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Abstract. Similarity measure for fuzzy systems plays a very substantial
role in handling problems that contain uncertain information, but unable
to deal the vagueness and uncertainty of the problems having multipolar
information. In this research article, we define certain distances between
two m-polar fuzzy sets/F sets) andn-polar fuzzy soft setsrpF soft
sets). We also propose a new similarity measure (SMhfbrsets and

mF soft sets based on the distances. We demonstrate with an application
that the proposed SM fonF sets is capable of recognizing different pat-
terns. Moreover, we apply the concept of SMmoF soft sets to medical
diagnosis. Finally, we summarize our proposed method as an algorithmin
each application.
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1. INTRODUCTION

The scholastic mathematical models and tools are unable to handle the complexity of
the information containing uncertainties. Molodtsov [43] pointed out the difficulties of
these models. In order to tackle these problems, he [43] introduced a novel idea of soft
set theory. Majiet al. [37] extended the idea of soft sets to fuzzy soft sets. Ferey.

[20] in 2010 gave deeper insights into the decision-making based on fuzzy soft sets. Zhang
[60] proposed the idea of bipolar fuzzy sets and relations as a computational framework
for cognitive modeling and multi-agent decision analysis. Further, Ghexl. [17] in-
troduced the concept ofiF sets in2014, as a generalization of bipolar fuzzy sets. They
[17] showed thaR-polar fuzzy sets and bipolar fuzzy sets are cryptomorphic mathemat-
ical notions. The idea behind this is, that the “multipolar information” (not just bipolar
information which correspond to two-valued logic) exists because data for a real world
problems are sometimes from n agefits> 2). There are many other examples such as
truth degrees of a logic formula which are basechdogic implication operatorén > 2).

For examples, the exact degree of telecommunication safety of mankind is a géiriffh

(n =~ 7x10?) because different person has been monitored different times. There are many
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other examples such as truth degree of two logic formula which are based on n logic impli-
cation operatorén > 2), ordering results of magazines, ordering results of university and
inclusion degrees (accuracy measures, rough measures, approximation qualities, fuzziness
measures and decision preformation evaluations) of rough set. We can obtain concisely one
from the corresponding one in [17]. Akram [2] introduced many new concepts including
m—polar fuzzy graphsim—polar fuzzy line graphsyn—polar fuzzy labeling graphs and
certain metrics irmn—polar fuzzy graphs. Akraret al. [3, 7, 8] proposed multi-attribute
decision-making methods based @i rough andnF soft rough information. For other
related models and decision-making techniques, readers are referred to ([4], [5], [6], [12]).

Chen ([18], [19], [16]) studied the concept of SM of vague sets and elements. SMs
proposed by Chen fails to hold in some cases. In order to overcome this issue, Hong and
Kim [24] introduced some modified measures. The uncertainty measures of soft sets and
fuzzy soft sets were introduced by Majumdar and Samanta ([40],[42]). Some set theo-
retic operations based on SMs of soft sets were presented by Kharal [29]. Li and Cheng
[32] proposed the idea of new SMs between intuitionistic fuzzy sets. They also presented
numerical examples to illustrate the application of these measures. Szmidt and Kacprzyk
([53], [54], [55]) also proposed the distance measures for intuitionistic fuzzy sets. Jiang
et al. [25] initiated the concept of SM based on the distances, under intuitionistic fuzzy
soft set and interval valued fuzzy soft set environment. Majumdar and Samanta [41] also
studied the idea of uncertainty measure of intuitionistic fuzzy soft sets. Several researchers
published their work on SMs (see [15], [33], [34], [47], [51], [52], [57]). Similarity mea-
sures have a variety of applications in many research fields including medical diagnosis,
pattern recognition, coding theory, game theory and region extraction. Similarity measure
for fuzzy sets and fuzzy soft sets plays a very substantial role in handling problems that
contain uncertain information. We have used standard definitions and terminologies in this
paper. For other notations, terminologies and applications not mentioned in the paper, the
readers are referred to ([10]-[59]).

In many practical problems, multipolar information exists which cannot be represented
well using the existing models. In many real life problems, it is often necessary to compare
two sets of information. We usually interested to know whether two images or patterns
are similar or approximately similar or at least to what degree they are similar. To handle
this kind of multipolar information, we have extended the idea of these SMs to discuss the
multipolar information. In this research article, we propose a new Shhfesets anadnF
soft sets based on the distances. Moreover, we apply the concept of @M sbft sets to
medical diagnosis. The organization of this research article is as follows.

In section 2, we review some basic concept. In section 3, we introduce our new concepts
related to SM. In section 4, we present an application in pattern recognition problem. In
section 5, we introduce the SM fonF soft sets. In section 6, we show an application
related to medical diagnosis. In section 7, we present the conclusion and future directions.

2. PRELIMINARIES

In this section, we review some basic and fundamental definitions related to our pro-
posed concept.
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Definition 2.1. [43] A pair (F, A) is called asoft setoverU, whereF' is a mapping given

by

F:A— PU).
In other words, a soft set ovér is a parameterized family of subsets of the univérsé&or
e € A. F(e) may be considered as the seteadpproximate elements of the soft $&t A).

Definition 2.2. [17] An mF seton a universeU is a functionR = (p; o R(r),p2 ©
R(r), -+ ,pm o R(r)) : U — [0,1]™, where thei — th projection mapping is defined
asp;o R : [0,1]™ — [0,1]. 0 = (0,0,---,0) is the smallest element ifi), 1]™ and
1=(1,1,---,1) is the largest element i, 1]™.

Definition 2.3. [8] Let U be a universeT a set of parameters and C 7. Define( :
N — mF?9. Then(¢, N) is called anmF soft seover a universé/, which is defined by,

(¢ N) = {(@,pio Ne(w)) : 2 € U ande € N'}.

Definition 2.4. [8] SM (A, B) = W(AB), where SM is the similarity measure, DM is
the distance measure of two fuzzy sets and are the examined fuzzy sets.
3. SIMILARITY MEASURE FORmF SETS

In this section, we introduce our novel concepts including distances betweemnEwvo
sets and SM formnF sets.

Definition 3.1. Let N" and S be twomF sets onU = {w, b, Us,...,U,}. Then the
distance betweeV andS is defined as:

(1) Hamming distance:

m

du(N,S) = % {Z Z(pi o N(uj) —pios(uj)’}

i=1 j=1
(2) Normalized Hamming distance:

n

dvn(N,8) = - {f} >

=1 j=

pio N (U;) — pi OS(uj)’}

—

(3) Euclidean distance:

dg(N,S) = % {Z > (pi o N(u) —piOS(Uj))Z}

i=1 j=1
(4) Normalized Euclidean distance:

dNE(N,S)Z H;L{Z Z(pioN(Uj)—piOS(Uj))Z}

=1 3
Theorem 3.1. The distances betwee¥t andS satisfy the following inequalities.
(). du(WV,S) <n,
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(ii). dvu(WV,S) <1,
(ii). dg(N,S) < /n,
(iv). dneWN,S) < 1.

eorem 3.2. The distance functiongy;, dy i, dg, anddy g, defined fromm(U) — RT,

are metric.
Proof. Let \/, S andR be threemF sets ovei, then

(). dg(N,S) > 0.

(i). Supposely(N,S) = 0.
1 m n

o x {33

i=1 j=1

pi o N (U;) — p; OS(UJ.)‘} —0,

& |pi o N(Uy) — pi 0 S(uy)| = 0,
S pioN(U;) =pioS(u;), forall1 <i<m, 1<j<n,
SN =S8
(ii). dg(NV,8) =dg(S,N).
(iv). For any threenF setsV, S andR,
[pi o N(u;) — pi o S(uy)]
:|pi o N (uj) — p; o R(Uj) + p; o R(Uj) — p; © S(uj)|, forall 4, j.

<|pi o N (1) — pi o R(U;)| + |pi o R(u;) — p; 0 S(uy)|, forall i, ;.

Thusdy (N, S) < dg(N,R) +du(R,S).

OJ
Definition 3.2. The SMof two mF setsN andS is defined as
1
SV, 8) = ————
(N’)1+ﬂN§)

whered (N, S) is any of the above distances defined in Definition 3.1.
Definition 3.3. The SMof two mF setsN andS is defined as

S' (N, 8) = exp P4N:9)

wheregs > 0 is called the steepness measure.
Definition 3.4. The twomF setsN andS areg similar if and only ifS(V,S) > 3, i.e.,

NS e SW,S) >3, e (0,1).

N ands aresignificantly similarif S(V, S) > 3.
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Theorem 3.3. The SM of twomF setsN andS satisfies the following.

(). 0<SWV,S) <1,
(i). SWV,S) =S(S,N),
(ii). SWV,S)=1aN =S§.

4. APPLICATION IN PATTERN RECOGNITION PROBLEM

In this section, we use:F information to solve pattern recognition problem by applying
the concept of distance based SM.

Algorithm:

1. Assume that there arepatterns which are representedrby setsR;,

j=1,2,3,...,n,inthe feature spad8 = {uy, t, Us, ..., U }.

2. Consider annF set\, which is another sample to be recognized.

3. Calculate the SMB(R;, V') betweenR; and .

4. The sampleR; is similar to\, if S(R;, ) > 3, j =1,2,3,...,n.

5. Our result isRy, if S(Rx, N) is greater tha®(R;,N), j, k =1,2,3,...,n.
Now we present an application of pattern recognition problem in order to classify hybrid
rocks.

Suppose that there are four types of rock fields denote®byR,, Rs andR,. LetU =
{u, = Texture , = Fractureu; = Grain Sizeu, = Crystalline Structurgbe the feature

space of rock fields. The feature “Texture” of the rock refers to the arrangement, shape

and distribution of minerals in the rock. The minerals within the rock may have uneven,

conchoidal or hackly “Fracture.” Rocks may have no visible grain, medium or very coarse

grain size. “Crystalline Structure” is another feature to classify what type of rock itis. The

rock may have angular, medium or rounded crystalline structure. Table 1 represents the

four types of rock fields bg-polar fuzzy sets in the feature spdde

U % Us Uy

Ry
Ry
R

Ry

(0.55,0.27, 0.73
(0.76, 0.54, 0.34
(0.11, 0.91, 0.25

(0.78, 0.36, 0.45

(0.33,0.83,0.24
(0.56, 0.44, 0.21
(0.85, 0.15, 0.35

(0.34,0.26, 0.83

(0.13, 0.76, 0.65
(0.79, 0.10, 0.33
(0.20, 0.80, 0.22

(0.93,0.20,0.10

(0.78,0.46, 0.22
(0.89,0.36,0.11
(0.90, 0.05, 0.15

(0.10, 0.71, 0.09

TABLE 1. 3-polar fuzzy set for rock fields

Let A/ be an unknown hybrid rock, which is to be recognized.
N = {(ul, 0.10,0.92,0.22), (Uz, 0.85,0.16,0.35), (us, 0.22,0.81,0.20),

(U, 0.90,0.06,0.17)}.
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The Euclidean distance betwe#n and\ is calculated as:

dE(R1,N) - 08178,

dg(Ry,N) = 0.7563,

dg(Rs, N') = 0.0294,

dg(Rs, N) = 1.0463.
The SM of R; and\ is calculated as:

S(R1, M) = 0.5501,

S(Ra, N) = 0.5694,

S(R3, N') = 0.9714,

S(R4, N') = 0.4887.

SinceS(R3,N) is highest, sa?; and N have same pattern. Thus hybrid rotkbelongs
to the rock fieldRs.

5. SIMILARITY MEASURE FORmF SOFT SETS

In this section, we introduce the concept of SM faF soft sets and investigate its
properties.

Definition 5.1. “Let U be a universe] a set of parameters and C 7. Definey : NV —
mEFV, wheremFU is the collection of alinF subsets of]. Then(¥,\) is called annF
soft set(shortly,mF soft set) over a univerd@, which is defined by,

Uy = (0N) = {(Lon (D) :te T, vn(t) € mF"},
andy s (t) is anmF set, denoted by,

ow(t) = { (wpioN(W) ue ) }.

Example5.1.LetU = {s;, 5, S3, S1, S } be the set of five couches, andTet= {t;, t, t3, t4 }
be the set of parameters, where the parameter,

‘t;” stands for the Fabric of Couch,
‘ty’ stands for the Style of Couch,
‘t3’ stands for the Frame of Couch,
‘t," stands for the Price of Couch.

We give further characteristics of these parameters.

The “Fabric of Couch” may be leather, polyester and velvet.

The “Style of Couch” may be modern, contemporary and sectional.

The “Frame of Couch” may be of hardwood, particle board and metal.
The “Price of Couch” may be very costly, costly and cheap for the buyer.
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Suppose that a family wants to purchase a coucli.ofThey consider three parameters
t, o, ty for the selection of a couch. Let" = {t;,t;,t;} be subset off. Then we can
formulate all possible information on these couches &palar fuzzy soft sef¥, V).

(\I/aN) =
P(t) = {(cl, 7/10,1/2,3/10), (¢, 1/5,1/2,3/10),(¢3, 3/5,2/5,7/10),
(ci, 1/2:3/5,3/10), (65, 7/10,3/5,2/5) .

b(t) = {(cl, 9/10,3/5,7/10), (c2, 3/5,1/2,2/5), (¢, 1/2,3/5,7/10),
(cs, 7/10,7/10,3/5), (cs, 2/5,3/10,3/5)},

w(t) = {(c1, 4/5,3/5,2/5),(c2, 3/5,1/2,3/5), (cs, 2/5,3/10,1/2),
(c1, 3/5,2/5,1/2), (cs, 7/10,3/5,7/10)}.

Thus (¥, V) is a 3-polar fuzzy soft set in which we have chosen the Fabric, Style and

Price of the Couch as desired parameters for the selection. For example, if we consider the

parameter “Fabric of Couch{,,0.2,0.5,0.3) shows that according to the family couch
¢ has 20% leather, 50% polyester and 30% velvet fabric.

Definition 5.2. Let U = {th, W,...,U,} be a universel = {t;,t,...,t,} a set of
parametersN,S C 7 and ¥, Qs two mF soft sets orilJ with their mF approximate
functions

Yar(ty) = {(u,p,» oN(u):ue U},

ws(t;) = {(U,pi oS(u) :ue IU},
respectively. Then the distance betwdeg and()s is defined as:
(1) Hamming distance:

(W, 0) = { 33

i=1 j=1 k=1

pio N (1) (U) = pi o S(t)(u ﬂ}

(2) Normalized Hamming distance:

dvu(Ya, Qs) = { Z Z

i=1 j=1 k=1

monxwwmwsmx%ﬁ}

(3) Euclidean distance:

dep(Up, Qs) = «nq {Zm: > Zn: (pzo/\/ )_pios(tj)(uk))Q}

i=1 j=1 k=1
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(4) Normalized Euclidean distance:

dyp(Tx, Q) = J — {Z S (po Nt W)~ pi os<tj><uk>)2}

i=1 j=1 k=1

Example 5.2. Let U = {uw, Uz, U3, Uy, U5} be the feature spac&, = {t, b, t5,t, 8} @
set of parameters anl = S = {t, t3, &4} C 7. We can define thg-polar fuzzy soft sets
(¥, N)and(Q,S) overU as follows:

(\I/’N) =
b(ty) = {(ul, 7/10,1/2,3/10), (ts, 3/5,4/5,1/2), (s, 3/5,2/5,7/10),
(us, 1/2,3/5,3/10), (us, 7/10,3/5,2/5)},

W(ts) =4 (w, 9/10,3/5,7/10), (W, 3/5,1/2,3/5), (us, 1/2,3/5,7/10),
(W, 7/10,4/5,3/5), (s, 2/5,3/10,3/5) },

() = (u, 4/5,3/5,2/5), (W, 3/5,1/2,1/2), (us, 2/5,3/10,1/2),
(us, 3/5,3/5,1/2), (us, 7/10,3/5, 7/10)}.
(9,5) =
wity) ={(u, 4/5,4/5,1/2), (W, 3/5,7/10,7/10), (us, 9/10,3/10,1/2),

(us, 3/5,3/5,1/2), (ts, 3/5,4/5,2/5) },

w(tS) = (Ulv 4/5a 3/57 1/2)7 (U27 9/107 2/5a 1/2)7 (U37 1/21 7/10’4/5)7
(us, 4/5,9/10,3/5), (Us, 7/10,1/5,3/5)},

w(t4) = (ula 9/107 7/1(); 1/2)v (UQa 3/5a 1/27 1/2)7 (Ug, 1/27 3/57 1/2)7
(us, 3/5,1/2,0.7), (us, 1/2,7/10, 7/10)}.
Then, by using Definition 5.2, we can calculate the distance betWgen= (¥, N') and
Qs = (2,8) as:
(). dg(Vyr,Qs) = 0.555,

(). dnvg (T, Qs) =0.1111,

(iii). dg(Va,Qs) = 0.3266,

(IV) dNE(\I/_/\[,QS) = 0.1461.

Theorem 5.3. The distances betweé®, \) and((Q, S) satisfy the following inequalities.
(")' dNH(\IINags) < 17
(iii). dg(Ppr,Qs) < /7,
(IV) dNE(\II/\hQS) <1.
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Theorem 5.4. The distance functiongy, dy &, dg, anddy g, defined frommF? — RT,
are metric.

Proof. Let U nr = (U, N), Qs = (,S) andAg = (A, R) be threemF soft sets ovel,
then

(1) du(Var,Qs) > 0.
(2) Supposely (Uar,Qs) = 0.

& — {i 33 pi o N (t;)(U) — pi oS(tj)(uk)‘} =0, foralli,j, k,

i=1 j=1 k=1

<

& [pi o N (tj) (k) — pi 0 S(t;) (i) | = 0,
< pi o N(tj)(Ux) = p; o S(t) (), foralll <i<m, 1 <j<gandl <k <n,
(4) For any threenF soft setsl v, 2g andAg,

|pi o N () (k) — pi 0 S(t;) () |

:’pi o N (t;)(Ug) — pi o R(t;) () + p; o R(L;)(Ux) — pi © S(t;)(ux)|, forall i, j, k.

g]pi o N (t;)(Ug) — pi oR(tj)(Uk)| + ’pi o R(t;)(Ux) — pi oS(tj)(uk)|, forall i, j, k.
Thusdy (Y, Ar) < dg(¥ar, Qs) + da (s, Ar).

O
Definition 5.3. TheSMof ¥, andQ)s is defined as
1
S(Up,Qs) = ——————
(0 09) = TG 0s)

whered(¥ », Qs) is any of the above distances defined in Definition 5.2.
Definition 5.4. TheSMof ¥ andQ)s is also defined as

§/(T, Q) = exp™ PV 2)
wheregs > 0 is called the steepness measure.

Definition 5.5. The twomF soft setsl »r andQ2s ares similar if and only ifS(U s, Qs) >
G, i.e.,

W\ ~P Ns < S(Upr,Qs) > 6, B (0,1).
U and)s aresignificantly similanf S(U s, Qs) > %
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Example 5.5. Consider the twonF soft setsl ,r and{2s as in Example 5.2. The SM of
¥ s andQs by using Euclidean distance is calculated as,

S(Wpr, Qs) = 0.7538 >

N =

HenceV ,r andQ)s are significantly similar.

Theorem 5.6. The SM of U5, andQ2 s overU satisfies the following.

(). 0<S(Ta,Qs) <1.
(i), S(Yn,0s) =S(Qs, V).
(III) S(\IJN,QS) =1 Uy =Qs.

6. APPLICATIONS INMEDICAL DIAGNOSIS

In this section, we apply the concept of SM for soft sets in medical diagnosis.

1. We present an application to show that the distance based similarity affvo
soft sets can be used to decide whether a patient has anemia or not.

Consider the universal s& = {u; = anemiaus = not anemia consisting of
only two elements and I1&F = {t;, 2, 3} be the set of parameters where the para-
meter,

‘t;" denotes the General Fatigue,
‘t;’ denotes the Heart Symptoms,
‘t3’ denotes the Strange Cravings,

We give further characteristics of these parameters.

e The symptom “General Fatigue” can cause headache, dizziness, poor concen-
tration and irritability.

e The “Heart Symptoms” of the patient may include shortness of breath, chest
pain, low blood pressure and arrhythmia.

e The patient may have “Strange Cravings” to eat items that are not food such
as clay, dirt, ice and starch.

Then we can formulate all attainable information on these symptoms under dis-
cussion as d-polar fuzzy soft sefw, A') and this4-polar fuzzy soft set can be
constructed with the help of Anemia Specialist.
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Q= (w,N)=
w(ty) = {(u, 3/5,7/10,3/5,7/10), (Uz, 1/2,3/5,3/5,2/5)},

w(ty) = {(u, 7/10,4/5,3/5,4/5), (, 3/5,1/2,7/10,3/5)},

w(ts) = {(u, 3/5,7/10,7/10,3/5), (k, 1/2,2/5,1/2,3/5)}.
Now, we construct d-polar fuzzy soft sefy, S), based on the medical reports of
the patient.

1/’(&) = {(ulv 3/57 3/573/51 1/2)7 (U27 1/27 1/27 3/573/10)}a

¥(t) = {(u, 4/5,9/10,7/10,4/5), (U, 1/2,2/5,3/5,1/2)},

U(ts) = {(w, 7/10,3/5,3/5,7/10), (t, 1/2,2/5,3/10,1/2)}.
Calculate the Hamming distance betwéen/\') and(¢, S), we have

A (Qu, Us) = 0.1583
The SM betweeri¢, V) and(v, S) is

1
S, Ts) = = 0.8633 > 7

1.1583

SinceS(Qpr, ¥s) > % it is clear that the twd-polar fuzzy soft sets are signifi-
cantly similar. Thus we conclude that the patient has the disease anemia.

Algorithm:
1. Construct at-polar fuzzy soft sef2 with the help of Anemia Specialist.
2. Construct at-polar fuzzy soft setv s based on the medical reports of ill per-
son.
3. Calculate the Hamming distance betwégq and¥ s, using the formula
n q

A V) =2 3 30

i=1 j=1 k=1

pi o N (1) (Uj) — pi o S(t)(U;)|.

4, Calculate the SM of) s and ¥ 5.
5. Evaluate result by using the similarity.
2. Now, we give another application of SM in medical diagnosis to determine which
patient is running a dengue fever.

Suppose that there are four patients in a hospital with symptoms, High Fever, Severe Pain
and Bleeding. LetlU = {s = severem = mild, n = normal be the universal set and

T = {t, b, t3} be the set of parameters, which are symptoms of dengue fever. The para-
meter

‘t;” stands for High Fever,

‘ty’ stands for Severe Pain,

‘t3’ stands for Bleeding.
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We give further characteristics of these parameters.
e The patient suffering from “High Fever” may also have headache, irritability and
loss of appetite .
e The patient may have “Severe Pain” in muscles, joints or pain behind the eyes.
e The symptom “Bleeding” may include the bleeding of nose, gums and bleeding
under the skin.
We construct th&-polar fuzzy soft set for dengue fever with the help of doctor.

(\D7T) tl t2 t3
severe| (9/10, 4/5, 4/5)[ (7110, 4/5, 7/10) (4/5, 7/10, 4/5)

mild | (3/5,2/5, 1/2)| (1/2, 3/5,1/2) | (1/2, 2/5, 2/5)

normal | (2/5, 2/5, 1/5) | (2/5, 3/10, 1/5)| (1/5, 3/10, 0)

TABLE 2. 3-polar fuzzy soft se(¥, 7)

Now, we will construct the-polar fuzzy soft set based on the medical reports of these four
patients.

(917/\[) b [} i3
severe | (112, 2/5, 1/2) | (2/5, 3/10, 3/5) | (3/10, 2/5, 3/10)

mild | (2/5,1/5, 1/5) | (2/5, 1/2, 1/5) | (2/5, 3/10, 2/5)

normal | (2/5, 3/10, 1/5)| (3/10, 1/5, 1/10)  (1/5, 3/10, 0)

TABLE 3. 3-polar fuzzy soft set for patier,

(Q2,N) t ty t
severe | (7/10, 3/5, 7/10) (3/5, 1/2, 7/10) | (7/10, 3/5, 1/2)

mild | (1/2,3/5,3/5) | (2/5, 1/2, 1/2) | (2/5, 3/10, 2/5)

normal | (3/10, 1/5, 1/5) | (1/5, 1/10, 1/10) (1/10, 1/5, 0)

TABLE 4. 3-polar fuzzy soft set for patiere,
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(2%, N) t ty t3
severe | (8/10, 7/10, 4/5) (4/5, 9/10, 7/10) (7/10, 7/10, 7/10
mild | (7/10, 3/5, 3/5)| (3/5,3/5,3/5) | (1/2, 3/10, 2/5)
normal | (1/2, 2/5, 1/2) | (3/10, 1/2, 3/10) (3/10, 3/10, 1/10

TABLE 5. 3-polar fuzzy soft set for patieris

QYL N) t

[}

f3

severe

mild

normal

(@3/5, 172, 3/5

(1/5, 1/5, 1/5

(1/2, 3/10, 2/5)

Y| (7710, 112, 2/5)

)| (1/10, 1/5, 1/5)

(3/10, 1/2, 3/10) (3/10, 1/5, 3/10)

@315, 112, 112)

(1/10, 1/5, 1/10)

TABLE 6. 3-polar fuzzy soft set for patierf,

The distances betwedr, 7) and (7, 7) obtained from the medical reports of four
patients is calculated in the following table.

Ps3

Pa

(1/10, 1/5, 3/10)

(3/10, 3/10, 1/5)

. s Z B,
P | (25, 2/5, 3/10) | (3/10, 1/2, 3/10)| (1/2, 3/10, 1/2)
P, | (1/5,1/5,1/10)| (1/5, 3/10, 1/10)| (1/10, 1/10, 3/10

(1/10, 1/5, 1/10)

(3/10, 3/10, 3/10

(1/10, 1/10, 1/10

(1/5, 1/5, 3/10)

TABLE 7. Distance betweeB-polar fuzzy soft sets

From Table 8, it is clear that the patieB is suffering from dengue fever.

Algorithm

1. Construct anmF soft setl + = (¢, 7) for dengue fever with the help of doctor.

2. ConstructmF soft set<?},, = (w", V) based on the medical reports of patients

Pr.
3. Calculate the distance betwegpn, 7') and(w”, N) using the formula

dOOOIJT’ Q.7/\/') = (d})o(‘lj'fa Qj\/)’ dc2>o(\1177 Qj\/)a S 7dgé(\p7’7 Q;\/’))
where,
i (Y7, Q) = sup [p; o T (t;)(uk) — ps o N (t;) (ug)|
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. ST S? s S = inf{S', %, 57}
P, | (0.71,0.71,0.7)| (0.77, 0.67, 0.77} (0.67, 0.77, 0.67] (0.67, 0.67, 0.67)

P, | (0.83,0.83, 0.91) (0.83,0.77, 0.91) (0.91,0.91,0.77} (0.83,0.77,0.77)
P, | (0.91, 0.83,0.77) (0.91, 0.83, 0.91) (0.91,0.91, 0.91} (0.91, 0.83, 0.77)

P, | (0.77,0.77,0.83) (0.77,0.77,0.77) (0.83,0.83,0.77) (0.77,0.77,0.77)

TABLE 8. Similarity measure o8-polar fuzzy soft sets

4. Calculate the SMY = (S],S),...,S),) of Uz andQ..

5. PutS = inf §.

6. The patientP, is suffering from dengue fever §( ¥, 2,) is maximum for each
1 €m.

7. CONCLUSION

In many practical problems, multipolar information exists which cannot be represented
well using the existing models. AmF model is used to handle uncertain data having
multipolar information and it has an increasing number of applications in numerous fields,
including, robotics, industrial automation, and optimization. Distance based SMs have a
great deal of importance in solving many practical problems containing uncertainty. In this
research article, we have studied the concept of distance based on:5Ms#ts andnF
soft sets. We have applied the concept of SMrd¥ sets to pattern recognition problem.
Moreover, we have applied the concept of SMitff soft sets to medical diagnosis. Finally,
we have developed algorithms of our proposed methods. In future, our proposed methods
may be extended to new directions including: (1) SMsfdF soft rough sets; (2»:F rough
soft sets.
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