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Abstract. In this article, the main properties of a somewhere dense set
[13] on topological spaces are studied and then it is used to generalize the
notions of interior, closure and boundary operators. The class of some-
where dense sets contains all α-open, pre-open, semi-open, β-open and b-
open sets except for the empty set. We investigate under what conditions
the union of cs-dense sets and the intersection of somewhere dense sets
are cs-dense and somewhere dense, respectively. A concept of ST1-space
is defined and its various properties are discussed. Theorem (4.1) and
Corollary (4.14) give the answer for why we do not define ST0-spaces,
ST 1

2
-spaces, ST2-spaces and ST2 1

2
-spaces. Also, we point out that the

product of ST1-spaces is always an ST1-space and present some exam-
ples to illustrate the main results.

AMS (MOS) Subject Classification Codes: 54D05; 54D10
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1. INTRODUCTION

The generalizations of open sets play an important role in topology by using them to de-
fine and investigate some generalizations of continuous maps, compact spaces, separation
axioms, etc. see for example [8].
In this work, we study somewhere dense sets as a new kind of generalized open sets and
consider many of its properties. We verify that the union (intersection) of somewhere dense
(cs-dense) sets is also somewhere dense (cs-dense) and then we present necessary and suf-
ficient conditions under which the union (intersection) of cs-dense (somewhere dense) sets
is also cs-dense (somewhere dense). Some concepts related to somewhere dense sets like
S-interior, S-closure and S-boundary operators are investigated in detail. Finally, we in-
troduce a concept of ST1-space and study sufficient conditions for some maps to preserve
this concept. Two of the important results obtained in the last section are Theorem (4.1)
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and Corollary (4.14) which give reasons of why we do not define ST0-space, ST 1
2

-space,
ST2-space and ST2 1

2 -space. Also, we point out that the product of somewhere dense sets
(ST1-spaces) is somewhere dense (ST1-space) as well.

2. PRELIMINARIES

The following celebrated five notions are defined by interior and closure operators as
follows.

Definition 2.1. A subset E of a topological space (Z, τ) is called:
(1) Semi-open [10] if E ⊆ cl(int(E)).
(2) α-open [13] if E ⊆ int(cl(int(E))).
(3) Pre-open [11] if E ⊆ int(cl(E)).
(4) β-open [1] if E ⊆ cl(int(cl(E))).
(5) b-open [4] if E ⊆ int(cl(E))

⋃
cl(int(E)).

Remark 2.2. We note that Corson and Michael [6] used the term locally dense for pre-open
sets.

These kinds of generalized open sets similarly are introduced and investigated in soft
topological spaces ([2], [3], [5], [7], [9]). Also, these kinds share common properties for
example a class which consists of h-open sets in a topological space (Z, τ) forms a supra
topology on Z, for each h ∈ {α, β, b, pre, semi}.

Theorem 2.3. [12] IfM is an open subset of a topological space (Z, τ), thenM
⋂
cl(B) ⊆

cl(M
⋂
B), for each B ⊆ Z.

Definition 2.4. A topological space (Z, τ) with no mutually disjoint non-empty open sets
is called hyperconnected.

Theorem 2.5. [12] If
∏
i∈I

Mi is a subset of a product topological space (
∏
i∈I

Zi, T ), then

cl(
∏
i∈I

Mi) =
∏
i∈I

cl(Mi).

Definition 2.6. [14] A subset E of a topological space (Z, τ) is called somewhere dense
if int(cl(E)) 6= ∅. In other words, A subset E of a topological space (Z, τ) is called
somewhere dense if there exists a non-empty open set G such that G ⊆ cl(E).

Throughout this article, (Z, τ) and (Y, θ) indicate topological spaces, G refers to a non-
empty open subset of (Z, τ) andR stands for the set of real numbers.

3. SOMEWHERE DENSE SETS

In this section, we investigate the properties of somewhere dense sets and point out
its relationships with some famous generalized open sets. Also, we derive various results
concerning somewhere dense sets such as that the product of somewhere dense sets is
always somewhere dense. Finally, we initiate the concepts of S-interior, S-closure and
S-boundary operators and present several of their properties.

Definition 3.1. The complement of somewhere dense subset B of (Z, τ) is called a cs-
dense set.
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Remark 3.2. Henceforth, S(τ) is used to denote the collection of all somewhere dense sets
in (Z, τ).

Theorem 3.3. A subset B of (Z, τ) is cs-dense if and only if there exists a proper closed
subset F of Z such that int(B) ⊆ F .

Proof. To prove the ”if” part, consider that a setB ⊂ Z is cs-dense. ThenBc is somewhere
dense. Therefore there is a G such that G ⊆ cl(Bc). Thus int(B) = (cl(Bc))c ⊆ Gc and
Gc 6= Z. Taking F = Gc, hence int(B) ⊆ F 6= Z.
To prove the ”only if” part, suppose B ⊂ Z and there is a closed set F 6= Z such that
int(B) ⊆ F . Then F c ⊆ (int(B))c = cl(Bc) and F c 6= ∅. Therefore Bc is somewhere
dense. This completes the proof. �

Theorem 3.4. Any non-empty β-open set is somewhere dense.

Proof. Suppose that E is a non-empty β-open set.
Then E ⊆ cl(int(cl(E))) ⊆ cl(cl(E)) = cl(E). Therefore the set int(cl(E)) is non-
empty open and int(cl(E)) ⊆ cl(E). Thus E is a somewhere dense set. �

The following example shows that the converse of Theorem (3.4) fails.

Example 3.5. Let Z = {7, 8, 9} and τ = {∅, {7}, {8}, {7, 8}, {8, 9}, Z} be a topology on
Z. Then cl(int(cl({7, 9}))) = {7}. Therefore the set {7, 9} is not β-open. On the other
hand, {7, 9} contains a non-empty open set {7}. This implies that {7, 9} is a somewhere
dense set.

Remark 3.6. Abd El-Monsef et al.[1] proved that every open α-open, semi-open, pre-
open) set is β-open and Andrijevic [4] proved that every b-open set is β-open. Then we can
deduce that they are somewhere dense except for the empty set.

The relationships which were discussed in the previous theorem and remark are pre-
sented in the next Figure.

Fig. (1) The relationships between somewhere dense sets and some generalized
non-empty open sets.

Proposition 3.7. If (Z, τ) is an indiscrete topological space, then S(τ)
⋃
{∅} is the discrete

topology on Z.
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Proof. For any non-empty subset A of an indiscrete topological space (Z, τ), we have that
cl(A) = Z. Then all non-empty subsets of Z are somewhere dense. This completes the
proof. �

Theorem 3.8. Every subset of (Z, τ) is somewhere dense or cs-dense.

Proof. Suppose thatA is a subset of Z that is not somewhere dense. Then cl(A) has empty
interior, so we cannot have cl(A) = Z. Then (cl(A))c is a non-empty open subset of Ac,
hence of cl(Ac), so Ac is somewhere dense and A is cs-dense. �

Proposition 3.9. let {Mk : k ∈ K} be a class of subsets of (Z, τ). Then
⋃

k∈K Mk is
somewhere dense if and only if

⋃
k∈K Mk is somewhere dense.

Proof. Since
⋃

k∈K Mk =
⋃

k∈K Mk, then the proposition holds. �

Proposition 3.10. The union of an arbitrary non-empty family of somewhere dense subsets
of (Z, τ) is somewhere dense.

Proof. Assume that {Ek : k ∈ K 6= ∅} is a family of somewhere dense sets. Then
there exists a non-empty open set Gk0 such that Gk0 ⊆ cl(Ek0) ⊆ cl(

⋃
k∈K Ek). Hence⋃

k∈K Ek is a somewhere dense set. �

Corollary 3.11. The intersection of an arbitrary non-empty family of cs-dense subsets of
(Z, τ) is cs-dense.

Proof. Let {Bk : k ∈ K 6= ∅} be a family of cs-dense sets. Then {Bc
k : k ∈ K 6= ∅} is

a family of somewhere dense sets. Therefore
⋃

k∈K Bc
k is a somewhere dense set. Hence⋂

k∈K Bk is cs-dense. �

Corollary 3.12. The collection S(τ)
⋃
{∅} forms a supra topology on Z.

Remark 3.13. The intersection (union) of a finite family of somewhere dense (cs-dense)
sets is not somewhere dense (cs-dense) in general as the next example illustrates.

Example 3.14. Let τ be the cofinite topology on R. Then (−∞, 1) and (1,∞) are cs-
dense sets, but the union of them R \ {1} is not cs-dense. Also, (−∞, 1] and [1,∞) are
somewhere dense sets, but the intersection of them {1} is not somewhere dense.

Theorem 3.15. IfM is open andN is somewhere dense in a hyperconnected space (Z, τ),
then M

⋂
N is somewhere dense.

Proof. Consider that N is a somewhere dense subset of (Z, τ). Then there is a G which
is contained in cl(N). Therefore M

⋂
G ⊆ M

⋂
cl(N) ⊆ cl(M

⋂
N). Since (Z, τ) is

hyperconnected, then M
⋂
G 6= ∅. Thus M

⋂
N is somewhere dense. �

Corollary 3.16. If M is closed and N is cs-dense in a hyperconnected space (Z, τ), then
M

⋃
N is cs-dense.

Definition 3.17. A topological space (Z, τ) is called strongly hyperconnected provided
that a subset of Z is dense if and only if it is non-empty and open.
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One can directly notice that every strongly hyperconnected space is hyperconnected,
however the converse need not be true as shown by the cofinite topology which defined in
Example (3.14).

Theorem 3.18. Let M and N be subsets of a strongly hyperconnected space (Z, τ). If
int(M) = int(N) = ∅, then int(M

⋃
N) = ∅.

Proof. If M or N are empty, then the proof is trivial.
Let M and N be non-empty sets. Suppose, to the contrary, that int(M

⋃
N) 6= ∅. Then

there is x ∈ int(M
⋃
N) and this implies there is aG containing x such thatG is contained

in M
⋃
N . Since (Z, τ) is strongly hyperconnected, then we get

cl(M)
⋃
cl(N) = Z (3. 1)

If cl(M) is dense, then M is non-empty open. But this contradicts that int(M) = ∅.
Therefore ∅ ⊂ cl(M) ⊂ Z. Similarly, ∅ ⊂ cl(N) ⊂ Z. Thus ∅ ⊂ (cl(M))c ⊂ Z and
∅ ⊂ (cl(N))c ⊂ Z. From (3. 1 ), we obtain that (cl(M))c

⋂
(cl(N))c = ∅. But (cl(M))c

and (cl(N))c are disjoint non-empty open sets and this contradicts that (Z, τ) is strongly
hyperconnected. As a contradiction arises by assuming that int(M

⋃
N) 6= ∅, then the

theorem holds. �

We now investigate under what conditions the union of cs-dense sets is cs-dense.

Lemma 3.19. If M is a cs-dense subset of a strongly hyperconnected space (Z, τ), then
int(M) = ∅.

Proof. Let M be a cs-dense subset of (Z, τ). Then there is a closed set F 6= Z containing
int(M). Suppose that int(M) 6= ∅. Then cl(F ) = Z and this implies that the set F is
open. But this contradicts that (Z, τ) is strongly hyperconnected. Therefore int(M) =
∅. �

Theorem 3.20. If M and N are cs-dense subsets of a strongly hyperconnected space
(Z, τ), then M

⋃
N is cs-dense.

Proof. Consider that M and N are cs-dense subsets of (Z, τ). Then there are two closed
sets F 6= Z and H 6= Z such that int(M) ⊆ F and int(N) ⊆ H . Since (Z, τ) is strongly
hyperconnected, then int(M) = ∅, int(N) = ∅ and F

⋃
H 6= Z. From Theorem (3.18),

we obtain that int(M)
⋃
int(N) = int(M

⋃
N) = ∅. Consequently, int(M

⋃
N) ⊆

F
⋃
H . Hence the proof is completed. �

Corollary 3.21. If M and N are somewhere dense subsets of a strongly hyperconnected
space (Z, τ), then M

⋂
N is somewhere dense.

Corollary 3.22. If (Z, τ) is strongly hyperconnected, then S(τ)
⋃
{∅} forms a topology on

Z.
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Theorem 3.23. Let (
i=s∏
i=1

Zi, T ) be a finite product topological space. Then Mi is a some-

where dense subset of (Zi, τi), for each i = 1, 2, ..., s, if and only if
i=s∏
i=1

Mi is a somewhere

dense subset of (
i=s∏
i=1

Zi, T ).

Proof. Necessity: Let Mi be a somewhere dense subset of (Zi, τi). Then there is an open
set Gi 6= ∅ such that Gi ⊆ cl(Mi). Therefore G1 ×G2 × ...×Gs ⊆ cl(M1)× cl(M2)×

... × cl(Ms) =
i=s∏
i=1

cl(Mi) = cl(
i=s∏
i=1

Mi). Thus
i=s∏
i=1

Mi is a somewhere dense subset of

(
i=s∏
i=1

Zi, T ).

Sufficiency: Let
i=s∏
i=1

Mi be a somewhere dense subset of (
i=s∏
i=1

Zi, T ). Then there is a non-

empty open setG1×G2×...×Gs of (
i=s∏
i=1

Zi, T ) such thatG1×G2×...×Gs ⊆ cl(
i=s∏
i=1

Mi).

Therefore Gi ⊆ cl(Mi), for each i = 1, 2, ..., s. Thus Mi is a somewhere dense subset of
(Zi, τi). �

Corollary 3.24. Let (
i=s∏
i=1

Zi, T ) be a finite product topological space. Then Bi is a cs-

dense subset of (Zi, τi), for each i = 1, 2, ..., s if and only if
i=s⋃
i=1

(Bi ×
j=s∏

j=1,j 6=i

Zj) is a

cs-dense subset of (
i=s∏
i=1

Zi, T ).

Theorem 3.25. If a map q : (Z, τ) → (Y, θ) is open and continuous, then the image of
each somewhere dense set is somewhere dense.

Proof. Let E be a somewhere dense subset of (Z, τ). Then there is a G such that G ⊆
cl(E). Now, q(G) ⊆ q(cl(E)). Because q is open and continuous, then q(G) is open and
q(cl(E)) ⊆ cl(q(E)). Therefore q(E) is somewhere dense. �

Corollary 3.26. If
∏
i∈I

Mi is a somewhere dense subset of a product topological space

(
∏
i∈I

Zi, T ), then Mi is a somewhere dense subset of (Zi, τi), for each i ∈ I .

Definition 3.27. Let M be a subset of (Z, τ). Then:
(1) The S-interior ofM (for short, Sint(M)) is the union of all somewhere dense sets

contained in M .
(2) The S-closure of M (for short, Scl(M)) is the intersection of all cs-dense sets

containing M .
(3) The S-boundary of M (for short, Sb(M)) is the set of elements which belong to

(Sint(M)
⋃
Sint(M c))c.

Proposition 3.28. Consider a subset M of (Z, τ). Then:
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(1) M ⊆ Scl(M); and a set M 6= Z is cs-dense if and only if M = Scl(M).
(2) Sint(M) ⊆ M ; and a non-empty set M is somewhere dense if and only if M =

Sint(M).
(3) (Sint(M))c = Scl(M c).
(4) (Scl(M))c = Sint(M c).

Proof. (1) and (2): The proofs of (1) and (2) come immediately from Definition (3.27) and
Definition (2.6).
(3) X − Sint(M) = (Sint(M))c = {∪E : E is a somewhere dense set included in
M}c = ∩{Ec : Ec is a cs-dense set including M c} = Scl(M c).

By analogy with (3), one can prove (4). �

For the sake of economy, the proof of the next proposition will be omitted.

Proposition 3.29. Suppose M and N are subsets of (Z, τ). Then:
(1) Sint(M)

⋃
Sint(N) ⊆ Sint(M

⋃
N) and

Sint(M
⋂
N) ⊆ Sint(M)

⋂
Sint(N).

(2) Scl(M
⋂
N) ⊆ Scl(M)

⋂
Scl(N) and

Scl(M)
⋃
Scl(N) ⊆ Scl(M

⋃
N).

(3) Sb(Sint(N)) ⊆ Sb(N).

In the following, we point out that the inclusion relation in the above proposition can
be proper.

Example 3.30. Assume that (Z, τ) is the same as in Example (3.14). Let M = R \
{13, 14}, N = {13, 14, 19, 20}, O = (−∞, 1] and P = [1,∞). Then

(1) Sint(M) = M, Sint(N) = ∅ and Sint(M
⋃
N) = R. Also, Scl(O) =

(−∞, 1], Scl(P ) = [1,∞) and Sint(O
⋂
P ) = ∅.

(2) Scl(M) = R, Scl(N) = N and Scl(M
⋂
N) = {19, 20}. Also, Scl(O \ {1}) =

O \ {1}, Scl(P \ {1}) = P \ {1} and Scl((O \ {1})
⋃
(P \ {1})) = R.

(3) Sb(Sint(N)) = ∅ and Sb(N) = N .

Proposition 3.31. Assume that M is a subset of (Z, τ). Then:
(1) Sb(M) = Scl(M)

⋂
Scl(M c).

(2) Sb(M) = Scl(M) \ Sint(M).

Proof. (1) Sb(M) = (Sint(M)
⋃
Sint(M c))c

= (Sint(M))c
⋃
(Sint(M c))c (De Morgan’s law)

= Scl(M)
⋂
Scl(M c) (Proposition (3.29)(iii))

(2) Sb(M) = Scl(M)
⋂
Scl(M c) = Scl(M)

⋂
(Sint(M))c = Scl(M) \ Sint(M).

�

Corollary 3.32. Sb(M) = Sb(M c), for every subset M of (Z, τ).

Lemma 3.33. Let M be a subset of (Z, τ). If Scl(M) = Z, then Scl(M c) 6= Z.

Proof. Scl(M) = Z ⇒ cl(M) = Z ⇒ int(M c) = ∅ ⇒ M c 6= Z and M c is cs-dense
⇒ Scl(M c) =M c 6= Z. �

Proposition 3.34. Sb(M) is cs-dense, for every subset M of (Z, τ).
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Proof. Let M be a subset of (Z, τ). Then we have the following two cases:

(1) Scl(M) 6= Z and Scl(M c) 6= Z. Then Scl(M)
⋂
Scl(M c) is cs-dense.

(2) Scl(M) 6= Z and Scl(M c) = Z or Scl(M) = Z and Scl(M c) 6= Z. Say,
Scl(M) 6= Z and Scl(M c) = Z. Then Scl(M)

⋂
Scl(M c) = Scl(M) is cs-

dense.

Thus Sb(M) is cs-dense. �

Proposition 3.35. The following two statements hold.

(1) A non-empty subset M of (Z, τ) is somewhere dense if and only if Sb(M)
⋂
M =

∅.
(2) A proper subset M of (Z, τ) is cs-dense if and only if Sb(M) ⊆M .

Proof. (1) Necessity: Sb(M)
⋂
M = Sb(M)

⋂
Sint(M) = ∅.

Sufficiency: Let x ∈ M . Then x ∈ Sint(M) or x ∈ Sb(M). As Sb(M)
⋂
M =

∅, then x ∈ Sint(M). Therefore M ⊆ Sint(M). Thus M is somewhere dense.
(2) M 6= ∅ is cs-dense⇔M c is somewhere dense⇔ Sb(M c)

⋂
M c = ∅⇔ Sb(M)

⋂
M c = ∅ ⇔ Sb(M) ⊆M .

�

Corollary 3.36. LetM be a non-empty proper subset of (Z, τ). ThenM is both somewhere
dense and cs-dense if and only if Sb(M) = ∅.

Proposition 3.37. If M is a subset of (Z, τ), then Sb(M) ⊆M or Sb(M) ⊆M c.

Proof. Let M be a subset of (Z, τ). Then from Theorem (3.8), one of M and M c is cs-
dense. By Proposition (3.35)(ii), either Sb(M c) = Sb(M) ⊆ M or Sb(M) = Sb(M c) ⊆
M c. �

4. ST1-SPACES

We devote this section to defining a new separation axiom in topological spaces namely,
RT1-space and to studying its fundamental properties. Also, we derive some important
results such as that the product of ST1-spaces is also an ST1-space.

In the next theorem, we point out why we did not define ST0-space and RT 1
2

-space.

Theorem 4.1. Let (Z, τ) be a topological space. Then Scl({s}) 6= Scl({t}) for each pair
of distinct points s, t ∈ Z.

Proof. Let s, t be two distinct points in Z. From Theorem (3.8), we have the next two
cases:

(1) A set {s} is somewhere dense, then {s}
⋂
{t} = ∅. Therefore s 6∈ Scl({t}). Thus

Scl({s}) 6= Scl({t}).
(2) A set {s} is not somewhere dense, then {s} is cs-dense. So Scl({s}) = {s} and

hence Scl({s}) 6= Scl({t}).
�
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Definition 4.2. A topological space (Z, τ) is said to be ST1-space if for any pair of distinct
points a, b ∈ Z, there exist two somewhere dense sets one containing a but not b and the
other containing b but not a.

Proposition 4.3. Every T1-space is an ST1-space.

Proof. Straightforward. �

In the next example, we illustrate that an ST1-space is not always a T1-space.

Example 4.4. The class τ = {∅, {r, s}, Z} defines a topology on Z = {r, s, t}. Observe
that S(τ) = {{r}, {s}, {r, s}, {r, t}, {s, t}, Z}. Then (Z, τ) is an ST1-space, however it
is not a T1-space.

For the sake of economy, the proof of the next theorem will be omitted.

Theorem 4.5. The next three conditions are equivalent:
(1) (Z, τ) is an ST1-space;
(2) All singleton subsets of (Z, τ) are cs-dense;
(3) For each subset U of Z, the intersection of all somewhere dense sets containing U

is exactly U .

Definition 4.6. A subset W of (Z, τ) is said to be S-neighborhood of a ∈ Z provided that
there is a somewhere dense set E such that a ∈ E ⊆W .

Now, it is straightforward to verify the next two propositions.

Proposition 4.7. Every neighbourhood of any point in (Z, τ) is a somewhere dense set.

Proposition 4.8. If E is a somewhere dense set in (Z, τ), then every proper superset of E
is somewhere dense.

Corollary 4.9. A subsetE of (Z, τ) is somewhere dense if and only if it is an S-neighbour-
hood of at least one point of Z.

Corollary 4.10. If the boundary of a closed set F is somewhere dense, then F is somewhere
dense.

Proof. Assume that b(F ) is somewhere dense and F is closed. Then b(F ) 6= ∅ and b(F ) ⊆
F . Hence F is somewhere dense. �

The converses of Propositions(4.7) and Propositions(4.8) do not hold as shown in
the next example.

Example 4.11. Consider the topology τ = {∅, {r}, {t, u}, {r, s}, {r, t, u}, Z} on Z =
{r, s, t, u}. Then we have the following:

(1) {s, u} is somewhere dense, but is not a neighbourhood of any point.
(2) For any proper superset M of {s}, we get that M is somewhere dense. But {s} is

not somewhere dense.

Lemma 4.12. A subset E of (Z, τ) is somewhere dense if and only if Scl(E) is somewhere
dense.
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Proof. ”⇒ ”: Obvious.
” ⇐ ”: Let Scl(E) be somewhere dense. Since Scl(E) ⊆ cl(E), then cl(E) is also
somewhere dense. Therefore E is somewhere dense. �

Theorem 4.13. A topological space (Z, τ) is an ST1-space if and only if {x} =
⋂
{Fi : Fi

is a cs-dense neighborhood of x}, for each x ∈ Z

Proof. ” ⇒ ”: The collection {Fi : i ∈ I} of all cs-dense neighborhoods of x is also
the collection of all somewhere dense sets containing x. From Theorem (4.5), we get that
{x} =

⋂
{Fi : i ∈ I}

” ⇐ ”: Let x 6= y. Since {x} =
⋂
{Fi : Fi is a cs-dense neighborhood of x} and

{y} =
⋂
{Hj : Hj is a cs-dense neighborhood of y}, then there exist somewhere dense

sets Fi0 andHj0 including x and y, respectively, such that y 6∈ Fi0 and x 6∈ Hj0 . Therefore
(Z, τ) is an ST1-space. �

Corollary 4.14. The next five properties are equivalent:
(1) (Z, τ) is an ST1-space;
(2) For each pair of distinct points a, b ∈ Z, there are two disjoint somewhere dense

sets one containing a and the other containing b;
(3) For each pair of distinct points a, b ∈ Z, there are two disjoint sets E and S

containing a and b, respectively, such that E and S are both somewhere dense and
cs-dense;

(4) For all a ∈ Z, we have {a} =
⋂
{cl(Ei) : Ei is a somewhere dense set containing

a};
(5) The subset {(z, z) : z ∈ Z} of Z × Z is cs-dense.

Remark 4.15. The property of being ST1-space is not a hereditary property as the next
example illuminates.

Example 4.16. Consider the topology τ = {∅, {r, s}, Z} on Z = {r, s, t} and let M =
{s, t}. Then (Z, τ) is an ST1-space, but the subspace (M, τM ) is not an ST1-space.

Theorem 4.17. A product of ST1-spaces is always an ST1-space.

Proof. Let {(Zj , τj) : j ∈ J} be a collection of ST1-spaces and (
∏
j∈J

Zj , T ) be their

product space. Let a, b be two distinct points in
∏
j∈J

Zj . Without loss of generality, there

exists j0 ∈ J such that aj0 6= bj0 . Since (Zj0 , τj0) is an ST1-space, then there are disjoint
somewhere dense sets Vj0 and Wj0 including aj0 and bj0 , respectively. Therefore there
is an open set G in (Zj0 , τj0) such that G ⊆ cl(Vj0) and this implies that π−1(G) ⊆
π−1(cl(Vj0)) = {

∏
i∈J

Zi : i 6= j} × cl(Vj0) = cl({
∏
i∈J

Zi : i 6= j} × Vj0). As π is

surjective and continuous, then π−1(G) is a non-empty open subset of the product space
(
∏
j∈J

Zj , T ). Therefore {
∏
i∈J

Zi : i 6= j} × Vj0 is a somewhere dense set and b 6∈ {
∏
i∈J

Xi :

i 6= j}×Vj0 . Similarly, {
∏
i∈J

Zi : i 6= j}×Wj0 is a somewhere dense set containing b and

a 6∈ {
∏
i∈J

Zi : i 6= j} × Vj0 . Hence (
∏
j∈J

Zj , T ) is an ST1-space. �
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5. CONCLUSION

In the present paper, we give a concept of somewhere dense sets in topological spaces
and derive interesting results such as any subset of (Z, τ) is somewhere dense or cs-dense.
We present a notion of strongly hyperconnected space and then this is used to verify that
(Z, S(τ)

⋃
{∅}) is a topological space if (Z, τ) is strongly hyperconnected. In the end,

we define a notion of ST1-space and derive several properties related to this notion as that
the product of ST1-spaces is an ST1-space as well. In an upcoming paper, we plan to use
an idea of somewhere dense sets to study new types of compactness and connectedness in
topological spaces.
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