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Abstract.: This paper is devoted to present a simple but efficient nu-
merical method for solving the 2D Volterra-Fredholm integral equation
(VFIE). Both mixed and separate types of VFIEs are considered. The un-
der consideration technique rely on approximating the unknown function
with 2D Bernstein polynomials. The proposed technique has advantage
in reducing the computational burden. To show the accuracy and con-
vergence of this method, some results are also established. Finally the
effectiveness of the technique is demonstrated by applying the technique
on some numerical tests.
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1. INTRODUCTION

Volterra and Fredholm integral equations are well-known integral equations that arise in
various fields of science such as population dynamics, kinetic, theory of gases, radiations
and communication theory. The major investigator of the theory related to these integral
equations is Vita Volterra (1860-1940) and Ivar Fredholm (1866-1927). The VFIE of the
first kind is of the form

f(v, w) = λ1

∫ w

a

∫ v

c

k1(y, v, z, w)u(y, z)dydz

+λ2

∫ b

a

∫ d

c

k2(y, v, z, w)u(y, z)dydz. (1. 1)
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The mixed VFIE of the first kind is of the form

f(v, w) = λ

∫ w

a

∫ c

b

k(y, v, z, w)u(y, z)dydz. (1. 2)

Wherea, b, c, andd are constants andλ, λ1 andλ2 are constant parameters. The function
f(v, w), the kernelsk(y, v, z, w), k1(y, v, z, w) andk2(y, v, z, w) are known functions and
u(y, z) is the unknown function to be determined. There is a growing interest in finding
the solution of two-dimensional integral equations of first and second kind in recent years.
Most of the work has been done on second kind of integral equations. Alipour and Ros-
tamy used Bernstein polynomials for obtaining the solution of Abels integral equation [3].
Maleknejad and Hashminzadeh used Bernstein operational matrix approach for solving the
system of higher order linear Volterra-Fredholm integro-differential equations [1]. Khan et
al. presented the discretization method for solving 2-dimensional Volterra integral equa-
tion, which is based on2D Bernstein polynomial [6]. Now a day, the researchers are trying
to find the solution of2D integral equations by using some approximation techniques. In
2017, Khan et al. found numerical solution of mixed Volterra-Fredholm integral equa-
tions based on Bernstein basis functions [5] for one dimensional. Hetmaniok et al. used
Homotopy technique for solving2D integral equations of the second kind [2]. In 2013,
Jafaraian et al. used collocation Bernstein polynomial expansion method to solve linear
second kind system of Fredholm and Volterra integral equations [4]. C. Heitzinger et al.
obtained an algorithm for the smoothing three-dimensional monte carlo ion implantation
simulation results [7]. In this paper the Volterra-Fredholm integral equation of first kind
is solved numerically by discretization method based on Bernstein basis function. Here,
both separate and mixed forms of VFIE are considered. The unknown function is replaced
by Bernstein basis function to obtain the approximate solution. The presented technique
can give more accurate results if the degree of the Bernstein polynomial is increased. Even
at the smallest values of 2D Bernstein’s degree the proposed technique give appropriate
accuracy which results in the low computational cost. The five sections of this paper are
managed as follows. In section 2 the basic concepts are discussed. Section 3, deals with
numerical technique based on 2D Bernstein basis functions. In Section 4, we have provided
some results about convergence analysis. In the last section some numerical problems are
carried out. All the computations are performed using MATLAB.

2. BASIC CONCEPTS

Definition 2.1. (Multivariate Bernstein Polynomials) Letp1, p2, . . . , pr ∈ N and h is a
function ofr variables. Then the multivariate Bernstein polynomials ofh is defined as
under

Bh,p1,...,pr (x1, . . . , xr) :=
∑

06kj6rj

j∈{1,...,r}

h

(
k1

p1
, . . . ,

kr

pr

) r∏

j=1

((
pj

kj

)
x

kj

j (1− xj)
pj−kj

)
.

If a functionh : [a, b]× [c, d] → R is approximated by the Bernstein polynomial then
it is defined as

Bm1,n1(h(y, z)) =
m1∑

i=0

n1∑

j=0

B(i,m1),(j,n1)(y, z)h
(

a + i
b− a

m1
, c + j

d− c

n1

)
, (2. 3)
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where

B(i,m1),(j,n1)(y, z) =
(

m1

i

)(
n1

j

)
(y − a)i(b− y)m1−i(z − c)j(d− z)n1−j

(b− a)m1(d− c)n1
,

for i = 0, . . . ,m1; j = 0, . . . , n1, which is known as the 2D Bernstein polynomial basis
with y ∈ [a, b] andz ∈ [c, d]. Herem1, n1 are arbitrary whole numbers. For the properties
of 2D Bernstein polynomial see [5]. The asymptotic formula of the Bernstein polynomial
approximation is given in the following Theorem.

Theorem 2.2. (Asymptotic Formula) Leth : [e1, f1] × [e2, f2] × . . . × [er, fr] → R be a
C2 function andY ∈ [e1, f1]× [e2, f2]× . . .× [er, fr] then

lim
m1→∞

m1((Bn1,n2,...,nm
h(Y ))− h(Y )) =

r∑

i=1

(xi − ei)(fi − xi)
2

∂2h(Y )
∂x2

i

≤ 1
8

r∑

i=1

((ei − fi)2)
∂2h(Y )

∂x2
i

.

Proof. See [7]. ¤

Theorem 2.3. (Uniform Convergence) Leth : [e1, f1] × [e2, f2] × . . . × [er, fr] → R be
a continuous function andX ∈ [e1, f1] × [e2, f2] × . . . × [er, fr]. Then the multivariate
Bernstein polynomialsBn1,n2,...,nmf(X) converge uniformly to h forn1, n2, . . . , nm.

Proof. See [7]. ¤

In above stated asymptotic formula if we takeh : [a, b] × [c, d] → R be aC2 function
and(y, z) ∈ [a, b]× [c, d] then it becomes:

lim
m→∞

m((Bm,nh)(y, z)− h(y, z)) ≤ (b− a)2

8
∂2h(y, z)

∂y2
+

(d− c)2

8
∂2h(y, z)

∂z2
. (2. 4)

3. PROPOSEDNUMERICAL METHOD FOR2-DIMENSIONAL VFIE’ S

In this section the proposed technique is applied on both the separate and mixed type of
2D Volterra-Fredholm integral equations.

3.1. Separate kind of Volterra-Fredholm integral equation. Consider the 2D Volterra-
Fredholm integral equation of first kind defined as

f(v, w) = λ1

∫ w

a

∫ v

c

k1(y, v, z, w)u(y, z)dydz

+λ2

∫ b

a

∫ d

c

k2(y, v, z, w)u(y, z)dydz, v ∈ [a, b] andw ∈ [c, d].(3. 5)

Wheref(v, w) andk2(y, v, z, w), k1(y, v, z, w) are analytic functions andu(v, w) is the
unknown function.
In order to obtain the numerical solution of above mentioned integral equation, replace the
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unknown function byu(y, z) andu(v, w) by Bernstein plonomials given in(2.3).
So the equation will be

f(v, w) =
m1∑

i=0

n1∑

j=0

u

(
a + i

b− a

m1
, c + j

d− c

n1

)
αij

[
λ1

∫ w

a

∫ v

c

k1(y, v, z, w)βij(y, z)dydz

−λ2

∫ b

a

∫ d

c

k2(y, v, z, w)βij(y, z)dydz

]
, (3. 6)

whereαij = (m1
i )(n1

j )
(b−a)m1 (d−c)n1 andβij(v, w) = (v − a)i(b− v)m1−i(c− w)j(d− w)n1−j .

To obtain the values ofu(a + i b−a
m1

, a + j b−a
n1

), i = 0, . . . , m1, j = 0, . . . , n1, the above
equation in the form of a linear system of equations is written by substitutingv asvp =
a + (b − a) p

m1
+ ε, p = 0, . . . , m1 − 1, vm1 = b − ε, w aswq = c + (d − c) q

n1
+ ε,

q = 0, . . . , n1 − 1 andwn1 = d− ε, whereε is a very small positive number.
The above system of linear equations can be written in matrix form asSX = T , where the
matricesS, X andT are given as under:

S = αij

[
λ1

∫ w

a

∫ v

b

k1(y, v, z, w)βij(y, z)dydz

−λ2

∫ b

a

∫ d

c

k2(y, v, z, w)βij(y, z)dydz

]
, i = 0, . . . ,m1, j = 0, . . . , n1,

(3. 7)

X =
[
u

(
a + i

b− a

m1
, c + j

d− c

n1

)]t

,

T = [f(vp, wq)]
t
, p = 0, . . . , m1, q = 0, . . . , n1,

whereu
(
a + i b−a

m1
, c + j d−c

n1

)
, i = 0, . . . , m1, j = 0, . . . , n1 can be written as

um1,n1

(
a + i b−a

m1
, c + j d−c

n1

)
, i = 0, . . . , m1, j = 0, . . . , n1 which are our solutions in

nodes
(
a + i b−a

m1
, c + j d−c

n1

)
, i = 0, . . . , m1, j = 0, . . . , n1 and by using it in equation

( 2. 3 ), we haveBm1,n1(fm1,n1 ; vp, wq), p = 0, . . . , m1, q = 0, . . . , n1 which is the solu-
tion of 2D VFIE given in ( 3. 5 ).

3.2. Mixed kind of Volterra-Fredholm integral equation. Same technique can be ap-
plied on mixed VFIE of first kind, as given below. Consider the mixed VFIE given in ( 1.
2 )

f(v, w) = λ

∫ w

a

∫ c

b

k(y, v, z, w)u(y, z)dydz, v ∈ [a, b] and w ∈ [c, d], (3. 8)
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wheref(v, w) andk(y, v, z, w) are analytic functions andu(y, z) is unknown function to
be determined. To obtain the solution, replace the unknown function by Bernstein Polyno-
mials given in(2.3).

f(v, w) =
m1∑

i=0

n1∑

j=0

u

(
a + i

b− a

m1
, c + j

d− c

n1

)
αij

[
λ

∫ w

a

∫ c

b

k1(y, v, z, w)βij(y, z)dydz

]
,

(3. 9)

whereαij = (m1
i )(n1

j )
(b−a)m1 (d−c)n1 andβij(v, w) = (v − a)i(b− v)m1−i(c− w)j(d− w)n1−j .

To obtain the values ofu
(
a + i b−a

m1
, c + j d−c

n1

)
, i = 0, . . . ,m1 andj = 0, . . . , n1, the

above equation can be written in the form of linear system of equations by substitutingv as
vp = a + (b− a) p

m1
+ ε, p = 0, . . . , m1 − 1, vm1 = b− ε, w aswq = c + (d− c) q

n1
+ ε,

q = 0, . . . , n1 − 1 andwn1 = d− ε, whereε is a very small positive number.
The above system of linear equations can be written in matrix form asCX = D, where
the matricesC, X andD are given as:

C = αij

[
λ

∫ w

a

∫ c

b

k1(y, v, z, w)βij(y, z)dydz

]
, i = 0, . . . , m1, j = 0, . . . , n1,(3. 10)

X =
[
u

(
a + i

b− a

m1
, c + j

d− c

n1

)]t

,

D = [f(vp, wq)]
t
, p = 0, . . . ,m1, q = 0, . . . , n1,

whereu
(
a + i b−a

m1
, c + j d−c

n1

)
, i = 0, . . . , m1, j = 0, . . . , n1 can be written as

um1,n1

(
a + i b−a

m1
, c + j d−c

n1

)
, i = 0, . . . , m1, j = 0, . . . , n1 that are our outcomes in

nodes
(
a + i b−a

m1
, c + j d−c

n1

)
, i = 0, . . . ,m1, j = 0, . . . , n1 and by substituting it in equa-

tion ( 2. 3 ), we obtainedBm1,n1(fm1,n1 ; vp, wq), p = 0, . . . , m1, q = 0, . . . , n1 that is the
solution of 2D mixed VFIE ( 3. 8 ).

3.3. Convergence Analysis.

Theorem 3.4. Consider 2DVFIE of first kind defined in ( 3. 5 ). Suppose the function
u(v, w) is continuous on[a, b]2 and the kernelk1(y, v, z, w) andk2(y, v, z, w) are analytic
on the square[a, b]2×[c, d]2. If the matrixS given in ( 3. 7 ) has an inverse then

sup
vpε[a,b],wqε[c,d]

|u(vp, wq)−Bm1,n1(um1,n1(vp, wq))|

≤ 1 + [1 + (E)(b− a)(d− c)]‖S−1‖
[
(b− a)2

8m1
‖uvv‖+

(d− c)2

8n1
‖uww‖

]
,

(3. 11)
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wherevp = a + p b−a
m1

, wq = c + q d−c
n1

, p = 0, . . . , m1 ; q = 0, . . . , n1, E = L + M and
u(v, w) is the actual solution. Here

L = sup
y,vε[a,b],z,wε[c,d]

|λ1k1(y, v, z, w)|, M = sup
y,vε[a,b],z,wε[c,d]

|λ2k2(y, v, z, w)| and

Bm1,n1(um1,n1(vp, wq) is proposed method solution.

Proof. Consider

sup
vpε[a,b],wqε[c,d]

|u(vp, wq)−Bm1,n1(um1,n1(vp, wq))|

= sup
vpε[a,b],wqε[c,d]

|u(vp, wq)−Bm1,n1(um1,n1(vp, wq))

+um1,n1(vp, wq)− um1,n1(vp, wq)| (3. 12)

≤ sup
vpε[a,b],wqε[c,d]

|u(vp, wq)− um1,n1(vp, wq)|

+ sup
vpε[a,b],wqε[c,d]

|um1,n1(vp, wq)−Bm1,n1(um1,n1(vp, wq))|. (3. 13)

Since the inequality

‖Bm1,n1(u(v, w))− u(v, w)| ≤ (v − a)(b− v)
2m1

‖uvv‖+
(w − c)(d− w)

2n1
‖uww‖(3. 14)

gives the following bound,

sup
vpε[a,b],wqε[c,d]

|um1,n1(vp, wq)−Bm1,n1(um1,n1(vp, wq))|

≤ (b− a)2

8m1
‖uvv‖+

(d− c)2

8n1
‖uww‖. (3. 15)

To complete the proof it is left to find the following bound

sup
vpε[a,b],wqε[c,d]

|(u(vp, wq))− (um1,n1(vp, wq))|.

Since, we have

f(v, w) = λ1

∫ w

a

∫ v

c

k1(y, v, z, w)Bm1,n1(u(y, z))dydz

+λ2

∫ b

a

∫ d

c

k2(y, v, z, w)Bm1,n1(u(y, z))dydz. (3. 16)

If we replaceu(v, w) with um1,n1(v, w) thenf(v, w) will becomef̂(v, w) as

f̂(v, w) = λ1

∫ w

a

∫ v

c

k1(x, v, y, w)Bm1,n1(um1,n1(y, z))dydz

+λ2

∫ b

a

∫ d

c

k2(y, v, z, w)Bm1,n1(um1,n1(y, z))dydz. (3. 17)

If we replacev by vp andw by wq then

f(vp, wq) = u(vp, wq)S (3. 18)
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and

f̂(vp, wq) = um1,n1(vp, wq)S, (3. 19)

whereS is the matrix defined in ( 3. 7 ). This implies

u(vp, wq)− um1,n1(vp, wq) = S−1[f(vp, wq)− f̂(vp, wq)]. (3. 20)

From ( 3. 20 ) we have

sup
vp∈[a,b],wq∈[c,d]

|(u(vp, wq)− um1,n1(vp, wq))| ≤ ‖S−1‖max |f(vp, wq)− f̂(vp, wq)|.(3. 21)

Now we find a bound for

max |f(vp, wq)− f̂(vp, wq)|. (3. 22)

Let we take

f(v, w) = λ1

∫ w

a

∫ v

c

k1(y, v, z, w)u(y, z)dydz

+λ2

∫ b

a

∫ d

c

k2(y, v, z, w)u(y, z)dydz (3. 23)

and

f̂(v, w) = λ1

∫ w

a

∫ v

c

k1(y, v, z, w)Bm1,n1(um1,n1(y, z))dydz

+λ2

∫ b

a

∫ d

c

k2(y, v, z, w)Bm1,n1(um1,n1(y, z))dydz. (3. 24)

From ( 3. 23 ) and ( 3. 24 )

f(v, w)− f̂(v, w) = λ1

∫ w

a

∫ v

c

k1(y, v, z, w)(u(y, z)−Bm1,n1(um1,n1(y, z)))dydz

+λ2

∫ b

a

∫ d

c

k2(y, v, z, w)(u(y, z)−Bm1,n1(um1,n1(y, z)))dydz. (3. 25)

Which implies

sup |f(v, w)− f̂(v, w)| ≤ +sup |λ1k1(y, v, z, w)(u(v, w)−Bm1,n1(um1,n1(v, w)))|
+sup |λ2k2(y, v, z, w)(u(v, w)−Bm1,n1(u(v, w)))|. (3. 26)

Suppose

sup
v∈[a,b],w∈[c,d]

|λ1(k1(y, v, z, w))| = L (3. 27)

and

sup
v∈[a,b],w∈[c,d]

|λ2(k2(y, v, z, w))| = M, (3. 28)

Then

sup |f(v, w)− f̂(v, w)| ≤ sup |u(v, w)−Bm1,n1(u(v, w))(1 + E)|, (3. 29)
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whereE = L + M . Moreover

sup
vpε[a,b],wqε[c,d]

|f(vp, wq)− f̂m1,n1(vp, wq)|

≤
(

(b− a)2

8m1
‖uvv‖+

(d− c)2

8n1
‖uww‖

)
(1 + E). (3. 30)

By putting this in ( 3. 21 ), we get

sup
vpε[a,b],wqε[c,d]

|u(vp, wq)− um1,n1(vp, wq)|

≤
(

(b− a)2

8m1
‖uvv‖+

(d− c)2

8n1
‖uww‖

)
‖S−1‖(1 + E). (3. 31)

So by using ( 3. 13 ), ( 3. 15 ) and ( 3. 31 )

sup
vpε[a,b],wqε[c,d]

|u(vp, wq)−Bm1,n1(um1,n1(vp, wq))|

≤ (1 + (1 + E))(b− a)(d− c))
[
(b− a)2

8m1
‖uvv‖+

(d− c)2

8n1
‖uww‖

]
‖S−1‖.

So the proof is completed. ¤

Theorem 3.5.Consider two-dimensional mixed VFIE of first kind given in ( 3. 8 ). Suppose
the kernelk(y, v, z, w) is continuous on the square[a, b]2×[c, d]2 andu(v, w) is continuous
on [a, b]2. If theC matrix defined in ( 3. 10 ) has an inverse then

sup
vpε[a,b],wqε[c,d]

|u(vp, wq)−Bm1,n1(um1,n1(vp, wq))|

≤ 1 + [1 + L(b− a)(d− c)]‖C−1‖
[
(b− a)2

8m1
‖uvv‖+

(d− c)2

8n1
‖uww‖

]
,

(3. 32)

wherevp = a + p b−a
m1

, wq = c + q d−c
n1

, p = 0, . . . , m1, q = 0, . . . , n1 andu(v, w) is exact
solution.
HereL = supy,vε[a,b],z,wε[c,d] |λk(y, v, z, w)| andBm,n(um,n(vp, wq) is solution by given
method.

Proof. We have the relations in ( 3. 13 ) and ( 3. 15 ). So to complete the proof it is just
remaining to obtain a bound for

sup
vpε[a,b],wqε[c,d]

|u(vp, wq)− (um1,n1(vp, wq))|. (3. 33)

Consider

f(v, w) = λ

∫ w

a

∫ b

a

k(y, v, z, w)Bm1,n1(u; y, z)dydz, v ∈ [a, b] andw ∈ [c, d]. (3. 34)

If we replaceu(v, w) with um1,n1(v, w) thenf̂(v, w) is defined as

f̂(v, w) = λ

∫ w

a

∫ b

a

k(y, v, z, w)Bm1,n1(um1,n1 ; y, z)dydz. (3. 35)
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Now if replacev andw with vp andwq respectively, then

f(vp, wq) = u(vp, wq)C (3. 36)

and

f̂(vp, wq) = um1,n1(vp, wq)C, (3. 37)

whereC is the matrix defined in ( 3. 10 ). So that

sup
vpε[a,b],wqε[c,d]

|u(vp, wq)− um1,n1(vp, wq)| ≤ ‖C−1‖max |f(vp, wq)− f̂(vp, wq).

(3. 38)

Next we need to obtainmax |f(vp, wq)− f̂(vp, wq). Here

f(v, w) = λ

∫ w

a

∫ b

a

k(y, v, z, w)u(y, z)dydz, (3. 39)

and

f̂(v, w) = λ

∫ w

a

∫ b

a

k(y, v, z, w)Bm1,n1(u; v, w)dydz.

. (3. 40)

Now consider

sup |f(v, w)− f̂(v, w)|

≤ sup |λ
∫ w

a

∫ b

a

k(y, v, z, w)[u(y, z)−Bm1,n1(u; y, z)]dydz|. (3. 41)

Which implies

sup |f(v, w)− f̂(v, w)| ≤ sup |λk(y, v, z, w)[u(v, w)−Bm1,n1(u; v, w)]|. (3. 42)

It further gives

sup |f(v, w)− f̂(v, w)| ≤ (b− a)2

8m1
+

(d− c)2

8n1
(‖uvv‖+ ‖uww‖)(1 + L). (3. 43)

Moreover

sup |u(vp, wq)− um1,n1(vp, wq)| ≤ (b− a)2

8m1
+

(d− c)2

8n1
(‖uvv‖+ ‖uww‖)(1 + L)‖C−1‖.

(3. 44)

Finally

sup
vpε[a,b],wqε[c,d]

|u(vp, wq)−Bm1,n1(um1,n1(vp, wq))|

≤ 1 + [1 + L(b− a)(d− c)]‖C−1‖
[
(b− a)2

8m1
‖uvv‖+

(d− c)2

8n1
‖uww‖

]
.

This complete the proof. ¤
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Lemma 3.6. Let’s suppose that‖S − I‖ = δ < 1, where I is the identity matrix of order
(m1 + 1)× (n1 + 1) and‖ · ‖ is the maximum norm of rows. Then

‖S−1‖ ≤ 1
1− δ

, Cond(S) ≤ 1 + γ1(b− a)(d− c) + γ2(b− a)(d− c)
1− δ

,

where

max
p,q

|λ1k1(vp, y, wq, z)| = γ1, max
p,q

|λ2k2(vp, y, wq, z)| = γ2,

max
p,q

|
m1∑

i=0

n1∑

j=0

αijβij(vp, wq)| = 1.

Proof. Firstly we established a bound for‖S‖. Where

‖S‖ = max
p,q

∣∣∣∣∣∣

m1∑

i=0

n1∑

j=0

αij

[∫ wq

a

∫ vp

c

k1(vp, y, wq, z)βij(y, z)dydz

+
∫ b

a

∫ d

c

k2(vp, y, wq, z)dydz

]∣∣∣∣∣ . (3. 45)

Since the sum of Bernstein basis function is equal to one so that we obtain

‖S‖ = 1 + max
p,q

|λ1

∫ wq

a

∫ vp

c

k1(vp, y, wq, z)dydz|

+max
p,q

|λ2

∫ b

a

∫ d

c

k2(vp, y, wq, z)dydz|. (3. 46)

This implies that

‖S‖ ≤ [1 + γ1(b− a)(d− c) + γ2(b− a)(d− c)].

Now to obtain a bound for‖S−1‖, considerH = S − I, so that‖H‖ = ‖S − I‖ = δ < 1.
As S = I + H andS−1 = (I + H)−1 implies‖S−1‖ = ‖(I + H)−1‖.
Further by using the geometric series formula of infinite sum, we get

‖S−1‖ ≤ 1
1− ‖H‖ ≤

1
1− δ

.

So, the condition number is given as

Cond(S) = ‖S‖.‖S−1‖ ≤ 1 + γ1(b− a)(d− c) + γ2(b− a)(d− c)
1− δ

.

¤

Lemma 3.7. Let’s suppose that‖C − I‖ = ξ < 1, where I is the identity matrix of order
(m1 + 1)× (n1 + 1) and‖ · ‖ is the maximum norm of rows. Then

‖C−1‖ ≤ 1
1− ξ

, Cond(C) ≤ 1 + γ(b− a)(d− c)
1− ξ

,
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where

max
p,q

|λk(vp, y, wq, z)| = γ, and max
p,q

∣∣∣∣∣∣

m1∑

i=0

n1∑

j=0

αijβij(vp, wq)

∣∣∣∣∣∣
= 1.

Proof. Firstly we established a bound for‖C‖. Where

‖C‖ = max
p,q

∣∣∣∣∣∣

m1∑

i=0

n1∑

j=0

αij

[∫ wq

a

∫ c

b

k(vp, y, wq, z)βij(y, z)dydz

]∣∣∣∣∣∣
. (3. 47)

Since the sum of Bernstein basis function is equal to1 so that we obtain

‖C‖ = 1 + max
p,q

|λ
∫ wq

a

∫ c

b

k(vp, y, wq, z)dydz|. (3. 48)

This implies that

‖C‖ ≤ [1 + γ(b− a)(d− c)].

Next we need to obtain a bound for‖C−1‖. ConsiderA = C−I, so that‖A‖ = ‖C−I‖ =
ξ < 1. As C = I + A andC−1 = (I + A)−1 implies‖C−1‖ = ‖(I + A)−1‖.
Further by using the geometric series formula of infinite sum, we get

‖C−1‖ ≤ 1
1− ‖A‖ ≤

1
1− ξ

.

So, the condition number is given as

Cond(C) = ‖C‖.‖C−1‖ ≤ 1 + γ(b− a)(d− c)
1− ξ

.

¤

4. ERROREVALUATION

Here we present the following result for error evaluation of the proposed technique.
This result will examine the accuracy and efficiency of the technique for the solution of both
mixed and separate types of two dimensional VFIEs.

Proposition 1:
Suppose thatu(v, w) is the exact solution of integral equation andBm1,n1(um1,n1(v, w))
is the numerical solution based on Bernstein polynomial of degreem1 andn1. The absolute
error between exact and approximate solution is given as

|em1,n1(vp, wq)| = |u(vp, wq)−Bm1,n1(um1,n1(vp, wq))|, (4. 49)

wherevp = a + p b−a
m1

, p = 0, . . . , m1 andwq = c + q d−c
n1

, q = 0, . . . , n1.
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TABLE 1. Numerical results of problem no. 1

(v,w) Exact Approximate Approximate Absolute Absolute
Solution Solution Solution Error Error

(m1 = n1 = 2) (m1 = n1 = 6) (m1 = n1 = 2) (m1 = n1 = 6)

(0.0,0.0) 2 2.0000095439 2.0000000005 0.0000095439 5.15173E−10

(0.1,0.1) 2.1052000000 2.0979714866 2.1051708346 0.0071994294 8.34611E−08

(0.2,0.2) 2.2214000000 2.2109503334 2.22140277061.04524E−02 1.24705E−08

(0.3,0.3) 2.3499000000 2.3389460785 2.34985880781.09127E−02 2.35106E−10

(0.4,0.4) 2.4918000000 2.4819587238 2.49182466209.86597E−03 3.56068E−08

(0.5,0.5) 0.6487000000 2.6399882694 2.64872123808.73300E−03 3.2686E−08

(0.6,0.6) 2.8221000000 2.8130347151 2.82211876939.08408E−03 3.09941E−08

(0.7,0.7) 3.0138000000 3.0010980611 3.01375262681.26546E−02 8.06588E−08

(0.8,0.8) 3.225500000 3.2041783074 3.22554079382.13626E−02 1.34653E−07

(0.9,0.9) 3.4596000000 3.4222754538 3.45960301093.73276E−02 1.00167E−07

(1.0,1.0) 3.7183000000 3.6553895006 3.71828158766.28923E−02 2.40824E−07

5. NUMERICAL APPLICATIONS

In this section, some numerical problems are considered to solve by using the presented
numerical technique based on the 2D Bernstein’s basis functions. This will show the accu-
ray of the proposed technique. Numerical outcomes of these examples at the various values
of v andw are shown in Tables1− 3 for m1 = n1 = 2 andm1 = n1 = 6. It is also easy
to see from Tables 1, 2, and 3 that the presented method is efficient and accurate. Further,
the graphs are also presented to show the comparison between the actual and numerical
solutions.
Problem 1. Consider the 2D VFIE of first kind

4w2 − 4w + 4wew =
∫ w

0

∫ 1

0

4wu(y, z)dydz, (5. 50)

whereu(y, z) = 1+ez is the exact solution of above 2-dimensional VFIE. The approximate
solution is obtained by using the technique given in section3.2. Table 1 shows the accuracy
between the exact and the numerical solutions at different points of the domain. Whereas
the uniformity and efficiency of the actual and numerical solutions are visualized by Figure
1.
Problem 2. Consider the separate two-dimensional VFIE of first kind

−1
2
v3w3 cosw +

(
2vw − 1

2
v3w3

)
sin2 w

1 + cos w
+

4vw cos w − 2vw cos w sin2 w

1 + cos2 w

=
∫ w

0

∫ v

0

vwu(y, z)dydz +
∫ 1

0

∫ 1

0

(y − z)u(y, z)dydz, (5. 51)

whereu(y, z) = 2yz is the exact solution. The absolute errors show the efficiency of the
proposed technique at distinct knot points which is demonstrated in Table 2. The visualiza-
tion of the proposed technique for the solution of ( 5. 51 ) is shown in Figure 2.
Problem 3. Consider the separate two-dimensional VFIE of first kind
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Exact Solution Approximate Solution

FIGURE 1. Comparison between the actual and numerical solutions of
Problem no. 1 atm1 = n1 = 2.

TABLE 2. Numerical results of problem no. 2

(v,w) Exact Approximate Approximate Absolute Absolute
Solution Solution Solution Error Error

(m1 = n1 = 2) (m1 = n1 = 6) (m1 = n1 = 2) (m1 = n1 = 6)

(0.0,0.0) 0.0000 1.0642E−13 1.2571E−15 1.0642E−13 1.2571E−15

(0.1,0.1) 0.0200 0.0188730125 0.0200000000 1.1269E−3 9.2415E−15

(0.2,0.2) 0.0800 0.0785129051 0.0799999999 1.4871E−3 1.7310E−13

(0.3,0.3) 0.1800 0.1773093711 0.1799999999 2.6906E−3 4.0833E−13

(0.4,0.4) 0.3200 0.3162994712 0.3199999999 3.7005E−3 3.5177E−13

(0.5,0.5) 0.5000 0.4915286120 0.5000000000 8.4713E−3 4.9409E−13

(0.6,0.6) 0.7200 0.7188608903 0.7200000000 1.1391E−2 2.4912E−12

(0.7,0.7) 0.9800 0.9721055411 0.9800000000 7.8944E−2 5.3438E−12

(0.8,0.8) 1.2800 1.2717454015 1.2800000000 8.2546E−2 7.3419E−12

(0.9,0.9) 1.6200 1.6155037255 1.6200000000 4.4962E−2 4.3716E−11

(1.0,1.0) 2.0000 1.9988819351 1.9999999999 1.1180E−3 9.2415E−15

3
2
vw +

1
2
v2w − v cos w − vw cos 1 + v =

∫ w

0

∫ v

0

u(y, z)dydz

−
∫ 1

0

∫ 1

0

vwu(y, z)dydz, (5. 52)

where the exact solution of this problem isu(y, z) = y + sin z. Absolute errors for exact
and numerical solution can be compared with the help of Tables 3 for various values of
(y, z). Figure 3 differentiate between the results of exact and the numerical solutions.



14 Faheem Khan and Summiya Yasmin

Exact Solution Approximate Solution

FIGURE 2. Comparison between the actual and numerical solutions of
Problem no. 2 atm1 = n1 = 6.

Exact Solution Approximate Solution

FIGURE 3. Comparison between the actual and numerical solutions of
Problem no. 3 atm1 = n1 = 2.

6. CONCLUSION

In this paper,the unknown functionu(y, z) is replaced by two-dimensional Bern-
stein basis functions to achieve the numerical solution of 2DVFIEs of first kind. It is noted
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TABLE 3. Numerical results of problem no. 3

(v,w) Exact Approximate Approximate Absolute Absolute
Solution Solution Solution Error Error

(m1 = n1 = 2) (m1 = n1 = 6) (m1 = n1 = 2) (m1 = n1 = 6)

(0.0,0.0) 0 -0.0000076238 -0.00000000027.62383E−06 2.75798E−10

(0.1,0.1) 0.1998000000 0.2053693419 0.19983345875.53592E−03 4.20962E−08

(0.2,0.2) 0.3987000000 0.4062153182 0.39866932097.54598E−03 9.80520E−09

(0.3,0.3) 0.5955000000 0.6024825703 0.59552020856.96236E−03 4.57540E−09

(0.4,0.4) 0.7894000000 0.7941251914 0.78941835274.70684E−03 1.04348E−08

(0.5,0.5) 0.9794000000 0.9810991020 0.97942554281.67356E−03 4.26885E−09

(0.6,0.6) 1.1646000000 1.1633620505 1.16464247131.28042E−03 2.02104E−09

(0.7,0.7) 1.3442000000 1.3408736129 1.34421770013.34407E−03 1.28867E−08

(0.8,0.8) 1.5874000000 1.5135951927 1.51735611083.76089E−03 1.99750E−08

(0.9,0.9) 1.6833000000 1.6814900211 1.68332688351.83688E−03 2.61226E−08

(1.0,1.0) 1.8415000000 1.8445231569 1.84147099443.05217E−03 9.59324E−09

that the proposed approximating scheme is accurate and gives excellent numerical out-
comes. It is also observed that the presented technique can give more accurate numerical
outcomes if the degree of the Bernstein polynomials is increased. Even at the smallest value
of m1 andn1, the proposed numerical technique gives appropriate accuracy which results
in the low computational cost. The presented technique can be extended for the solution of
nonlinear and singular integral equation of each kind.
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