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Abstract. In this paper, we develop a new method for multiple attribute
group decision making for triangular cubic numbers, which is the ex-
tension of cubic numbers. In this paper, we define triangular power ag-
gregation operator such that triangular cubic power weighted averaging
(TCPWA) operator, triangular cubic power weighted geometric (TCPWG)
operator and triangular cubic power weighted quadratic averaging (TCP-
WQA) operator and then applied in order to develop some methods for
multiple attribute group decision (M AGD) making problem. Finally,
a numerical example illustrates the applicability and effectiveness of the
proposed method.
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1. INTRODUCTION

In 1965 Zadeh [22] presented the idea of fuzzy set theory and it has been studied in vari-
ous fields such as, medical diagnosis, information science, fuzzy algebra and decision mak-
ing problem. But fuzzy set (F's) has not explain due to not available of non-membership.
Therefore in 1986 [4] new idea of intuitionistic fuzzy (I F's) set was defined by Atanassove.
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It is generalization of the fuzzy set (F's) theory. In different fields intuitionistic fuzzy set
theory has been studied such as, logic program, algebra, topology, medical diagnosis and
decision making problems. In [14, 15, 17] has been studied intuitionistic fuzzy aggregation
operator, intuitionistic fuzzy geometric (I F'G) and operator intuitionistic fuzzy ordered
weighted (I FOW) operator. The uncertainty problem does not explain by means of intu-
itionistic fuzzy set. So therefor Jun et al [7, 8] defined the concept of cubic set in 2012. Jun
defined a new theory which is known as cubic set theory. This theory is able to deal with
uncertain problem, cubic set theory also explain the satisfied, unsatisfied and uncertain in-
formation. Cubic set theory applied in many area’s such that BCK/BCI algebra and other
structure [7, 8]. Like the other scholars in [3,7,13,15,17,19] discuss various aggregation
operators

The aggregation operator information are in interesting topic for research works [18, 19]
the odered weighted averaging (OW A) operator is a reordering step having input argu-
ments are re-arranged in descending order [15, 16] the ordered weighted geometric oper-
ator is the aggregation operator is happening on the (OW A) operator. In this paper, we
develop different types of operators such that triangular cubic power weighted averaging
(TCPW A) operator, triangular cubic power weighted geometric (T'C PW () operator and
triangular cubic power weighted quadratic averaging (T'C PW @A) operator. By applying
these operators we construct a numerical example to verify the validity of our results.

The paper is arranged as follows; In section 2, we evaluate and described basic defi-
nitions of fuzzy set, cubic numbers numbers, triangular cubic numbers and power aggre-
gation operators. In section 3, we develop different type of operators such that triangular
cubic power weighted averaging (T'C PW A) operator, triangular cubic power weighted
geometric (TC PW @) operator and triangular cubic power weighted quadratic averaging
(TCPWQA) operator. In section 4, different steps are define which are used to construct
a numerical application. In section 5, we give a numerical application. Finally conclusion
is given by section 6.

2. PRELIMINARIES

We defined some of the fundamental concepts and definitions which are necessary for
this paper fuzzy set and cubic set, the idea of fuzzy set and I F's defined as follows in this
section such that,

Definition 2.1. [5] Let L be a fixed set. An IF's P in L is an object having the form:

P={{lpuall),v, (1))l €L}, (1) herev,:L —[0,1]and p4 : L — [0, 1] represent
the degree of non-membership,and the degree of membership of the element [ € L to P,
respectively and forevery l € L 0 < pa(l)+v,(l) <1.(2) Foreach IFs Pin L,

Tal) =1—pa(l) —va(l), foralll € L (3) mwa(l) is said the degree of indetermi-
nacy of [ to P.

Definition 2.2. [10] Let L be a fixed non empty set. A cubic set is an object of the form

such that, C' = {{a, A(a),&(a)) : a € L} here A is an interval-valued fuzzy (I'V F') set and

¢ is a fuzzy set in L. A cubic set C' = (a, A(a),&(a)) is simply denoted by ¢ = <fl, §> .
The collection of all cubic set is denoted by C'(L) such that,

(a)if€ € /:1(1) for all [ € L so it is called interval cubic set,
(b) If & ¢ A(l) forall I € L so it is called external cubic set,



Triangular Cubic Power Aggregation Operators and Their Application to Multiple Attribute Group Decision Making 77

(c)If € € A(l) or X ¢ A(l) its called cubic set for all [ € L.

Definition 2.3. [10] Let A = </~1, §> and B = <]§, u> be any two cubic set in L such
that,

(a) (Equality) A= B < A= Band & = p.

(b) (P—order) AC4 B AC Band ¢ < p.

(¢c) (R—order) ACR B& AC Band € > p.

Definition 2.4. [10] The complement of A = </1, 13 > is defined to be the cubic set as
follows; A® = {(z, A°(1),1 —&(1)) |l € L}. }

Definition 2.5. [18] A triangular fuzzy numbers ¥ can be defined by a triplet (VX ¥ ¥U)
where WX and WU stand for the lower and upper values of the support of 0, respectively,
and UM for the model value.

-+ -+ -+ = 4

[\Ilv\Ij]Lv[\I/a\Ij]Ma and T _ [TvT}Lv[TvT]]M]v
- + J = - +
two triangular cubic numbers. Then we define the following properties such that,
- = ==+ + ++
(U +YT -0, ¥+7T—UY)E,
o el e S A o S
(T e T = [T+YT 9T, T4+ 7T —TTY]
- - -+ + ++
U+ —-UY,¥+7—-0T)Y,
(- L, MM Ul
—= ++ . —= ++ - = ++
- (U, UYL (oY, UM (oY, UV
(b)lI}@T: (§L+¢)L—§L¢L,€M—|—(I)M—£M(I)M,
£U 4 (I)U _ EU‘I)U).

- (1—\1/>@,1— (1—\5)@]2

(P = [1-(1—@) ,1—(1—\5)@]1”,

Let U = be any

[0.11,0.12] [0.31,0.32],

[0.32,0.35], [0.46,0.48] ,

[0.44,0.55] , [0.56,0.70] ,
0.11,0.12,0.13 0.35,0.40,0.50
two triangular cubic fuzzy numbers, and let ® = 0.3. Then, we verify the above results as
follows;

Example 2.6. Let ¥ = be any
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[0.11+0.31 — 0.11 x 0.31,0.12 + 0.32 — 0.12 x 0.32],
[0.32 + 0.46 — 0.32 x 0.46,0.35 + 0.48 — 0.35 x 0.48],
[0.44 + 0.56 — 0.44 x 0.56,0.55 + 0.70 — 0.55 x 0.70],
(0.11 x 0.35,0.12 x 0.40,0.13 x 0.50)
~( ([0.3859,0.4016], [0.6340, 0.6620], [0.7536, 0.48650],
- ( 0.0385,0.0482, 0.0654 )
[0.11 x 0.31,0.12 x 0.32],
[0.32 x 0.46,0.35 x 0.48],
[0.44 x 0.56,0.55 x 0.70],
(0.11 4+ 0.35 — 0.11 x 0.35),
[0.12 +0.40 — 0.12 x 0.40],
0.13 4+ 0.50 — 0.13 x 0.50],
_{ ([0.0341,0.0384], [0.4172,0.1680],
- < [0.2464, 0.3850], 0.42, 0.47, 0.056 )
(1—(1-011)"%1—(1-0.12)"7%,
- | (1-1-032)"%1-(1-035"7,
(@DPOT =1 1 (12049° 1 (1— 055",
(0.11)%% x (0.12)** x (0.13)**
_ (10.041,0.034], [0.412,0.180],
- < [0.244, 0.380],0.5157, 0.5293, 0.5422 ) '
([(0.11)°3, (0.12)°-3], ([(0.32)°3,
. (0.35)0-3], ([(0.44)%3, (0.55)03],
() % = (1—(1-011)"",(1—(1-0.12)°"°
(1—-(1-0.13)"°
(0.5157,0.5293, 0.5422),
= [ ([0.041,0.034],[0.412,0.180],
[0.244, 0.380]
Definition 2.7. If Ais a triangular cubic variable such that

~ —+ o=+ = .
A=V = [[U, UL [0, UM [0, WY (¢L,¢M€V)]. Then the expected value of A is

()T T =

S
=0
®
3
I

define as follows,

_ L _ _
- [(‘I’+\J1r’) +4(W+$)M+<\If+$> ek pagM 4 ev)
E (A) - . (4)
Example 2.8. Let ¥ = ([0.31,0.39], [0.40, 0.45] , [0.79,0.80] , 0.55, 0.65, 0.80) be any

triangular cubic number. Then, we verify the above results as follows; E/ (fl) = 0.5355.

2.1. Power aggregation operators. In[26] weighted averaging aggregation operator called
power aggregation (P A) as follows;

1+A(T;)) T,
PA(V,,9,,...,¥,) = %, (5)

here A (¥;) = S(j=1 Supt(¥;, ¥;),and Supt (¥, T) is the support for ¥ from T sat-
J#4)

isfied the conditions such that,

(a) Supt (¥, T) € [0,1],
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(b) Supt (W, T) =Supt (T, V),
() Supt (U, ) > Supt (z, ), if [¥ — 7| < |z — |
Xu and Yager [27] further defined a power geometric (PG) operator based on the PA

(1+A(T4))

operator and geometric mean such that, PG (¥4, ¥, ..., ¥,,) = H \IJZ:L TR RN (6)
i=1

3. TRIANGULAR CUBIC POWER WEIGHTED AVERAGING (T'C'PW A) OPERATOR,
TCPW G OPERATOR AND T'C'PW QA OPERATOR

In the following section, we present triangular cubic power aggregation operators which
we used through out this paper.

s -+ =+ -
Definition 3.1. Let {; = ([Q, GIE G, CIM, G, Ci]U AEAM )\U>beaset of triangu-

lar cubic numbers and w = (w1, wa, ..., wn)T be the weighting vector of G (i1=1,2,...,n)
and w; € [0,1] and >_"_; w; = 1. Then, we define triangular cubic power weighted aver-
age operator as follows,

TCPW A, (51,52,...,§n) -

(V) 1L
G . _maclh)

T (ESEETCTDRT | RS

Jj=1 j=1
[ iontp) (et 7™
t-IIa-ao a-TIa-¢ :

J=1 j=1
[ . N 7 )
1— H(l _ C’L)Zk 1 q;C(l-%—T(r(_) ) 1 _ H(l _ CZ)Z’V . gk(l_*_:,w(,ﬂ( ))>

j=1 j=1

by 1+A(r(“))) bv(1+A(1v('L’))>

n YU_g n Yu_y
[Te)™ A TIen™ : v
j=1 Jj=1

bv(1+A(f§j’.’))> v
n U_ by (144 »«E;’)
[Te) ™"t
j=1
(&) = > (j=1 w;Supt (&, G, (8)

97 ~ ~
and Supt ({;, ¢;) is the support for ¢; from (; satisfied the following conditions such
that,

(a) Supt (&, ¢;) € [0, 1],
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(b) Supt (Gi, ¢;) =Supt (G, ¢;),

(c) Supt (Gi, G5) = Supt (G, G,

if d((;, ;) < d(Cs, ;) Inthis case d denotes the distance measure. Ifw = (1, 1. 1)T
then the T'C'PW A operator reduces to a triangular cubic power average (T'C' P A) operator.

TCPA, (51,527...75n) —

)

[ b1,(1+A(1'«£;_’))) b1,(1+A(7=('9) ) L
n — xu_y by (1440 " + vy b (1A
1-Tla-¢™" ( ”>,1—H<1—<1—) ol )
j=1 j=1
: n <1+(A(F(U)())> n (1+<A(F(v))(>) ) 1"
- Xu_ 1+A () + Ty 1A
L-JJa-o™ Aa-Tla-¢)
j=1 j=1
- (HA(;@%) by (1+A(i§_}’))) U)
f[ 1 —51 T¥_q <1+A(r(“ ﬁ + Z’; 1 <1+A(r£;))) ’
Jj=1 j=1
/ bl,(1+A(7“§;))) L b (1+A(f§;))) M

U by (1+A(r(”)>>

H(ng) ' ( ’ ) ’ H(gC@) ’ ’
j=1

j=1
b,,(1+A<r(“.’) ) v
n su bv 1+A RO
) SR Y
here
T(G) =130 J p supt (G, G).- (10)

#i)
The TCPW A operator we construct the proprties as follows;
Theorem 3.2. (Idempotency) Let( = (Cl, Cay ey (n). Then,

TCPW A, (51,52,...,§n) = (11)

Theorem 3.3. (Boundedness) min; EZ <TCPWA, (51, 52, ey fn) < max; @
Based on the TC PW A operator and the geometric mean, we define a triangular cubic
power weighted geometric (T'C PW @) operator:



Triangular Cubic Power Aggregation Operators and Their Application to Multiple Attribute Group Decision Making 81

TCPW G,y (GGG ) =

r bo (1+46)) bo(1ra () ) k

no, | Theaby (120 ) " Sty o (1480 ))

I1(<) I1(%)

Jj=1 Jj=1

B bv<1+A(f»E;’))) bv(1+A(fv§}’))) 1M

o Tmnee) | EEn ()

11(<) T1(%)

Jj=1 Jj=1

- - by (HA(??(;))) )

<1+A(i ) =Y b,v<1+A(r§;’)))

ﬁ — Xu_ b 1+A(T‘“ ﬁ ( )

]:1 =

y (v) L ()

by (1+A(%U )) (1+A(r ))
n sy vo(14205)) n Uy oo (1480 5)
1-J[a-¢4) J1i-TIa-¢4)
Jj=1 Jj=1
b (1+A(?(“))> v
n v <1+A(r(”.>))
-Ha-¢ -(12)
Jj=1
Especially, If w = (%, %, e ;) Then the TC PW G operator reduce to a triangular

cubic power geometric 7'C' PG operator,
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TCPG,, (517527-.-,@1) _

B (1+A(;§'J‘.’>)) <1+A(F£;}))) 1k
_— sy, (iaclh) . sy (1))
I1 (¢ (¢
j=1 < Z 7j:1 '
- (1+A(F§;’>)) M
O (R
j=1 j=1
r (1+A(F£;’))) (HA(T(“ )) 1)
QR )
(3 7 )
=1 1
p » L - » M
. (1+A(7“(.))) . (1+A(7‘(.) )
1- H (1-¢ )z’; 1(1+A<r(.)>) H (1- E:j 1 1+A<r<”.) )
b
=1 j=1
<1+A('r(v) ) v

f[ 1 _é—z 23 1<1+A(T(v)) (13)

It can be easily proved that the 7C' PW G operator has the following properties similar
to T'C PW A operator.

Theorem 3.4. (Idempotency) Let

(GG Ga) = G then TCPW Gy (G1u v Ca) = C.

Theorem 3.5. (Boundedness).

mini 57, S TCPWA’LU (517 527 sy 571) S maXynsg 51

From the definitions of the TC PW A and T'F PW G operators, it can be seen that the
fundamental characteristics of these two operators is that they weight all the given triangu-

lar cubic numbers,
Definition 3.6. [21] (WQA): R™ — R,if WQA
1

WQA, (¥, ¥,, ..., T, (sz ; )2. (14)

Then (WQA) is called a weighted quadratic averaging operator, where
w = (wi,ws, ...,wn)T be the weighting vector of (¥, ¥, ..., ¥,) and w; € [0,1]
>, w; =1, where R is set of all real numbers.
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Definition 3.7. An ordered weighted quadratic averaging (OW QA) operator of dimen-
sion n is a mapping OWQA : R" — R, thathas an associated vector w = (w1, wa, ..., wn)T
and Y1, w; = 1, such that,

1
3

OWQAw(\Ifl,\IJ27...7\I/n):<ZwZ- (\I;a(i))2> . (15)
i=1

here (a (1), (2),...,a(n)) is a permutation of (1,2,...,n), such that Wy;_1y) >
Vo foralli =1,2,...,n.

In the following, based on the quadratic average operator and triangular cubic power
weighted average (T'C'PW A)operator we define triangular cubic power weighted quadrat-
ic averaging operator (TC'PW QA) operator, which allows the input data to support each
other in the aggregating process.

-+

[Cia Cz‘}Ua iLv szfo
lar cubic numbers and w = (w1, wa, ..., wn)T be the weighting vector of G (i1=1,2,...,n)
and w; € [0,1], > ; w; = 1, then we define the triangular cubic power weighted qua-
dratic average operator as follows.

o[ GG
Definition 3.8. Let (; = o e sl o (t=1,2,...,n) be a set of triangu-
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TCPWQA, (51,52, gn) -
— b7]<1+/\(7:£;_’))) b1;<1+A('FE;_)))) L

1= A= = 0o T a = (=i lmesh) |

j=1 3o
1= T = (=i (elD) T = (6 =i (i)
=t i=1
i () X - ()
| T E R G I PR § (T R G
Jj=1 =1
/ (1+A<7<”’>) (1+A<7<”>>) L B

’ z

=1

<.

b (1+A(;§;))> <1+A(7(”>))
u

ﬁ((z 2v§1bv(1+/\(7-§’.’>) ﬁ Z_Z ; (1+A(r§;))> 7
j=1

j=1

(1+A(r(“))> be (1+A(f~£;’))>
2T b (14ac())) II (£,)2 b= o (1re) (16)
j=1
From the definitions of TC'PW A, TCPW G, and T'C'PW () A operators, it can be seen

that all these operators not only depend upon the input arguments and allow values being
aggregated to support and reinforce each other.

u’:]:

4. MODELS FOR MULTIPLE ATTRIBUTE GROUP DECISION MAKING WITH
TRIANGULAR CUBIC INFORMATION

The above power aggregation operators utilize to multiple attribute group decision mak-
ing problem in this section. For (M AGD) with triangular cubic information. Let P =
{P1,Ps, ..., P} be the set of alternatives, @ = {Q1,Q2, ..., @, } be the set of attributes.
Let w = (wl,w%...,wn)T be the weighting vector and w; > 0, j = 1,2,...,n here
S wj =1.Let B={By,Bs,..., B} be the set of decision maker’s whose weighting
vector is b = (by, ba,...,b,) € H, with by > 0,v=1,2..,udv_ b, =1 Consider

-+

- M

that Ay, = (CZ—(?)) = K” C 151G G, Jmxn, is the multiple attribute group
7 ) mxn [Cz C} L ¢M g_U
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decision making matrix, where ;-(1-)) is an attribute value which takes the form of triangular
cubic numbers, given by the decision maker’s Bj, € B, for the alternative P; € P with re-
spect to the attribute (); € Q. Then, we utilize the TCPW A, TCPWG and TCPW QA
operators to develop an approach to M AG D making problems with triangular cubic infor-
mation, which can be described as following steps;

Approach 1
Step 1. In this step, we normalize each attribute value Ci(;j) in the matrix A, into a

corresponding element in the matrix
Ao (;® _ (o™ (eo)® () ®
v T U mxn y ” 9 ” 9 ” )
using the following equation such that,
b Ity )
[1—[¢+¢]%, L= [C+ ™, 1= [C+ ], (17)
1-¢¥, 1M 1-¢"]
Step 2. Calculate the support measure as follows:
Supt (r(l) <”>) d( (f),*”) 1=1,2,...,t,  (18)

ij o ij
which satisfies the support conditions. We calculate d ( i j), ff;”) with the distance as

‘(r§f))(k) B ( EJL))(I)‘ N
(CONSCON
a (7,70 = +‘( §) - () 19)

Step 3. We apply the weights b = (bl, ba, ..., by ) of the decision maker’s B, (v = 1,2, ..., u)
to calculate the weighted support A (r of the triangular cubic preference value r( v) by

follows:

the other triangular cubic preference value rgj) for the preference value

~(l)(Z*12 ,tyand | # u)

v v) ~(l
( i )) Zsupt (r(] ), Z(])) (20)
l;ék

and calculate the weights VZ(-;-)) (v =1,2,...,u) of the triangular cubic preference value

Fg;’) (v=1,2,...,u) such that,
by (1+A (Y

M,U:1,2,...,U, (21)
>0 b (14AC)

v=1
where Vl(;) >0, (v=1,2,...,u)and Y o_, VE;) =1. )
Step 4. In this step, we apply the decision information given in the matrix R,,, TCPW A,
TCPWG and TC PW QA operators such that,

v =

ij
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- L) (M) (U 2 .
Tij = (rl(] )’TZ(J )’TZ(J )) TCPWQA( ’Lj ’ 53)7' X f;))>
_ - . .
1-JJa- 1-JJa-
Jj=1 Jj=1
bv(1+/\(¢=£;’))) ) bu(lJrA(;(v))) s
(G P esh) gy e
o i
- oM
n n
1-JJa- 1-JJa-
Jj=1 Jj=1
bo <1+A(%§;’)>) ) bu<1+A(F(“ )> s
(G2 T i) (B )
3 3
. )
n n
1-JJa- 1-JJa-
Jj=1 j=1
u u
_ by (144(r{) bo (144 ()
Gy )
b,,<1+A(r(U) ) b,,<1+A(r(U) ) L
n —_— n RN NS A S—
H QZU 1 by 1+A(r(1.)))) H QZU b 1+A(r(“)))
) z )
j=1 =1
Sk (1+T(7’<k))) <1+T(;(’?>)> M
n _— n R N —
| SRS RN | (DR
) 1 k)
Jj=1 Jj=1
<1+A(7(l>>) (1+A(7(”> ) v
n _— n PR S S—
H 22«) L oo (140 5)) H )2 St L oo (140 5)) (22)
’ 7

To aggregate all the individual decision matrices R, (v=1,2,..,
decision matrix R,

(TU)an - [ 277

WE wM gyl

u) into the collective
, where b = (by, ba, ..., b,) be the

Hm

13

weighting vector of decision maker’s.

Step 5. Aggregate all triangular cubic preference value 7;; (j = 1,2, ..., n) by applying
n

the triangular cubic power weighted average operator where ) w; =1
i=1
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Fy = (7 700 FD) = rePwa (757 =
L

1] ? 1] ? 1]

9]

B (R (N
(jfg(ww)L,ﬁ((mw>M,j1f[1<<xi>wj>ff>

or the triangular cubic power weighted geometric (T'C PW G) operator :
S (r(L) =(M) ~(U)) TOPWG ( (]1)’ 5]2),' . ~$}))

Tij ij 2Ty T
— + J —_ + J
H(Cij)wj7 H (Cij) H(Cij)wj, H (Cij)
j=1 j=1 j=1 j=1
_ o\ Wi
H(C’ij)w]7 H (Cz]) )
_‘]:1 J=1 u
- 1= &'j)wj)(L) )
n =t n (24
1= TT=gn™)™ 1 =TT =g
=1 =1

or the triangular cubic power weighted quadratic average (T'C PW Q) A) operator;

fy = (7 700 F)) = rePwa (7LD, ) =

J’U’U

N 1-JJa- @2)% 1= L= (2 ]

M
Nl—ﬁ(l—<<>2>wa$1—ﬁ(l—(Z)?)%i
j:l jzl ,
N 1-JJa- (C)“')“’nJ 1= I - 2 ] . (25)
j:nl L 121 L
( Hf(&?)%)) ( H((?)”])) :
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To derive the overall triangular cubic values 7; (i = 1,2, ...,m) of the alternative A;
where w = (wy, wa, ..., wn)T be the weighting vector of the attributes.

Step 6. To rank these collective overall preference values 7; (i = 1,2, ...,m), there
should be first compared each 7; with all the 7; (j = 1,2, ..., m) by applying E.q. 4.

Step 7. In this step, we find the rank of all the alternatives.

Flow Chart

ultiple attribute group decision ] ———— r nbjEWUbjerhu
aking problem o Lnitho

/i Normilized T C Decision Matrix

[culxle Support of Decision Matrix]
Applying ‘weight to
d overall preference values

)
i e
ey
Applying TCBWA TCPWG and .
TCPPWOA operator e ! Step 4 )
T ]
R
R ot s

Step 2

| e

[ Expected values 1
.| =ecaa

Fig (a)

In this section, we have proposed one approach to solve the triangular cubic multiple
attribute group decision making problems with the known weights information of decision
makers.

5. NUMERICAL EXAMPLE

Consider a company wants to invest company, and found the best option. For this pur-
pose they consider the set of four possible alternatives to invest the money such that, A; is
a mobile company, Aj is a laptop company, As is a light charger company, A, is an arms
company. The investment company must take a decision according to the following four
attributes such that, () is the risk analysis, ()2 is the growth analysis, ()3 is the social-
political impact analysis, (4 is the environmental impact analysis. The four possible alter-
natives A;(i = 1,2,3,4) are to be constructed by applying triangular cubic numbers. Let
By (k = 1,2, 3) be the set of decision maker’s having weighting vector s = (0.4,0.3,0.3)
under the four attributes having weighting vectors w = (0.1, 0.2,0.3,0.4)”, the triangular
cubic decision matrix are shown in Tables (1, 2, 3) such that,
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Table 1. Decision matrix /11

@1

Py

([0.11,0.12], [0.32, 0.35], [0.44, 0.55], 0.11, 0.12, 0.13

P

([0.23,0.24

9

0.33,0.36

)

0.56, 0.57

P

([0.34,0.38

Y

0.41,0.45

b

0.62,0.63

,0.25,0.35,0.45

Py

)
,0.21,0.22,0.23)
)
)

([0.16, 0.18], [0.58, 0.60], [0.88, 0.92], 0.16, 0.19, 0.21

Q2

Py

([0.13,0.14], [0.38, 0.42], [0.45, 0.85], 0.13, 0.39, 0.87

Py

([0.15,0.25

9

0.25,0.35

)

0.35,0.45

.0.35,0.45,0.55

Py

([0.18,0.22

Y

0.24,0.36

b

0.38,0.49

Py

)
)
,0.19,0.29, 0.33)
)

([0.58,0.68],[0.72,0.77],0.81,0.83],0.71, 0.81, 0.91

Qs

Py

([0.13,0.23],[0.33,0.43], [0.45, 0.85], 0.23, 0.33, 0.43

P

([0.43,0.53

0.58,0.62

0.66, 0.71

0.18,0.19, 0.24

P3

([0.31,0.35

Y

b

Py

]
B
]
]

[
[
0.45,0.49
[

]
B
]
]

[
[
[0.52,0.58
[

], )
J; )
[,0.42,0.44, 0.46)
], )

([0.42,0.52], [0.55, 0.58], [0.68, 0.72], 0.29, 0.33, 0.49

Q4

Py

{[0.31,0.32], [0.34, 0.35], [0.41, 0.42], 0.91, 0.92, 0.93

Py

([0.15,0.25

0.35,0.45

0.28,0.32,0.35

P3

]
B
]

[
[0.25,0.35
[

([0.15,0.25], [0.25, 0.35

b

Py

]
I,
]
]

[
[
[0.35,0.45
[

I, )
I, )
[,0.31,0.41, 0.56)
I, )

([0.15,0.25], [0.25, 0.35], [0.35, 0.45], 0.42, 0.58, 0.71

Table 2 Decision matrix AQ

)

Py

{[0.18,0.28

0.35,0.38

)

0.44, 0.54

,0.38,0.48,0.52

Py

—~

0.22,0.32

0.36,0.41

b

0.52,0.58

,0.27,0.39,0.47

Ps

.

0.29,0.36

0.47,0.58

)

0.59,0.69

Py

—~

0.44,0.49

0.52,0.59

)

0.69,0.72

)
)
,0.37,0.49, 0.58)
,0.71,0.73,0.75)

O

2

Py

.

0.29,0.38

0.42,0.68

)

0.72,0.88

.0.19,0.29,0.36

Py

—~

0.26,0.46

0.57,0.61

)

0.68,0.77

,0.94,0.05,0.96

Ps

.

0.71,0.72

0.81,0.82

)

0.88,0.89

P,

—~

0.47,0.52

0.54,0.64

)

0.65, 0.66

)
)
,0.12,0.22, 0.33)
,0.26,0.38,0.52)

O

3

Py

.

0.19,0.22

0.24,0.38

)

0.68,0.78

.0.61,0.63,0.68

Py

—~

0.21,0.28

0.33,0.39

b

0.42,0.56

Ps

.

0.31,0.42

0.48,0.57

)

0.62,0.77

,0.28,0.68,0.98

P,

0.46,0.51

—~

0.82,0.88

b

0.91,0.97

)
,0.81,0.85,0.91)
)
,0.19,0.49, 0.89)

)

4

Py

0.28,0.33

0.38,0.48

)

0.54,0.58

,0.12,0.16,0.19

P,

0.41,0.61

0.64,0.79

b

0.88,0.95

,0.88,0.89,0.94

Ps

0.13,0.15

0.19,0.21

)

0.22,0.23

P,

oo~~~

0.31,0.42

0.53,0.64

)

0.75,0.86

)
)
,0.21,0.31,0.44)
,0.86,0.88, 0.93)
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Table 3 Decision matrix 1213
N 0, -
Py | {[0.28,0.39],[0.58,0.62],[0.68,0.77],0.75,0.85, 0.89)
P, | ([0.61,0.66], [0.69,0.71],[0.88,0.89],0.72,0.88,0.98)
)
)

Ps | ([0.68,0.69],[0.73,0.75],[0.81,0.83],0.28,0.32,0.48
P, | ([0.48,0.49], [0.59, 0.69], [0.74, 0.83],0.82,0.92,0.96
Q2
Py | {[0.16,0.26],[0.28,0.39],[0.42,0.56], 0.55, 0.58, 0.64)
P, | ([0.22,0.24],]0.26, 0.28],[0.32,0.48],0.31,0.38,0.57)
Ps | ([0.21,0.38],[0.39,0.55],0.59,0.91],0.66,0.76,0.81)
P, | ([0.19,0.81],]0.83,0.88],[0.89,0.97],0.61,0.71, 0.88)
Qs
Py | {[0.29,0.39],[0.39,0.49],[0.51,0.59],0.66,0.71, 0.88)
P, | ([0.22,0.44],]0.61, 0.64], [0.66,0.78],0.79, 0.80, 0.89)
P; | ([0.81,0.82],[0.84,0.86],[0.89,0.96],0.81,0.88,0.97)
P, | ([0.56,0.59],]0.68,0.77],[0.79,0.88],0.39, 0.48, 0.55)
Q4
Py | {[0.66,0.78],[0.81,0.88],[0.92,0.98],0.97,0.98, 0.99)
P, | ([0.69,0.79],]0.89,0.92],[0.96,0.99],0.91, 0.95, 0.96)
Ps | ([0.42,0.44],[0.46, 0.48], [0.49, 0.50], 0.52,0.55,0.61)
| | Py | ([0.91,0.92],]0.93,0.95],[0.96,0.98],0.19, 0.59, 0.99)
Step 1. In this step, we constructing the normalized decision matrix Ry, by using E.q.
17 the result shown in Tables (4 — 6).
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Table 4 Decision matrix ]:31

@1

Py

([0.45,0.56],0.65,0.68], [0.88, 0.89], 0.87, 0.88, 0.89

P

([0.43,0.44

9

0.64,0.67

)

0.76,0.77

P

([0.37,0.38

Y

0.55,0.59

b

0.62,0.66

,0.55,0.65,0.75

Py

)
,0.77,0.78,0.79)
)
)

([0.08,0.12], [0.40, 0.42], [0.82, 0.84],0.79, 0.81, 0.84

Q2

Py

([0.13,0.14], [0.38, 0.42], [0.45, 0.85], 0.13, 0.39, 0.87

Py

([0.15,0.25

9

0.25,0.35

)

0.35,0.45

.0.35,0.45,0.55

Py

([0.18,0.22

Y

0.24,0.36

b

0.38,0.49

Py

)
)
,0.19,0.29, 0.33)
)

([0.58,0.68],[0.72,0.77],0.81,0.83],0.71, 0.81, 0.91

Qs

Py

([0.13,0.23],[0.33,0.43], [0.45, 0.85], 0.23, 0.33, 0.43

P

([0.43,0.53

0.58,0.62

0.66, 0.71

0.18,0.19, 0.24

P3

([0.31,0.35

Y

b

Py

]
B
]
]

[
[
0.45,0.49
[

]
B
]
]

[
[
[0.52,0.58
[

], )
J; )
[,0.42,0.44, 0.46)
], )

([0.42,0.52], [0.55, 0.58], [0.68, 0.72], 0.29, 0.33, 0.49

Q4

Py

{[0.31,0.32], [0.34, 0.35], [0.41, 0.42], 0.91, 0.92, 0.93

Py

([0.15,0.25

[0.25,0.35

0.35,0.45

0.28,0.32,0.35

P3

]
B
]

([0.15,0.25],[0.25,0.35

b

Py

]
I,
]
]

[
[
[0.35,0.45
[

I, )
I, )
[,0.31,0.41, 0.56)
I, )

([0.15,0.25], [0.25, 0.35], [0.35, 0.45], 0.42, 0.58, 0.71

Table5.

Decision matrix Ry

)

Py

{[0.46,0.56

0.62,0.65

)

0.72,0.82

,0.48,0.52, 0.62

Py

—~

0.42,0.48

0.59,0.64

b

0.68,0.78

,0.53,0.61,0.73

Ps

.

0.31,0.41

0.42,0.53

)

0.64,0.71

Py

—~

0.28,0.31

0.41,0.48

)

0.51,0.56

)
)
,0.42,0.51,0.63)
,0.25,0.27,0.29)

O

2

Py

.

0.29,0.38

0.42,0.68

)

0.72,0.88

.0.19,0.29,0.36

Py

—~

0.26,0.46

0.57,0.61

)

0.68,0.77

,0.94,0.05,0.96

Ps

.

0.71,0.72

0.81,0.82

)

0.88,0.89

P,

—~

0.47,0.52

0.54,0.64

)

0.65, 0.66

)
)
,0.12,0.22, 0.33)
,0.26,0.38,0.52)

O

3

Py

.

0.19,0.22

0.24,0.38

)

0.68,0.78

.0.61,0.63,0.68

Py

—~

0.21,0.28

0.33,0.39

b

0.42,0.56

Ps

.

0.31,0.42

0.48,0.57

)

0.62,0.77

,0.28,0.68,0.98

P,

0.46,0.51

—~

0.82,0.88

b

0.91,0.97

)
,0.81,0.85,0.91)
)
,0.19,0.49, 0.89)

)

4

Py

0.28,0.33

0.38,0.48

)

0.54,0.58

,0.12,0.16,0.19

P,

0.41,0.61

0.64,0.79

b

0.88,0.95

,0.88,0.89,0.94

Ps

0.13,0.15

0.19,0.21

)

0.22,0.23

P,

oo~~~

0.31,0.42

0.53,0.64

)

0.75,0.86

)
)
,0.21,0.31,0.44)
,0.86,0.88, 0.93)
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Table 6 Decision matrix ]:23
N 0, -
Py | {[0.23,0.32],0.38,0.42],[0.61,0.72],0.11,0.15,0.25)
P, | ([0.11,0.12],]0.29,0.31],[0.34,0.39],0.02,0.12, 0.28)
)
)

P | ([0.17,0.19],[0.25,0.27], [0.31, 0.32], 0.52, 0.68, 0.72

P, | ([0.17,0.26], [0.31, 0.41], [0.51, 0.52],0.04, 0.08, 0.18

Q2

P, [ {[0.16, 0.26], [0.28, 0.39], [0.42, 0.56], 0.55, 0.58, 0.64)

P | ([0.22,0.24], [0.26, 0.28], [0.32, 0.48], 0.31, 0.38, 0.57)
)
)

P | ([0.21,0.38],[0.39, 0.55], [0.59, 0.91], 0.66, 0.76, 0.81
P, | ([0.19,0.81],[0.83, 0.88], [0.89, 0.97],0.61, 0.71, 0.88
Q3

Py [ ([0.29,0.39], [0.39, 0.49], [0.51, 0.59], 0.66, 0.71, 0.88)
P | ([0.22,0.44], [0.61, 0.64], [0.66, 0.78], 0.79, 0.80, 0.89)
P5 | ([0.81,0.82],[0.84, 0.86], [0.89, 0.96], 0.81, 0.88, 0.97)
P, | ([0.56,0.59], [0.68, 0.77], [0.79, 0.88], 0.39, 0.48, 0.55)
Q4

Py, | ([0.66,0.78], [0.81, 0.88], [0.92, 0.98], 0.97, 0.98, 0.99)
P | ([0.69,0.79], [0.89, 0.92], [0.96, 0.99], 0.91, 0.95, 0.96)
P | ([0.42,0.44], [0.46, 0.48], [0.49, 0.50], 0.52, 0.55, 0.61)
P, [ ([0.91,0.92],0.93,0.95], [0.96, 0.98], 0.19, 0.59, 0.99)

Step 2. We apply Eq. (18-21) to calculate the weight VE;) associated with the attribute
(v)
shown inJTable (7-9) respectively.
Table 7, Weight matrix V()
Q1 Q2 Q3 Q4
Py | 0.3840 | 0.3905 | 0.3853 | 0.3996
P, | 0.3939 | 0.3805 | 0.3806 | 0.3804
P3| 0.3899 | 0.3916 | 0.3891 | 0.3905
Py | 0.3782 | 0.3908 | 0.3858 | 0.3966
Table 8, Weight matrix V()
Q1 Q2 Q3 Q4
Py | 0.3163 | 0.3037 | 0.3086 | 0.3019
P, | 0.3184 | 0.3133 | 0.3051 | 0.3139
P3| 0.3093 | 0.3016 | 0.3165 | 0.3033
Py | 0.3127 | 0.3037 | 0.3043 | 0.3093
Table 9, Weight matrix V()
Q1 Q2 Q3 Q4
Py | 0.2961 | 0.3056 | 0.3059 | 0.2984
P, | 0.2876 | 0.3060 | 0.3142 | 0.3056
P3| 0.3007 | 0.3065 | 0.2942 | 0.3060
Py | 0.3086 | 0.3053 | 0.3098 | 0.2970

which are expressed in the matrix V(*) = (V@))4X4 (v =1,2,3) which are

values r ij
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Step 3. In this step, we apply the TCPW A, TCPW G and TC PW QA operators to
aggregate all the individual decision matrix into the collective decision matrix, the aggre-
gating results are shown in Table (10 — 12) respectively.

Table10 Decision matrix R (TC'PW A)

@1

Py

([0.39,0.49], [0.57, 0.60], [0.77, 0.82],0.39, 0.44, 0.56

P,

([0.35,0.38],[0.54, 0.58], [0.65,0.70], 0.23, 0.42,0.57

Py

Py

I, [ I [ ], )
], [ J, [ ], )
([0.29,0.34], [0.43,0.49], [0.55, 0.60], 0.50, 0.61, 0.70)
([0.17,0.22], [0.37, 0.46], [0.66, 0.69], 0.22, 0.28, 0.37)

Q2

P

{[0.19,0.26], [0.36, 0.51], [0.54, 0.81], 0.22, 0.40, 0.61

Py

P

Py

I, [ ] ], )
([0.21,0.32], [0.37, 0.42], [0.47, 0.58], 0.46, 0.54, 0.66)
(040, 0.46], [0.53, 0.60], [0.66, 0.81], 0.24, 0.35, 0.43)
([0.44,0.69], [0.72, 0.78], [0.80, 0.87], 0.50, 0.61, 0.76)

Qs

Py

0.32,0.43], [0.94, 0.67], 0.42, 0.50, 0.83)

P,

P

Py

][ I, [ ],
([0.30,0.43], [0.52, 0.56], [0.60, 0.69], 0.453, 0.47, 0.54)
([0.52,0.57], [0.62, 0.66], [0.71, 0.82],0.44, 0.61, 0.72)
{ ],10-69, 0.76], [0.80, 0.89], 0.16, 0.41, 0.60)

Q4

Py

([0.43,0.54], [0.55, 0.63], [0.69, 0.79], 0.50, 0.31, 0.34

Py

0.90,0.95/,0.57,0.61, 0.65

P

Py

], [ ]
([0.53,0.66], [0.74, 0.81],
([0-25,0.28],[0.31, 0.40],
([0.64,0.69],[0.73,0.78],

I, )
I, )
0.57,0.58],0.32, 0.41, 0.53)
0.84,0.90], 0.41, 0.66, 0.85)
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Tablel1. Decision matrix R (TCPW Q)

@1

Py

([0.37,0.47],[0.54,0.58],[0.74, 0.81],0.64, 0.66, 0.82

P

([0.28,0.30

9

0.48,0.52

)

0.57,0.63

P

([0.27,0.31

Y

0.39,0.44

b

0.50,0.53

,0.50,0.62,0.71

Py

)
,0.48,0.60, 0.68)
)
)

([0.37,0.64], [0.65, 0.81], [0.82, 0.89], 0.58, 0.69, 0.83

Q2

Py

([0.17,0.22],10.35,0.47], [0.50, 0.76], 0.30, 0.43, 0.28

Py

([0.19,0.29

9

0.32,0.38

)

0.41,0.53

,0.36,0.39,0.54

Py

([0.28,0.36

Y

0.39,0.52

b

0.55,0.69

Py

)
)
,0.37,0.48, 0.55)
)

([0.14,0.19], [0.36,0.42], [0.60, 0.62], 0.50, 0.55, 0.59

Qs

Py

([0.22,0.30], [0.32, 0.40], [0.65, 0.70], 0.60, 0.62, 0.70

P

)

)

P3

([0.40, 0.46

Y

0.54,0.59

b

0.63,0.72

Py

]
([0.27,0.40]
]
]

[ ]
[0.48,0.52]
[ }
[ ]

[ ]
[0.56,0.66]
[ ]
[ ]

, )
,0.66, 0.68, 0.78)
,0.55,0.70,0.71)
, )

([0.45,0.52], [0.65,0.71], [0.76, 0.83], 0.44, 0.69, 0.78

Q4

Py

([0.37,0.46], [0.45,0.50], [0.54, 0.59], 0.87,0.89, 0.91

Py

)

)

0.46, 0.64, 0.78

P3

]
([0.50, 0.63]
]

[ ]
[0.68,0.77]
[ ]

[
[0.81,0.91
[

Py

]
)
([0-23,0.28],[0.31,0.37], [0.46, 0.47]
]

: )
, )
,0.34,0.43, 0.50)
, )

([0.41,0.54],[0.63,0.70], [0.82,0.90], 0.63, 0.72, 0.87

@

Table12.Decision matrix R (TCPWQA)

Py

.

0.09,0.13

Y

0.17,0.19

9

0.30, 0.34

.0.39,0.40,0.43

Py

([0.37,0.41

Y

0.56,0.59

)

0.66,0.67

,0.23,0.42,0.57

Ps

([0.30,0.35

Y

0.44,0.55

9

0.56,0.61

P,

([0.19,0.23

Y

0.38,0.43

)

0.67,0.70

)
)
,0.49,0.61,0.70)
,0.21,0.27,0.37)

Py

0.18,0.26

Y

0.35,0.50

9

0.54,0.78

10.26,0.43,0.61

Py

0.21,0.33

Y

0.39, 0.44

0.49,0.60

,0.45,0.54,0.58

Ps

0.46,0.47

Y

0.57, 0.64

9

0.68,0.87

P,

Y

0.72,0.78

)

0.80,0.88

)
)
,0.24,0.35, 0.44)
,0.50,0.61,0.76)

(

(

{
([0.46,0.69
Qs

Py

0.21,0.28

9

0.32,0.43

)

0.58,0.67

,0.48,0.51, 0.61

Py

0.31,0.42

Y

0.53,0.57

b

0.60,0.70

Ps

9

0.20,0.23

)

0.26, 0.34

)
,0.45,0.47,0.54)
,0.18,0.19, 0.26)

P,

{
{
([0.16,0.17
([0.11,0.14

0.17,0.16

b

0.33,0.40

,0.03,0.08,0.187)

Py

0.45,0.56

Y

0.58,0.66

9

0.72,0.82

.0.50,0.55, 0.58

Py

0.53,0.66

Y

0.75,0.73

Y

0.84,0.95

,0.57,0.61,0.65

Ps

Y

0.32,0.41

9

0.60,0.61

P,

(
{
([0.27,0.30
([0.68,0.71

Y

0.74,0.79

0.85,0.90

)
)
,0.32,0.41,0.53)
,0.41,0.66,0.82)
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Step 4. By applying the decision information given (10 — 12) TCPW A, TCPWG
and TCPW QA operators, and w = (0.1,0.2,0.3, 0.4)T be the weighting vector of the
attributes, we find the overall preference values of the alternatives the aggregation results

are shown in Table 13.
Table13. The overall preference values of the alternatives

TCPWA
Py | ([0.34,0.43],]0.69,0.79],[0.81,0.78],0.38,0.39, 0.43)
P, | {[0.42,0.54],[0.61,0.67],[0.79,0.85],0.45,0.51, 0.60)
P; | ([0.39,0.44],]0.49, 0.55], [0.65,0.69],0.34,0.38,0.53)
Py | {[0.53,0.63],[0.70,0.76],[0.78,0.92], 0.29, 0.50, 0.66)
TCPWG
Py | ([0.22,0.35],]0.39, 0.46], [0.60,0.67],0.95,0.97, 0.99)
P, | {[0.32,0.43],[0.50,0.57],[0.61,0.71],0.62,0.69, 0.83)
P; | ([0.28,0.34],]0.39, 0.46], [0.52, 0.58],0.85,0.93, 0.96)
Py | {[0.33,0.34],[0.57,0.64],[0.75,0.81],0.96, 0.98, 0.99)
TCPWQRA
P, | ([0.54,0.57],]0.60, 0.64],[0.69,0.72],0.11,0.51,0.19)
P, | {[0.59,0.65],[0.67,0.68],[0.76,0.85],0.13,0.17,0.21)
P; | ([0.69,0.71],10.73,0.78],[0.75,0.88],0.05,0.08,0.13)
Py | {[0.87,0.89],[0.91,0.93],[0.95,0.97],0.01,0.05,0.11)
Stép 5. According to the aggregating results shown in Table 13 and the expected value
of triangular cubic variable by applying Eq. 4, the ordering of the alternatives are shown in

Table 14.
Table 14. Ordering of the alternatives

TCPW A TCPWG TCPWQA

E(Py) | 06472 | E(P;) | 0.7188 | E(Py) 0.6311
E(P) |05916 | E(P,) |0.6144 | E(Ps) 0.5316
E(P,) | 0.6005| E(P5) |0.5916 | E(Py) 0.5455
E(P;) | 03516 | E(P,) | 0.5866 | E (Ps) 0.5150

Step 6. Now we arrange the expected values and select the highest one such that,

(a) TCPWA = E(Py) > E(P1) > E(P) > E(Ps). Thus the most wanted alter-
native is py.

(b) TCPWG = E (Py) > E(P1) > E(P3) > E (P,). Thus the most wanted alterna-
tive is py.

(c) TCPWQA = E (Py) > E(P) > E(P3) > E (P,). Thus the most wanted alter-
native is py.After ranking we find that p, is the best alternative. Graphical representation
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of these operators are shown Fig 1, Fig 2 and Fig 3 as below such that,

Expected values of TCPWA operator

(11

E{rl EF3 E(P3

Fig (1)

Expected Values of TCPWG

111

ElPd EP3 E(P2

Fig 2.
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Expected Values of TCPWQA operator

EiPa EiPa EPn EPz

Fig 3.

6. CONCLUSION

In this paper, we developed three kinds of power aggregation operators such that, the
triangular cubic power weighted averaging (T'C PW A) operator, triangular cubic power
weighted geometric (T'C’ PW G) operator and triangular cubic power weighted quadratic
average (T'C PW QA) operator. Then, these operators were utilized to develop a approach
to solve the triangular cubic multiple attribute group decision making problems with the
known weights, we also discussed some basic properties of these operators. Finally we take
a numerical application and applying these operators to verify the validity of our results.
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