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Abstract. The assessment for long-term and extreme river flow events is
necessary for water resource management and early preparation for any
expected hazardous event in the country. This paper considers the prob-
abilistic estimation of the annual maximum flow (AMF) series (1967 to
2015) of the Indus River, Pakistan at Kotri station. Four extreme value
distributions Gumbel, Frechet, Weibull and Generalized Extreme Value
(GEV) models were tested. Based on the goodness of fit tests of Kol-
mogorov Smirnov (KS) and Anderson Darling (AD), it was found that
GEV is the most suitable distribution for modelling AMF series. The
Bayesian and Maximum Likelihood Estimation (MLE) techniques have
been used to estimate the parameters of GEV distribution and also com-
pute their return levels. The relative absolute squared error (RASE), rela-
tive root mean squared error (RRMSE), maximum absolute error (MAE)
and probability plot correlation coefficient (PPCC) were employed to eval-
uate the forecasting efficiency. Moreover, the forecast efficiency indica-
tors show that the Bayesian technique is relatively better than MLE for
observing the AMF in Indus River Pakistan. The improved results of this
paper demonstrate that can be helpful for government in establishment of
water resources management policies of the country. This is in order to
utilise their efforts to reduce or control the risk of significant losses in
future upcoming events.
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1. INTRODUCTION

The hydrological extremes are frequently described as processes rooted by hydro meteo-
rological situations which fluctuate noticeably from typical weather conditions. Hydrolog-
ical variations result in floods and droughts[14], such situations are temporal in character
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and are connected to occasional or periodic changes in geographic conditions [8]. Climate
change and other global drivers put water resources under increasingly severe pressure. It
alters soil moisture, glacier mass balance, humidity, and river flow and rainfall patterns.
Simultaneously, hydrological extremes like droughts and floods are getting higher in fre-
guency, severity and intensity, causing serious threats to welfare and human life because
of their disastrous nature [22], [45] and [47]. Particularly flash floods provoked by heavy
rainstorms which have produced extensive property damage as well as loss of human life
[5], [28]. Humans are combating with extreme hydrological events and have not been quite
victorious because these are natural phenomenon that will continue to occur. It is essential
to learn to live with these extremes event and trying to improve in preparedness systems.
The societal and economic consequences of flood events became more important recently
[23]. Pakistan has five major rivers Indus, Jhelum, Chenab, Ravi and Sutlej [30]. Indus
River originates from Tibetan Himalaya, having diverse geography with glaciers covering
northern alpines flowing in a south westerly direction through southern plains adjoining
the Arabian Sea [4]; [17]. The seasonal changes vastly affect its water volume; it grad-
ually increases with the approaching summer season when the snow starts to melt in the
mountainous areas of the river basin and gradually decreases in the winter season. The In-
dus River basin shows its highest water discharge during the well-marked monsoon season
(July-September) [16]. There is regular annual riverine flooding in the low lying region,
semi hilly and hilly areas during extreme monsoon rainfall [17]. These floods sometimes
become one of the most devastating natural hazards [30].

Pakistan has faced severe historical floods during the last 66 years, affected 599,459
square kilometres of area, life losses of around 11,239, caused financial losses worth over
39 billion rupees and inundated 180,234 villages [27]. To reduce these damages, it is urged
to assess historical events in detail and make optimal plans for the future flood disasters.
Statistical analysis of their regional variation through extreme value distributions and the
GEV distribution has extensive application for unfolding the appearance of the flood peaks
(volume), wind speeds, rainfall, snow depths, wave heights, and other maxima. Applica-
tions of the extreme value distributions and chosen methods (Bayesian, MLE) have been
investigated widely by [11], [15], [26], [29], [31], [34], [40], [46] and [3]. Consequently,
this paper analyzes AMF of the Indus river at Kotri station from 1967 to 2015 (Fig. 1) to
explore the best fit probability distribution.

Moreover, to explore the best fitted model for flood, employed family of extreme value
distribution models, namely Gumbel, Frechet, Weibull and generalized extreme value (GEV).
The parameters of each model estimated by Bayesian and maximum likelihood estimator
(MLE). The best-fitted distribution are analysed by the Kolmogorov Smirnov (KS) and An-
derson Darling (AD) [32] tests. Furthermore, the selected distribution may utilise them to
estimate the AMF return levels for 5, 10, 25, 50, 75 and 100 years. The improved results
of this paper demonstrate that can be helpful for government in establishment of water re-
sources management policies of the country. This is in order to utilise their efforts to reduce
or control the risk of significant losses in future upcoming events.
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2. MATERIAL AND METHODS

2.1. Maximum Likelihood Estimation (MLE). The MLE method is a more consistent
approach and generally it is less biased in parameter estimations. The simple idea be-
hind this technique is to determine the distribution parameters that maximize the likelihood
function of the given sample [42]. LeX = (x4, 29, ..., x,) denote independent annual
maximum flow series having GEV probability density function[10], [12], [33].
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where is the location,p is the scale and is the shape parameter. The likelihood
function is the product of the probability density functions for sample abservations
(1,2, ...,x,) [10], [12], [31], [33] and [21]. It can be written as:
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Now this can written as corresponding log-likelihood 7f1uncti0nn[33] and [9] as:
In[L(w, p, & @,y )] = —nlnp — (L +§) Zzl - Ze*’zi (2.3)
i=1 i=1

wherez; = £ 1in(1 + £%2)

Actually, the logarithmic likelihood function is easier to maximize. The MLE estima-
torsd = (i, P, f) [21] of parameter® = (u, p,&) [10] are the solution of a system of
equation produced by the first partial derivatives (with respect to each parameter) of the
In[L(u, p,&; 1, ..., ,,)] function setting to zero [1], [21], [26].

2.2. Bayesian Analysis. The parameters of posterior distribution are obtained by Bayesian
based Markov chain Monte Carlo (MCMC) technique from an arbitrary distribution turn
into an increasingly popular [3], [6], [7], [10], [12], [13], [18], [25], [35], [36], [37], [43],
[44], [48] of extremes values [6] and for forecasting of river Rhine [38].

Suppose that the dafé = (x4, ..., z,,) are the realisations of the independent random
variable whose density falls inside a parametric fami’X; 0) : 0(u, p,&) € O (para-
meter space)]. Then Bayesian model defined by a likelihood fungtiaf¥) and a prior
distributiong(#), leading to the posterior distribution

_ o a(®)a(zl9)
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Here g denotes pdf (probability density function)and the likelihagd|f) can be ex-
press for as:

L(p, p &1, oy an) = L(6; X) = g(]0) = I g(2i; 1, p, €)
So simply as;

o(0l) = 7 9OLOX) 0 60)00; %) (2. 4)

9(0)L(6; X)do"
The density of the posterior distribution is directly proportional to the product of the like-
lihood function and prior distribution. Here, whénis a high dimensional vector then it
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can be problematic to compute the normalising constan(6) L (6; X)d6) . To avoid this
problem the posterior distribution is determined by an MCMC simulation technique [10].
For simulation R-statistical software is used with extreme value modelling packages.

2.3. Kolmogorov-Smirnov (KS) test. The KS test is used, whether a sample comes from
hypothesized continuous distribution based on the empirical cumulative distribution func-
tion (CDF) [2] & [24]. Suppose that a random sampie, ..., z,, from some distribution
with the CDF is,G(z;). The empirical CDF i+, (z) = 0,i/No, 1 forx < x;,z; <z and
x < x;+1,z > xz, respectively, wheréVy is the number of observations. The KS test
statistic D is defined as: S
11— (3
No ' No G(zi)] (2. 5)

If D > D¢ (wherea is the significance level of critical value), in that case the null
hypothesisH: the data follow a particular distribution is rejected [2], [24], [41].

D = mazi<i<n, [G(z;i) —

2.4. Anderson-Darling (AD) test. The AD test is considered to be a refinement of the
KS test and also to be comparatively more powerful[2]. It is used to find out if a known
sample belongs to a particular probability distribution[39]. The stati4tiin the AD test
is defined as:
" (26 — D{InG(x;) + In[l — G(2s,_,,,)]}
A% =Ny — noitl 2.6
0 ; . (2. 6)
wherex; are an increasing order observation.Af > A2 the hypothesis concerning

the distributional form(Hy) is rejected [2], [24].

2.5. Estimation of probabilistic model. The best fit probability distribution was evalu-
ated by using the following systematic sub sections.

2.5.1. Fitting of probability distribution. This paper is an effort to explore the best fitting
distribution that explains the maximum river flow data series (1967 to 2015) of the Indus
River at Kotri station. In a univariate process, the distribution of the extreme behaviour can
be widely defined by the three types of families: Gumbel (type 1), Frechet (type Il) and
Weibull (type Il) [6], [42]. The combination of these three types of distributions into one
family is referred to as the GEV distribution [6]. In this paper, the mentioned four extreme
value distribution models are candidate distributions, in which a more efficient model that
suitably capture the uncertainties pattern of data. The CDF of the above distributions is as
follows [10], [20], [42]:

Gumbel Distribution (or Type I):

X —
GWW%QZWM%WFP?£MW%<X>% 2.7
Frechet Distribution (or Type I):
0, z < .
G(X,u,p, &) = _ 2.8
Weibull Distribution (or Type Ill):

eap{—[-(ZE)E]}, X <p.
G(X,u,p, &) = P 2.9
(X, 1, p,€) {1’ X (2.9

Generalized Extreme Value (GEV) Distribution:
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2.5.2. Goodnes®f fit Test. Thetwo testskS [2], [24] andAD [42] areexecutedor eval-
uatingthe bestfitted probability distribution[19]modelamongthe candidatedistribution.
FurthermoreQ-Q (Quantile-Quantileplot andprobability differencegrapharealsoused
asa visual analysis to selettie best fitted model.

2.5.3. Selectionof the bestdistribution. Table 1 presentediescriptivestatisticsof max-
imum flow datawhich revealedthe range(935200.0m3 /sec), right-skewedand negative
value of excesurtosisindicatea platykurtic distribution. The teststatisticD and A2 of
eachdistribution(Table2) showsGEV hasloweststatisticvalues.This meanghatit is best
fitted distributionamongthe othercandidatedistributions.Moreover,the PDF curve (Fig.
2) mostly coverthe observedlistribution,the Q-Q plots (Fig. 3) mainly occupiedthe ref-
erencdine, andprobability differencechart(Fig.4) showsthe GEV distributionbelongs to
innermostQuintiles very closedwiththe horizontal referenceline. Theseanalysesare
supportedsEV to most appropriate observedlistribution.

2.5.4. Parameterestimationof selectedistribution. The Bayesianand MLE techniques
havebeenimplementedor parametergstimationof GEV distributionandalsocompute
returnlevels. The test statisticslike Relative Absolute SquaredError (RASE), relative

root meansquarecerror (RRMSE), maximumabsoluteerror (MAE) and probability plot

correlationcoefficient(PPCC)are employedto evaluatethe forecastingperformanceand

accuracy[11], [46]. These test statisticrewritten as follovs:

1=, 2 — g
ASE = | — — )2 2.11
RASE =, | - g} ) (2.11)
1~ i — g
MSE = — 2.12
RRMS nZ? - | (2.12)
MAE = mazx|z; — g (2. 13)

Vi (@i =22 300 (4 — 9)°
wherez; andg; is the ith order observed value, estimated value and:thrdg are their
mean values. Now the annual maximum flow data from1967-2005 is used for parameter
estimation, and remaining (2006-2015) is used for the comparison of forecasts.

2.5.5. Return level.When the best significant model for the data series has been estab-
lished, then estimate thi year return levels (%) of maximum flow. The return level es-
timated by inversing the cumulative distribution functiGix,, i, p, &) (E¢.2.10) of GEV
distribution [31], [33], [42] and [24] and written as:

Vi = u— £li=og(1 = ) (2.15)
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3. RESULT AND DISCUSSION

The Table 2 shows that the GEV is the best fitted distributional model,criteria based on
the least values of KS and AD statistic. The MCMC technique is utilized for simulation
of parameter value of GEV distribution. It is found that all value have been found together
in an alike zone (Fig. 5). Itis also observed (Fig. 5) that the posterior density and trace
plots for location, scale and shape parameters are symmetrical. The parametric values
determined by MLE and Bayesian methods (Table 3) and are used for forecasting and
return level evaluation with the help of computer software R-package. For this purpose first
forecast the return levels from 2006 to 2015 and compare with observed values of annual
maximum flow (Fig. 6). The comparative analysis of forecasting efficiency indicator (Table
3) shows that both methods have no big differences in estimation and are appropriate to
forecast. However, Bayesian has smaller values of RASE, RRMSE and MAE than MLE
shows slightly improved results. Accordingly the forecast result for different return levels
for 5, 10, 25, 50, 75 and 100 years (Table 4 and Fig. 7) depict that annual maximum
flow is consistently increasing over the 100 years using Bayesian method. The Fig. 7
shows that after 2015 the return level of 5 years, approaches 1983, 1986, 1975, 1967; 10
years approaches 2015, 1988, 1992; 25 years approaches 1978, 1976, 1995, 1973: 50
years approaches 1994, and 75 & 100 years approach 2010. Moreover, the return level for
100 yearg956710m3 /sec) gets exceeded maximu(@39442m? /sec; 2010) of observed
maximum flow. The Fig. 7 also reveals about return levels by the MLE method after 2015,
for 5 years approaches 1969, 1968; 10 years approach 2015, 1988, 1992; 25 years approach
1994; for 50, 75 & 100 years the forecast exceeded the maxif8a42m? /sec; 2010)
of observed maximum flow.

4. CONCLUSION

Annual maximum flow series from 1967 to 2015 of the Indus River at Kotri station were
utilized to analyse for the best fitted probability distribution. Based on the goodness of
fit tests (KS and AD) it is found that the GEV distribution being the most suitable distri-
bution for modelling the maximum flow series at Kotri station. Moreover, the estimation
of the flood return levels against return periods through maximum likelihood method and
Bayesian technique shows that Bayesian MCMC is better than the MLE method. So it is
concluded that Bayesian technique can explain more accurately the annual maximum flow
behaviour of selected station. These predicted return levels provide valuable information to
the concerned departments in planning and management of the water resources, especially
for proper river structures, drainage systems and reservoirs. The results of this study can be
used to facilitate the related parties and government in prioritizing water resources in their
efforts to reduce or control the risk of large losses.
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FIGURE 1. Fluctuations in observed Annual maximum flows (1967-2015).
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FIGURE 2. Probability Density Function (PDF) Plot of candidate distri-
butions and observed histogram.
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FIGURE 4. Probability difference chart for the fitted candidate distributions.

TABLE 1. Descriptive statistics of Annual maximum flows{/sec).

Statistic Value
Sample Size 49

Range 9.3520E+5
Mean 3.5276E+5
Variance 5.2923E+10

Std. Deviation 2.3005E+5
Coef. of Variation | 0.65213
Std. Error 32864.0
Skewness 0.79726
Excess Kurtosis | -0.15486
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FIGURE5. Posterior density plots and Trace plots for location, scale and
shape parameters of GEV distribution.
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FIGURE 6. Comparison of forecasted values with observed values of
Annual maximum flow (2006-2015).

TABLE 2. Goodness of fit test(Alz KS) results for the fitted models,
critical Value at 5% level of significant.

Kolmogorov Anderson
Distribution Smirnov(KS) Darling(AD)
Critical Value | Statistic | Critical Value | Statistic
Gumbel Max 0.19028 0.09642 2.5018 0.35163
Frechet 0.19028 0.21622 2.5018 4.14
Weibull 0.19028 0.09235 2.5018 0.85 609
GEV 0.19028 0.08251 2.5018 0.27801
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FIGURE 7. Analysis of observed Annual maximum flow (1967-2015)
with Return levels (5, 10, 25, 50, 75 and 100 years) of MLE and Bayesian
methods.

TABLE 3. Parameters of fitted Extreme Value Distribution(GEV)and
Forecasting efficiency indicators.

GEV Parameters Forecast Errors (2006-2015)
Method Location | Shape | Scale
P RASE | RRMSE| MAE PPCC
(1) ©) (r)
MLE 264000 | -0.0428| 12.1 1.8370| 2.3230 | 511075| 0.193
Bayesian| -2.4161 | -0.4502| 13.0026| 1.6759| 2.0743 | 488681| 0.172

TABLE 4. Return level of Annual maximum flowsi(®/sec) from 2015 onwards.

Year P=5 P=10 | P=25 | P=50 P=75 P=100
MLE 510537| 655309| 849090| 1000000 1092878| 1159376
Bayesian| 454454| 616901| 779326| 876116 | 924967 | 956710
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