ψ2

4) = 0.3967,
T (χ1

1) = 0.0805, T (χ1
2) = 0.2022, T (χ1

3) = 0.4649, T (χ1
4) = 0.3302,

T (χ2
1) = 0.0924, T (χ2

2) = 0.1905, T (χ2
3) = 0.4622, T (χ2

4) = 0.3403,
T (ψ1

3) > T (ψ1
4) > T (ψ1

2) > T (ψ1
1),

T (ψ2
3) > T (ψ2

4) > T (ψ2
2) > T (ψ2

1),
T (χ1

3) > T (χ1
4) > T (χ1

2) > T (χ1
1),

T (χ2
3) > T (χ2

4) > T (χ2
2) > T (χ2

1),
so we conclude thatc3 > c4 > c2 > c1 and hencec3 is the best choice.

6. CONCLUSION

In our work we defined aggregation operators for cubic hesitant fuzzy sets (CHFSs)
which includes generalized cubic hesitant fuzzy averaging (geometric) operator, cubic
hesitant fuzzy ordered weighted averaging (geometric) operator, generalized cubic hesi-
tant fuzzy ordered weighted averaging (geometric) operator, cubic hesitant fuzzy hybrid
averaging (geometric) operator, cubic hesitant fuzzy arithmetical averaging (geometric)
operator, generalized cubic hesitant fuzzy hybrid averaging (geometric) operator. We also
solved a multi criteria decision making argument by applying generalized cubic hesitant
fuzzy hybrid averaging (geometric) operator. In future we shall apply CHFSs in pattern
recognition, medical diagnosis and also define distance measures for CHFSs.
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