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Abstract.: In this research article, we initiate the novel idea of picture
fuzzy incidence graphs (PFIGs). We explain some innovative notions
comprising of picture fuzzy cut-vertices, picture fuzzy bridges, picture
fuzzy incidence cutpairs, and picture fuzzy incidence cut-vertices. Some
rudimentary theorems and essential results are also examined in the PFIGs.
Further, we determine the different concepts together with the order, size,
and certain kinds of degrees in PFIG. A new type of PFIGs namely,
complete picture fuzzy incidence graphs (CPFIGs) and complement of
(PFIGSs) are also furnished. A comparative analysis of PFIGs with fuzzy
incidence graphs is also presented. Finally, an application of PFIGs in
the control of illegal transportation of people from India to America is
provided.
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1. INTRODUCTION AND PRELIMINARIES

Zadeh [50] was the first who gave the idea of fuzzy sets (FSs), which has unlocked the
new perspective for the researchers. FSs theory becomes a sturdy area in multiple disci-
plines including mathematics, computer science, and signal processing. FSs commonly
manifest vagueness and enigma in routine life problems. A great number of experts have
concentrated on the extensions of FSs and their uses in daily life. But FSs were not with-
out flaws, they only talked about the membership function and missed the non-membership
function which is available in intuitionistic fuzzy sets (IFSs) developed by Atanassov [12].
IFSs is one of the paramount extension of FSs and are more convenient and reliable as
compared to FSs due to its additional hon-membership component. From the last few
decades, the IFSs have gained more attention in different areas of research. Different uses
of IFSs in different areas of life can be seen [17, 28, 40, 48].
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A graph is an easy way of expressing information including an association between enti-
ties. The entities are shown by vertices and relations by edges. In different problems, we
get incomplete information about the problem. So there is blurriness in the explanation of
the entities or their relationship or both. To tackle this form of problem we need to design
a fuzzy graph (FG) model. The fundamental idea of FGs was provided by Rosenfeld [37],
after 10 years of Zadeh'’s outstanding paper on FSs. FGs have plenty of uses in different
fields like telecommunication, medical diagnosis, and social network but they fail to pro-
vide information about the impact of a vertex on an edge. The complement, automorphism
groups, of FGs was provided by Sunitha and Vijayakumar [44]. Bhutani et al. [13] de-
scribed fuzzy end nodes along with various types of properties. Bhutani and Rosenfeld
[14] characterized strong arcs in FGs and after them, classification of arcs in FGs such as
an a-strong, 8-strong, and-arcs initiated by Mathew and Sunitha [30]. Size and order
analogous to crisp graphs in FGs were examined by Gani and Ahamed [25]. Akram et al.
[5] discussed spherical FGs with application to decision-making. Al-Hawary[7] proposed
the notion of complete FG. For more detail and impressive work on FGs, we may refer to
the reader [8?, 11]. Habib et al. [27] presented g-rung orthopair fuzzy competition graphs
with application in the soil ecosystem. Akram [1] has talked about m-polar FGs and their
related characteristics. Mordeson and Nair [32] have talked about fuzzy hypergraphs.
Shannon and Atanassov [39] discussed intuitionistic fuzzy relations and intuitionistic fuzzy
graphs (IFGs). The notion of how to find the degree, order, and size in IFGs was presented
by Gani and Begum [26]. Al-Hawary and Hourani [9] discussed on IFGs. Parvathi and
Karunambigai [34] analyzed certain components in IFGs. Parvathi et al. [35] discussed
various kinds of operations in IFGs including, complement, union, and compaosition along
with their characteristics. Sahoo and Pal [38] demonstrated some different kinds of prod-
ucts comprising direct product, semi-direct product, and investigated a variety of fascinat-
ing properties in IFGs.

As IFSs can consider membership and non-membership degrees but they do not talk about
the neutral degree this drawback of unavailability of the neutral degree in IFSs encouraged
Cuong and Kreinovich [20] to propose the notion of picture fuzzy sets (PFSs) which is an
improved version of FSs and IFSs. PFSs responded to the human’s opinions which com-
prise more than two responses such as, yes, no, refusal, and neutral, and are more effective
than IFSs to handle uncertain problems related to real life. Casting a vote is a magnificent
example of such a situations because the voters can be split up into four groups such as
vote for, vote neutral, vote against, and vote refusal. The PFSs are narrated by three ingre-
dients, the degree of positive membershifa; ), neutral membershifV,,), and negative
membershign,,) of an element such thét < Py, + Njs + ny < 1. Since PFSs are
appropriate for apprehending imprecise, uncertain, and inconsistent information, therefore
they can be applied to many decision-making processes such as financial forecasting and
estimating risks in business.

The latest developments of PFSs incorporated: Cuong et. al [21] explained an innovative
picture fuzzy negator on PFSs and some De Morgan triples, Wang et al. [47] initiated
some operational laws of PFSs and introduced different geometric operations along with
their properties. Cuong and Hai [18] have presented some fuzzy logic operators such as
conjunctions, disjunctions, and implications for PFSs. Cuong [19] has described a variety
of properties of PFS. Different features of compositions of picture fuzzy relations were
given by Phong et al. [36] and interlinked these ideas for medical diagnosis. Zuo et al.
[51] developed picture fuzzy graphs (PFGs) and discussed their various types. Xiao et al.
[49] explained regular PFG along with its applications in communication networks. Akram
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et al. [2, 4] talked about the non-identical decision-making model under complex picture
fuzzy aggregation operators and discussed trapezoidal picture fuzzy numbers. Akram and
Habib [3] introduced g-rung PFGs. For a comprehensive study on PFSs and PFGs we may
refer to the reader [6, 15, 16, 22, 41, 42, 43, 45, 46].

As discussed earlier, there was a lack in FGs, these were not helpful to provide detalil
about the impact of a vertex on an edge therefore, Dinesh [23] introduced the new notion
in graph theory named fuzzy incidence graphs (FIGs). FIGs are useful and provide infor-
mation about the impact of a vertex on an edge. For example, if vertices show different
residence societies and edges show roads joining these residence societies, we can have a
FG expressing the extent of traffic from one society to another. The society has the max-
imum number of residents will have maximum ramps in society. Seaifidd are two
societies and«d is a road joining them thefr, cd) could express the ramp system from

the roaded to the society. In the case of an unweighted graplandd both will have an
influence ofl oned. In a directed graph, the influence ©bn cd represented bye, cd) is

1 whereadd, cd) is 0. This idea can be generalized by FIGs. FIGs talk about the influence
of a vertex on an edge. Connectivity ideas like cut-vertex, bridge, and incidence cut pair
in FIGs given by Mathew and Mordeson [29]. After them, Malik et al. [31] use these said
graphs in human trafficking. Fang et al. [24] provided the formula to calculate the connec-
tivity and Wiener index of FIG. Nazeer et al. [33] introduced intuitionistic fuzzy incidence
graphs (IFIGs)and presented an application of product on IFIGs in the textile industry.
FIGs are silent about the degreeff;, N, andn,, of an element but PFIGs have con-
tained this feature ofy;, Nj; andnj, of an element. This motivates us to propose the
idea of PFIGs. In graph theory, edge exploration is not prime as all edges are strong [14].
But in PFIGs it is crucial to recognize the nature of edges and no such analysis on edges
is present in the literature. Depending on the strength of an edge, we categorize edges into
three different kinds namely — strong, 5 — strong, andd — edge. The analysis of kinds

of edges investigates the structure of a PFIG so that the notions like picture fuzzy bridge
(PFB), picture fuzzy incidence bridge (PFIB), picture fuzzy incidence cutpair (PFICP),
picture fuzzy block (PFBL), picture fuzzy incidence block (PFIBL) and CPFIG, etc. can
be studied in detail. We also explore the different kinds of degree, order, and size of PFIGs
and compare the interrelation among degree, order, and size of PFIGs. Our work will open
a new door for researchers for a comprehensive study of PFIGs. The work of this paper is
as follows: sectiorl carries the fundamental ideas and terminologies of FIGs to compre-
hend PFIGs. In sectiodwe propose the definition of PFIG and its various properties. In
section3 we define different types of degrees in PFIG, order, and size of PFIG. We also
define a CPFIG and a complement of PFIG. Sectionntains an application to overcome

the illegal transfer of people from India to America with the help of PFIG. In sectian
comparison of PFIGs with the previously existing FIGs is provided. Sectioarries a
conclusion and the directions for future work.

Definition 1.1. [51] LetW be an IFS. The € X is defined as
W ={z, pw(z),ow(z) | x € X},
wherepy (z), pw (x) € [0,1] with 0 < py (x) + dw(z) < 1. Theuw (z) expresses the
membership degree anrdy (x) expresses non-membership degree.
Definition 1.2. [51] ConsiderV is a PFS,IW in X is defined by
W = {z, pw(z), dw(2), pw(z) | € X},

wherepw (), dw (), pw (z) € [0,1] with 0 < pw (x) + ow(x) + pw(z) < 1. The
uw () expresses the positive membership degtee(z) expresses neutral membership
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degree andpyy () shows negative membership degree of the elementl’. The refusal
membership degree is definedhy (z) = 1 — pw (z) — ow (z) — ew ().

Definition 1.3. [51] Let G = (V, E) be a graph. A pairG = (Q, R) is said to be a
PFG onG whereQ = (1g, 0q,vq)isaPFSonV andR = (ur, ¢r, ¢r) isaPFS on
E C V x V such that for each edgef € E. ug(e, f) < Augle), uo(f)), orle, f) <
/\(¢Q<e)> ¢Q<f))7 WR(e, f) < \/(@Q(e), (pQ(f))

In this paper minimum and maximum operators are representadibg\ respectively.

Definition 1.4. [23] Let G = (V, E) be a graph with non empty vertex Sét Then,
G' = (V,E,I) is said to be an incidence graph (IG) whefeC V' x E. The members of
I are known as pairs or incidence pairs. A FIG of IG, = (V, E,I)is G = (p, 0,0),
wherep, o ando are fuzzy subset 6f, V' x V andI respectively such that

ole,ef) < N{p(e),o(ef)} foralle € V,ef € E. Two verticeg and f in a FIG are said
to be connected if there exists a path of the fetrte,ef ), ef, (f,ef), f between them.
Vertexe and an edge f are connected if there is a path such thate, ef), ef between
them.

Two elements) = (g, ¢g, vq) andR = (ur, ¢r, ¢r) Of PFSs are comparable such

that, (g (), oq(z), ¢ ( ) < ( r(z),0r(2), or(2)) = po(r) < pr(2),¢q(r) <
¢r(x )andsocz ) 2 ¢r(x).

2. PICTURE FUZZY INCIDENCE GRAPHS

In this section, we define PFIGs and explain them with different types ofAexampIes.
Throughout in this paper, we express an IG®y = (V,E,I) and a PFIG byG =
(K,L,M).

Definition 2.1. A PFIG,G = (K,L,M)ofanIG,G' = (V, E,I) is defined as
(1) KisaPFSonV.
(2) LisaPFSonE CV x V.
(3) MisaPFSon/ x E such that

Py(e,ef) <min{Pk(e), Pr(ef)},
Ns(e,ef) < min{Ng(e), Ni(ef)},
ny(e ef) <mazx{nk(e),np(ef)}Ve € Vief € E.
where Py (e, ef), Nas(e,ef),na(e,ef) € [0,1] show the positive membership degree,
neutral membership degree and negative membership degree of pairs respectively.

Definition 2.2. LetG = (K, L, M) be a PFIG. Then its support §* = (K*, L*, M*)
where

K* =supportofK = {e € V: Px(e) > 0,Nk(e) > 0,nk(e) >0}

L* =supportofL = {ef € E: Pr(ef) > 0,Nr(ef) > 0,nr(ef) > 0}

M* = support ofM = {(e,ef) € I : Py(e,ef) > 0, Npr(e,ef) > 0,npr(e,ef) > 0}

Definition 2.3. A PFIG,G = (K,L,M)isacycleif f, G* = (K*,L*, M*) is a cycle.

Definition 2.4. LetG = (K, L, M) be aPFIG. Ther; = (K, L, M) is called to be a pic-
ture fuzzy cycle (PFQ)f f, G* = (K*, L*, M*) is a cycle and there is no singtgf € L*
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of the type

Pr(ef) = AN{Pr(uwv) : uv € L*}.
Ni(ef) = AM{Ng(uwv) : wv € L*}.
nr(ef) = V{ng(uww) : uv € L*}.

Definition 2.5. The PFIG,G = (K, L, M) is a picture fuzzy incidence cycle (PFIG)f
itis a PFC and there exists no single pdir, ef) € M*, such that

Pre,ef) = NPy (u,wv) : (u,uv) € M*}.

Ni(e,ef) = N{Np(u,uv) : (u,uv) € M*}.

np(e,ef) = V{nuy(u,wv) : (u,uv) € M*}.

(P pa) (a,pa)

FIGURE 1. Incidence graph

(¢,0.3,0.5,0.2) (0.3,0.3,0.2) (r,0.4,0.3,0.2)

X TNy B ss———
(03.03.02)  G70703)

(0.3,0.3,0.2) (0.4,0.3,0.2)

(p,0.5,0.3,0.1)

FIGURE 2. PFIG and PFIC

Example 2.6. An IG and its associated PFIG is shown in Figurend Figure2 respec-
tively. In Figure2, G is also a PFC sinc&* = (K*, L*, M*) is a PFC.
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Pr(pq) = M{Pr(pq), Pr(qr), Pr(rp)} = 0.3.
Ni(pg) = M{Nr(pq), Np(qr), Np(rp)} = 0.3.
nr(pq) = V{nL(pg), nL(qr),nc(rp)} = 0.2.

and

Pr(qr) = NM{PL(pq), Pr(qr), Pr(rp)} = 0.3.
Nr(gr) = M{NL(pg), Np(qr), Nr(rp)} = 0.3.
nr(qr) = V{nL(pq),nr(gr),nc(rp)} = 0.2.
So,G is a PFC.

Also, G is a PFIC because it has more than one incidence faipq) and (¢, gr) such
that

Pr(p,pq) = N{Pps(u,uv) : (u,uv) € M*} =0.3.
N (p,pq) = NM{Np(u,uv) : (u,uv) € M*} = 0.3.
nr(p,pq) = V{nn (v, uwv) : (u,uwv) € M*} = 0.2.
and

Pr(q,qr) = N{Pp(u,uv) : (u,uv) € M*} = 0.3.
Nr(q,qr) = N{Np(u,uv) : (u,uv) € M*} = 0.3.
nr(q,qr) = V{ny (u,uwv) : (u,uv) € M*} =0.2.

Now, we are going to initiate the idea of walk, trail, path, connectedness and incidence
connectedness (ICN) in PFIG. These ideas will help us to study about PFIG in detail.

Definition 2.7. If ef € L* thenef is named as an edge of the PFG= (K,L,M)and
if (e,ef),(f,ef) € M*then(e,ef)and(f,ef) are said to be pairs off = (K, L, M).

Definition 2.8. A sequence

P : to, (to, tot1), tot1, (t1, tot1), t1, (t1, t1te), tite, (ta, t1ta), tay oy b1, (tn—1tn—1tn),
tn—/}tnv (tn7 tn—ltn)a tn-

in G is named as walk. A walk is closedif= t,,. If all the edges inP are different then

it is said to be a trail and if all pairs are not same then it is known as an incidence trail.
If all vertices are dissimilar ther® is called a path. A pathP is said to be a cycle if the
starting and ending vertex d? is similar. Any two vertices iy are connected if there
exists a path between them.

Example 2.9. In Figure 2

Py :p,(p,pq),pq, (q,09),q, (q,qr),qr, (r,qr),pis a closed walk because its starting and
ending vertex is same but it is not a path because all vertices are not distnig.a trail

as well as an incidence trailP; : p, (p,pq),pq, (¢,pq),q is a walk, path, trail and an
incidence trail.

Definition 2.10. Assume’; = (K,L,M) is a PFIG. ThenH = (X,Y, Z) is a picture
fuzzy incidence subgraph (PFIS)@fif X C K, Y C LandZ C M. APFISH is called
spanning subgraph ikK* = X*.

Definition 2.11. Let G = (K, L, M) be a PFIG. Then the strength of pathis repre-
sented byC'(P) = (c1, c2, c3) Where,

c1 =N Pr(ef):ef € P},

ca = N{Nr(ef) : ef € P},

cs =V{nr(ef) : ef € P}. R

In similar way, the incidence strengfli,;) of P in a PFIGG = (K, L, M) is expressed by
I;(P) = (icy,ica, ic3) where,
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ici = N{Pu(e,ef) : (e,ef) € P},
ico = N{Np(e,ef) : (e,ef) € P},
ics = V{np(e,ef) : (e,ef) € P}.

Example 2.12. LetG’ = (V, E, I) be an IG given in Figur@ and its associated PFIG as
shown in Figuret. Then,P : p, (p,pr),pr, (r,pr),r, (r,rs),rs, (s,rs), s is a path inG.
TheC(P) P = p — r — s can be calculated as

c¢1 = N{Pr(ps) : ps € P} = A{0.1,0.2} = 0.1,

ca = N{Nr(ps) : ps € P} = A{0.1,0.1} = 0.1,

cs = V{np(ps) : ps € P} =v{04,0.3} = 0.4.

Therefore, the”(P) P = p — r — s = (0.1,0.1,0.4). In the same way, th&(P) P =
p —r — s can be find as

icy = NP (p, s) : (p,pr), (r,pr), (r,rs), (s,rs)} = A{0.1,0.05,0.2,0.1} = 0.05,

ico = N{Num(p,s) : (p,pr), (r,pr), (r,rs), (s,rs)} = A{0.1,0.1,0.1,0.1} = 0.1,

ics = V{nm(p,s) : (p,pr), (r,pr), (r,rs), (s,rs)} = v{0.4,0.4,0.3,0.3} = 0.4.
Therefore, thds(P) P =p —r — s = (0.05,0.1,0.4).

FIGURE 3. AnIG

(9,0.6,0.2,0.1)  (0.30.2.02 (r,0.3,0.3,0.2)

(¢,03,0.5,0.1) (p,0.4,0.2,0.4) (5,0.4,0.3,0.3)

FIGURE4. A PFIG

Definition 2.13. In a PFIG, G = (K, L, M) the largest strength of the path frogrto f
wheree, f € K* U L* is the largest strength of all the paths franto f.
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(e. f) = V{C(P),C(Py),C(Ps), )}
(e.f) = (. 5%, 5°)
COO<€, f) (\/(Cn, C12,C13, )7 \/(021, C29, C23, ), /\(0317 C32, C33, ))
(e, f) is named as the connectedness betwesmd f.
In similar way, the largest of the path frore to f wheree, f € K* U L* is the largest
I of all paths frome to f.
I2(e, f) = V{Ls(P1), Is(P2), Is(Ps), ...) }
12(e, ) = (ic®, ics®, icF)
(6, f) = ( (’LCH, iC12,1C13, ) V(ngl, 1C22,1C23, ), /\(2'0317 1C32,1C33, ))
I (e, f)is called an ICN betweenand f.

Example 2.14. A PFIG shown in Figurel has two possible paths frotrto s.
Py i t,(t,tq),tq, (q,tq),q, (¢, qp), ap, (P, qp), p, (P, PT), PT",
(T.7 pr)) T) (r? T'S), T'Sﬂ (S? TS)? S. P2 : t} (t7 tq)? tq? (q’ tq)? Q? (q) qr)7 qr? <T.7 qT.)? T, (T’, rs)’ rs) (87 rs)) S.
Now,
IS(Pl) = (011, C21, 031) = (0.05, 0.1,0.4).
IS(PQ) = (012, C22, 032) = (01, 017 03)
The maximund, of the path front to s is obtained as given below.
I3t s) = V{Ls(P1), Is(P2)},
(t,s) = (V{ici1,ic12}, V{icar,icoa}, Alics, icsa}),
Igo(t,s) = (\/{O.O5,O.1},\/{0.1,0.1}7 /\{0.4,0.3}),
(t,s) = (0.1,0.1,0.3).

Now, we are going to elaborate the notion of PFBs, PFIBs picture fuzzy cut-vertices
and PFICP in PFIG.

Definition 2.15. Let G = (K, L, M) be a PFIG. Then an edggh of G is named as a
bridgeif f ghis a bridge inG* = (K*, L*, M*) that is deleting ofj% disjoinsG*.

An edgeyh is said to be a PFB if

C'>(e, f) < C*(e, f) for somee, f € K*,

(02, €5, ¢5°) < (e°, 5%, &)

= < 0,50 < e3P, > .

Here, C'*(e, f) and C*° (e, f) represents the connectedness betweand f in G =
G- {gh} andG respectively.

An edgegh, is said to be PFIB if

I'>®(e, f) < I (e, f) for somee, f € K*,

(i, ek, ic®) < (i, icse, ics?)

= 0™ < ie§e, e < icdR, i > icge.

Here, I’ (e, f) and I>°(e, f) shows the ICN betweenand f in G = G — {gh} andG
respectively.

Definition 2.16. Let G = (K, L, M) be a PFIG. Then a vertek # ¢ # f is said to

be a cut-vertex irG if f it is also a cut-vertex irG* = (K*, L*, M*) meansG* — {i}
disconnects graph.

A vertexi, in a PFIG is named as picture fuzzy cut-vertex if for any pair of vertices the
condition given below is satisfied

C'>(e, f) < C*(e, f) for somee, f € K*.
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A vertexi in PFIG, G is said to be picture fuzzy incidence cut-vertex if for any pair of
vertices excluding the given condition is satisfied

I (e, f) <I(e, f)

Here, I’ (e, f) andI2°(e, f) show the ICN betweenand f of G = G — i and G respec-
tively.

Definition 2.17. ConsiderG = (K, L, M) is a PFIG. A pair(e, e f) is named as a cutpair
if f itis also a cutpair inG* = (K*, L*, M*) means after deletinfe, ef) there exists no
path betweer andef.

Assumel = (K,L,M) is a PFIG. A pair(e,ef) is said to be picture fuzzy cutpair if
removing of(e, ef) lessen the connectedness betweerf € K* U L*, i.e.

C'>=(e,ef) < C®(e,ef),

Here,C’'>(e,ef) andC°(e, ef) show the connectedness betweemdef of G = G-
{(e,ef)} andG respectively.

A pair (e,ef) is named as PFICP if/®(e,ef) < I>X(e,ef) for e;ef € K* U L*.
I'>®(e,ef) and I°(e,ef) show ICN between andef of G = G- {(e,ef)} and G
respectively.

Example 2.18. LetG = (K, L, M) be a PFIG as shown in Figuré. Thengt andrs are
bridges because after deleting these two edges the underlying graph will discoghect.
rs andpq are PFBs fort,p € K*, C'*°(t,p) < C*(t,p). Also they are PFIB because
I'>(t,p) < I°(t,p). The pairs(t,tq), (q,tq), (r,rs) and (s,rs) are cutpairs, picture
fuzzy cutpairs and PFICP antb, pq), (¢, pq), (q,qr), (r,qr) are picture fuzzy cutpairs
and PFICP but they are not cutpairs.

Theorem 2.19. Let G = (K,L,M) be a PFIG. Ifef is a PFB then it is not a weakest
edge (WE) in any PFIC.

Proof. Assumeef is a PFB and suppose, to contrary, thgtis a WE of PFIC. Then, this
PFIC has a different patR;, from e to f which not include the edgef andC(P,) is less
than or equal ta” (P, ), whereP; is a path includes the edgg. Therefore, deleting of
ef from G will not increase or decrease the connectedness betwaed f which is a
contradiction to our supposition. This proves thgtis not the WE of any PFIC. d

Theorem 2.20. If (e,ef) is a PFICP, then(e, ef) is not the weakest pair (WP) in any
PFIC.

Proof. Assume(e, ef) is PFICP inG;. We suppose to contrary thét, ef) is a WP of a
PFIC. Then this PFIC has a different path freno ef having I, larger than or equal to
the path includinge, ef). Therefore, deletion ofe, ef) does not reduce or enhance the
connectedness betweerande this leads to contradicts our assumption tlak f) is a
PFICP. This proves thde, ef) is not a WP in any PFIC. O

Theorem 2.21.LetG = (K, L, M) be a PFIG. Ifef is a PFB inG, then
C=(e, f) = (1%, ¢5°,¢57) = (Pr(ef), No(ef), nr(ef))-

Proof. AssumeG is a PFIG anc:f is a PFB inG. Suppose to contrary th&t> (e, f) >
(Pr(ef),Nr(ef),nr(ef)). Then, there will be a patk; from e to f such thatC(P;) >
(Pr(ef),No(ef),no(ef)) and(Pr (zy), Np(zy),ne(xy)) > (Pr(ef), No(ef),nc(ef)),
for all edges onP;. Now, P; includingef makes a PFIC in whichf is the WE, this con-
tradicts the fact thatf is a PFB. Therefore> (e, f) = (¢5°,¢3°, ¢3°)

= (Pr(ef),Nr(ef),nr(ef)). O
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Theorem 2.22.1f (e, ef) is a PFICP in a PFIG,G = (K, L, M), then
I (e ef) = (ict®,ic5®,icS?) = (Pule,ef), Nu(e, ef ), nam (e, ef)).

Proof. Assumed is a PFIG and(e,ef) is a PFICP inG. Suppose to contrary that

I (e,ef) > (Pumle,ef), Na(e, ef ),na(e, ef)). Then, there will be a patf; frome to

ef suchthatC(Py) > (Pu(e,ef), Na(esef),nar(e, ef)) and(Pas(x, xy), Nas(x, 2y), nar(x, 2y)) >
(Pr(e,ef), Na(e,ef),nar(e, ef)), for all pairs onP;. Now, Py including (e, ef) forms

a PFIC in which(e, ef) is the WP, this contradicts the fact tHatef) is a PFICP.
Therefore [ (e,ef) = (ic5°,ic5°,ic3°) = (Pum(e,ef), Ny(e,ef), nar(e, ef)). O

Theorem 2.23.LetG = (K, L, M) be a PFIG and3* = (K*, L*, M*) is a PFIC. Then
an edgeef is a PFB of G if f it is an edge common to two PFICP.

Proof. Let ef be a PFB ofG:. Then there will vertices and f with the ef edge lying

on each path with largegt betweere and f. In this way, there will be a unique pafh
betweere and f which carries & f edge and has also the maximum Any pair on P,

will be a PFICP, since the deleting of any of them will disjdin and decrease the.
Conversely, consider an edg¢ common to two PFICRe, ef) and(f,ef). Thus these
two PFICP are not the weakest PFICPGf Now, G* = (K*,L*, M*) being a PFIC,
there exists two paths between any two vertices. Also, thepatfom e to f not contains
(e,ef) and(f,ef) has lowI, than the path carrying them. This implies the path having
largestl; frome to fis Ps : e, (e,ef),ef,(f,ef), f. Also, C®(e,f) = C(P3) =
(Pr(ef),Nr(ef),nr(ef)). This proves that f is a PFB. O

Definition 2.24. LetG = (K, L, M) be a PFIG. Then a strong edge is defined as
C'>(e, f) < (Prlef),Np(ef),nr(ef)). Where,C'*(e, f) shows the connectedness
betweere and f in G = G- {ef}. Particularly, it is named as am-strong edge if
C'>(e, f) < (Pr(ef),Np(ef),nr(ef)). And3-strong if

C'>(e, f) = (Prlef), Nr(ef),nr(ef)).

(¢,0.6,0.2,0.1)  (0.3,0.2.0.2) (r,0.3,0.3,0.2)

(0.2,0.2,0.4) (0.1,0.1,0.5)

(p,0.2,0.2,0.6)
FIGURES. PFIG

Example 2.25. Let G be two graphs as shown in Figubeand Figure6. Then in Figure
5 an edgegr is ana — strong becausg P (qr), Ni(qr), (ni(¢r)) = (0.3,0.2,0.2) >
C'*(gr) = (0.1,0.1,0.5) and in Figure6 an edgepq is 3 — strong because

(PL(pQ)a NL(pQ)7 (nL<pQ)) = (03’ 0.3, 02) =0’ (pQ) = (037 0.3, 02)
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(2,03,05,02) (030302 (r,0.4,0.3,0.2)

2
2

(0.3,0.3,0.2) (0.4,0.3,0.2)

(p,0.5,0.3,0.1)

FIGUREG6. PFIG

Definition 2.26. Assumé? is a PFIG. A pair(e,ef) in Gis strong pair if

Cloo(eaef) < (P[\/[(e,€f),NM(€,€f),TLM(€,6f)). .

Where,C'* (e, ef) shows the connectedness betweandef in G = G — {(e,ef)}.
Particularly, itis named as an-strong pair ifC'> (e, ef) < (Pa (e, ef), Na(e,ef),nar(e, ef)).
and g-strong ifC"> (e, ef) = (Pu(e, ef), Nu(e, ef), nar (e, ef ).

Example 2.27. LetG be two graphs as shown in Figubeand Figure6. Then in Figures
pairs (r, qr) and(q, gr) are ana— strong becausé Py, (r, qr), Nas (1, qr), (nas(r, qr)) =
(0.3,0.2,0.2) > C"*°(r, qr) = (0.05,0.07,0.4) and(Pas(q, q7), Nar (g, qr), (nar(q, qr)) =
(0.3,0.2,0.2) > C"*°(r,qr) = (0.05,0.07,0.4) also in Figure6 pair (p,pq) is § —
strong because( Py (p, pg), N (p, pg), (nr(p,pq)) = (0.3,0.3,0.2) = C"(p,pq) =
(0.3,0.3,0.2).

Remark 2.28. When a pair isx-strong or 5-strong. We simply call it a strong pair.

Definition 2.29. Assume? is a PFIG.s-edge is defined as

C'(e, f) > (Pref), Ni(ef), ni(ef)).
In similar way,¢ pair is defined a&>’>(e,ef) > (Pa(e,ef), Ny(e, ef), nar(e, ef)).

Example 2.30. LetGbea graph as shown in Figufe Then in Figures an edgeprisad—
edge becausd Py (pr), Ni(pr), (np(pr)) = (0.1,0.1,0.5) < C"(pr) = (0.2,0.2,0.4)
and pair(p, pr) is § pair because

(P (p,pr), Nas(p, pr), (ng(p,pr)) = (0.05,0.07,0.6) < C"*°(p,pr) = (0.1,0.1,0.5).
Theorem 2.31.In a PFIG, every PFICP is a strong cutpair.

Proof. AssumeG = (K,L,M) is a PFIG. Let(e,ef) € M* be a PFICP. Then, by
Definition 2.17. I'*™*(e,ef) < I*(e,ef). Suppose on contrarye,ef) is not strong.
Then, Il (e,ef) > (Py(e,ef), Na(esef),nar(e, ef)). AssumeP is the path frone to
efinG = G — {(e, ef)} having maximuni,. Then,P along with(e, ¢ f) makes a PFIC
in G. (e, ef) will be the WP in this PFIC but according to Theorero. it is impossible,
becausée, e f) is a PFICP. This means that our supposition is not correct ther&fpré)

is a strong cutpair. O
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Theorem 2.32.In a PFIG the pair(e, ef) is a PFICPif f it is a-strong.

Proof. Assume(e, ef) is a PFICP inG. Then by definition of a PFICA/> (e, ef) <
I(e,ef). Then, according to Theore®2. I'*°(e,ef) < (Pas(e,ef), Nar(e,ef),nar(e, ef)).
This implies thatP : e, (e,ef),ef is the only path frome to ef which has the maxi-
mum I, among all paths. Therefor, all remaining paths freto e f will have lesserl,.
I'>®(e,ef) < I°(e,ef). Hence e, ef) is a PFICP. O

We are going to explain the idea of block, picture fuzzy block (PFBL) and picture fuzzy
incidence block (PFIBL).

Definition 2.33. LetG = (K, L, M) be a PFIG. Then

Q) G is named as a block if its underlying grag¥ does not contain a cut-vertices.
(2) G is named as a PFBL iff does not contain a picture fuzzy cut-vertices.
(3) Gisnamed as a PFIBL iff does not contain a picture fuzzy incidence cut-vertices.

Example 2.34.Assumes = (K, L, M) is agraph given in Figuré. G is a block since its
underlying graphG* does not has a cut-vertex because if we remove any vertexdtom

it will remain connected i.e. there will be a path between any two vertices and it is also a
PFIBL. InG, vertexp is a picture fuzzy cut-vertex because for pair of verticaadr there

are two paths namelfi) P, = g — rand(ii) P, = ¢—p — rtheC(P;) = (0.1,0.1,0.2)

and C(P,) = {A(0.2,0.2), A(0.2,0.2),V(0.1,0.1) = (0.2,0.2,0.1)} thenC>(q,7) of
these two paths i€>°(q,r) = {V(0.1,0.2),V(0.1,0.2),A(0.2,0.1) = (0.2,0.2,0.1)}

and C'*°(q,r) after removingp from graph isC’*(¢,7)= (0.1,0.1,0.2) this implies
C"(q,r)=(0.1,0.1,0.2) < C*(g,7) = (0.2,0.2,0.1). Therefore? is not a PFBL.

(2,03,03,02) (020201 (r,0.3,0.3,0.2)

(BEDEED2) hemami s ‘

(10Z0T0)

<

(0.2,0.2,0.1) (0.2,0.2,0.1)

(p,0.3,0.3,0.2)

FIGURE7. APFIG

Theorem 2.35. Let G = (K, L, M) be a PFIBL. Then a paife, ef) in G such that
(Pr(e,ef), Na(e,ef),nar(e ef)) = (VP (x, 2y), VN (z, 2y), Ana(z, zy)), for all
(z,zy) € M* is a strong pair.
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(3,0.5,0.2,0.2)  (0.5.0.2.0.2) (r,0.6,0.2,0.1)

2)

(2,00

(0.3.0

(0.3,0.2,0.2)
<
(p.0.3,0.2,0.1)

(0.3,0.2,0.1)

FIGURE 8. CPFIG

Proof. AssumeG is a PFIBL. According to the definition of PFIBL there will be no pic-
ture fuzzy incidence cut-vertices @. Let G has(e, ef) of the type

(PJVI(ev ef)v NM(e’ €f), nM(67 Bf)) = (\/PM(xv xy)’ VNM('I’ zy), /\nM(x’ 'Iy))

We show thate, e f) is a strong pair by expressing thd@, (e, ef), Ny (e, ef ), nar (e, ef)) >
I'>(e,ef). The value of Pys(e, ef), Nas(e,ef), nar(e, ef)) will be greater than or equal
to thel, of any pathP frome toef. If (e, ef) is unique inG with

(Prr(e,ef), Na(e,ef),nar(e,ef)) = (VP (x, 2y), VN (2, 2y), Anas (2, 2y))

then the value of Py (e, ef), Nas(e, ef), nas (e, ef)) will be greater than thé; of all other
paths fromz to zy in G. Therefore(Py; (e, ef), Nus(e, ef), nar(e,ef)) > I'™® (e, ef).

This shows thate, e f) is ana-strong.

If (e,ef) is more than one than the greatest possible value fof thef any pathG =

G — {(e;ef)} = (Pulesef), Nule,ef),na(e,ef)). This means there is a pathto
ef with (Py(e,ef), Ny(e,ef),nar(e,ef)) = I°°(e,ef). This implies(e,ef) is -
strong. (I

3. DEGREE, SIZE AND ORDER INPFIG

Degree(deg), size and order in PFIGs are discussed here. We define CPFIG and com-
plement of PFIG.

Definition 3.1. LetG = K, L, M) be a PFIG. Thenleg of a vertexe in G is defined by
deg = (degp(e),degn (e), degy(e)) where,

degp(e) = > Pa(e, ef) represents positive membership degreéegfof a vertexe.
degn(e) = > Nu(e, ef) represents neutral membership degred@f of a vertexe.
degn(e) = > np(e, ef) represents negative membership degreéegfof a vertexe.

Definition 3.2. The minimumileg of G is 6(G) = (p(G), dn (@), 6,(G)) where,
dp = Ndegp(e) | e € K*}.
dn = N{degn(e) | e € K*}.
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dn = Ndegn(e) | e € K*}.

Definition 3.3. The maximundeg of G is A(G) = (Ap(G), An(G), An(G)) where,
Ap = V{degp(e) | e € K*}.
An = V{degn(e) | e € K*}.
A, = V{degy(e) | e € K*}.

Example 3.4. Assume a grapkﬁ' = (K, L, M) as shown in Figures. Thedeg for all
vertices aredeg(p) = (Pu(p,pq) + Pr(p;pr), Nar(p,pg) + Nar(p,pr), na(p, pq) +
ny(p,pr)) = (0.3+0.3,0.2+0.2,0.240.1) = (0.6, 0.4, 0.3). In similar way,deg(q) =
(0.8,0.4,0.4) and deg(r) = (0.8,0.4,0.3). Also,8(G) = (0.6,0.4,0.3) and A(G) =
(0.8,0.4,0.4).

Definition 3.5. Assumely = (K, L, M) is a PFIG. Order ofG is defined a<)(G)

~ ~ ~

(Op(G),ON(G), On(G)), where

e Op(G) = TPy (e, ef) forall (e,ef) € M*.

~

e ON(G) =XNy (e ef) forall (e,ef) € M*.
e 0,(G) =Sny(e,ef) forall (e,ef) € M*.

In Figure 8 the O(G) = (2.2,1.2,1.0)
Definition 3.6. Assume/ = (K,L,M) is a PFIG. Size of7 is defined asS(@) =

(Sp(@), Sn(G), S, (G)), where

~

e Sp(G) =XPr(ef)forallef € L*.

~

e Sy(G) =XNj(ef)forallef € L*.

e S, (G)=3Sny(ef)forallef € L*.
In Figure 8 the S(G) = (1.1, 0.6,0.5)
Definition 3.7. An incidence pair of a PFIG; = (K, L, M) is named as picture effective
incidence pair (PEIP) if
(1) Pu(e,ef) = Pr(e) A Pr(ef).
(2) Nu(e,ef) = Nk(e) ANL(ef).
() nm(e,ef) =nk(e)Vnr(ef).

Example 3.8. Consider a PFICGG, given in Figure9. (p, pq) and (s, sp) are PEIP.

Definition 3.9. The effective degre@egr) of a vertexe is defined aglegr (e) =
(degep(e),degrn(e), degrn(e)) Wheredeggrp(e) is sum of the positive membership de-
grees of the PEIRJegg N (e) is sum of the neutral membership degrees of the PEIP, and
degpy(e) is sum of the negative membership degrees of the PEIP.

Definition 3.10. The lowestleg; of G is defined asz (G) = (65p(G), 55n (G), 550 (G)).
Where,

* dpp(G) = NMdegpp(e) | e € K7}

(] 5EN(§) = /\{degEN(e) | e e K*}

o 0pn(G) = NMdegpn(e) | e € K*}.
Also, The highestlegr of G is defined asAp(G) = (App(G), Apn(G), Apn(G)).
Where,
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(g,0.6,0.3,0.1)  (0.2.0.2.0.2) (r,0.3,0.3,0.3)

o
=

(0.2,0.2,0.1 (().3..“.(}5.().3))

FIGUREQ. APFIG
D AEP((?\) = V{deggp(e) | e € K*}.
o Apn(G) =V{degpn(e) |e € K*}.
o Ap,(G)=V{deggrn(e) | e € K*}.

Example 3.11. Consider a PFIGG shown in Figure9. In this graph, thedegg of all

vertices aredegr(p) = (0.2,0.2,0.1) and degg(s) = (0.3,0.1,0.2). Also,dg(G) =
(0.2,0.1,0.1) and Ag(G) = (0.3,0.2,0.2).

Definition 3.12. The complemer& of a PFIGG given in FigurelO is provided in Figure
11 and is defined as L

K=K, PK(’UZ') = PK(Ui),NK(’Ui) = NK(”i),W(Ui) = TLK(’Ul) for all v € K*,
Pr(vi,v;) = (Pr(vi) A Pi(v;)) — Pr(vi,v5), Np(vi,v5) = (Ng(vi) A Nk (v5)) —
&(vi,vj),ﬁ(vi,vj) = (nK(Ui) V nK(vj)) — nL(vi,vj) for all ViV € L,
Pur(vi,viv5) = (Pr (vi) APk (v5)) = Par (vi, v305), Nag (vi, viv5) = (N (0i) ANk (v5)) —
N (vi, vv5), and 7z (v, viv;) = (ni(vi) V nk(v;)) — nar(vi, viv;), for all v, €
K*,’Ui’l)j e L*.

Theorem 3.13.LetG = (K,L,M)beaPFIG and’ is its complement. Then complement
of G is always equal t@. i.e.G = G.
Proof. Supposef}’ is a PFIG. Then by definition off, we will get a PFIG having same

number of vertices as ii i.e. K = K but differentPy;, Ny, andn,,. Again by applying
definition of complement otx we get,

K =K, Pg(vi) = Pg(vi), Nk (vi) = Nk (v;), ik (vi) = ni (v;) for all v; € K*

?(vi,vj) = Pr(vi,v;), N (vi,vj) = Np(vi,v5), g (v, v;) = np(vs, v;) for all vu; €
TM(vi,vivj) = PM(vi,vivj),TM(vi,vivj) = N (vi, v05), andiag (v;, v;05) = nag(vi, vivs),
forall v; € K*,v;v; € L*. HenceG = G. O

Example 3.14. Assumé? is a PFIG as shown in Figureo then from Figurel2 it can be
seen thatz = G.

Definition 3.15. A strong PFG is called strong PFIG if
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(¢,0.5,0.2,0.2) (r,0.6,0.2,0.1)
°

010T0)

(4

(0.3,0.1,0.1)

(p.0.3,0.2,0.1)

FIGURE 10. PFIGG

(g,0.5,0.2,0.2)  (0.50.2,0.2) (r,0.6,0.2,0.1)

(0.5,0.2,0.2) (55,02,02J """

(0,0.1,0)

(p,0.3,0.2,0.1)
FIGURE 11. Complement of PFIG of Figure10

o Pyle,ef) = Pk(e) A Pp(ef)foralle e K* ef € L*.

e Ny(e,ef) = Ng(e) ANNp(ef)foralle e K* ef € L*.

e nye,ef) =ng(e) Vnp(ef)foralee K* ef € L*.
Itis given in Figurel3.

Definition 3.16. A complete PFG is said to be CPFIG if
o Pyle,ef) = Pk(e) AN Pr(ef)foralle, f € K*.
o Ny(e,ef) = Ni(e) ANNp(ef)foralle, f € K*.
e nyleef) =ng(e)Vnr(ef)foralle, f € K*.
CPFIG is shown in Figure.

Remark 3.17. Every CPFIG is strong PFIG but converse is not true.

Proposition 3.18. The complement of a CPFIG is a PFIG having isolated vertices.
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(9.0.5,0.2,0.2) (r,0.6,0.2,0.1)
°

(0.2,0.1,

(p,0.3,0.2,0.1)

FIGURE 12. 5 = @

(¢,05,02,02) (050202 (r,0.6,0.2,0.1)

05.02.02) {35555

“

0

(o]

(0.3,0.

(0.3,0.2,0.

)

]
(p.0.3,0.2,0.1)

FIGURE 13. Strong PFIG

Proof. AssumeG = (K,L,M)is a CPFIG. So,

PL(’Ui,’Uj) = PK(’Ui) N PK(’Uj) for all Vi,V € K*.

NL(’UZ',’UJ') = NK(’UZ') AN NK(UJ') for all Vi,V € K*.

nr(vi,vj) = ni (v;) V ng(v;) forall v;,v; € K*. and

PM(’l}i/Ui’l)j) = PK(’UZ') A PL(’Ui’Uj) for all Vi, V5 € K*.

NM(Ui,Uin) = NK(U,‘) AN NL(’l}i’Uj> for all Vi, V5 € K*.

na(vi, 1) = nk (v;) V ng(viv;) forall v, v; € K.

Hence inG,

Pp(vi,v;) = AN(Pg(v;) A Pi (v;)) — Pr(vi,v;) = 0, foralli, j, ..., n.,
m(vi,vj) = /\(NK(’UZ‘) AN NK(Uj>) — NL(’Ui,’U]‘) =0, for all Ty Jyoeey Mooy
L (vi,v5) = ANnk (vi) Vng(v)) —np(vi,vj) =0, forall i, 4, ..., n.,

P (vi,v05) = (P (v;) A Pi(v5)) — Par(vi, v05) = 0, for all i, j, ..., n.,
N (vi,vv5) = (Ni(v;) A Nk (v;)) — Nag(vi, viv5) = 0, for all i, 4, ..., n.,
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and
oz (v, viv5) = (N (v;) V ng (v)) — nar(vi, vivy) =0, for all 4, 4, ..., n.

ThUSPL(’UZ‘,Uj), Li(vi,vj),ﬁ(vi,vj) = (0,0,0).

andﬁ(via Uivj)a N]W (Uiv Uivj)a W(Eza Ui’l]j) = (07 07 0)
HenceG has only isolated vertices & is a CPFIG. O

4. CONTROL OF ILLEGAL TRANSPORTATION OF PEOPLE WITH THE HELP OPFIG

Poverty, unemployment, lack of health facilities, lack of education facilities, and lack
of jobs are common issues in India. That is why many people are not happy to live in
India. Due to these reasons, the people of India try to move illegally to America to find
asylum for a healthier lifestyle. Many agents of different companies help people to move
to America illegally for their earning. In 2018, according to a report provided by US border
patrol, almost 8997 people of India were arrested while attempting to cross the US border
illegally [52]. Indian people use different land routes to enter illegally America like India,
UAE, Russia, Nicaragua, and Mexico. Here we are presenting a Mathematical model of
this situation.

LetG = (K, L, M) be a PFIG as given in Figurel.

Here, setK is showing the set of different countries, geis representing the legal travel

of people from one country to another country and/gets expressing the illegal move-
ment of people from one country to another country. The assignments of numbers to the
vertices, edges, and pairs are indicating ihe, Ny, andny; respectively. ThePy, of

the vertices (countries) is representing the percentage of those people who have a plan to
go to America, the N, of the countries are indicating the percentage of those people
who are confused whether to go fonerica or not and theu,, of the countries are ex-
pressing the percentage of those people who are not willing to modeid@-ica. In the

case of countryIndia), 0.3 percent people want to move tbmerica, 0.5 percent are
confused whether to go tdmerica or not and0.2 percent people do not agree to go to
America. The Py; = 0.2 of the countriedndia to UAFE or U AE to India is showing

the percentage of those people who are successful to movelfidin to UAE or UAE

to India, the Np; = 0.3 of these two countries stating the percentage of those people
who are unable to think clearly whether to move or not frbmaia to UAFE or UAE to
India and theny; = 0.4 of the countries is the percentage of those people who are not
willing to move from India to UAFE or UAFE to India. In the same way, we can see
the percentage of people frofmdia to Russia or Russia t0 India, Russia to UAE

or UAE to Russia, UAE to Nicaragua or Nicaragua to UAE and Nicaragua to
Mezxico or Mexico to Nicaragua in Figure14. In Figurel4, the Py; = 0.05 of pair
(India, (India, U AE) is the percentage of those people who successfully move from
India to UAE, the Nyy = 0.03 of pair (India, (India, UAE) is the percentage of
those people who are puzzled to move frémiia to UAE and then,,; = 0.39 of pair
(India, (India, UAE) is the percentage of those people who are disagree to go from
India to UAE. Similarly, the Py; = 0.1 of pair (UAFE, (India, U AFE) is the percent-
age of those people who successfully move fl@mFE to India, the Ny, = 0.02 of pair
(UAE, (India,U AE) is the percentage of those people who are undecidable to move
from U AFE to India and theny, = 0.31 of pair (UAE, (India, U AE) is the percentage

of those people who are showing their refusal to go fldE to India. In the same
way, thePy, = 0.12 of (India, (India, Russia) is the percentage of those people who
successfully move fronindia to Russia, the Njy; = 0.21 of (India, (India, Russia) is

the percentage of those people who are puzzled to move fraftu to Russia and the
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ny = 0.42 of (India, (India, Russia) is the percentage of those people who are disagree
to go fromIndia to Russia. Similarly, thePy; = 0.2 of (Russia, (India, Russia) is the
percentage of those people who successfully move fRassia to India, the Ny, = 0.29

of (Russia, (India, Russia) is the percentage of those people who are undecidable to
move fromRussia to India and theny, = 0.31 of (Russia, (India, Russia) is the per-
centage of those people who are showing their refusal to go ffassia to India. In the
same manner, we can see all the percentages of the remaining countries inlEigure

K = {(India,0.3,0.5,0.2), (UAE,0.2,0.3,0.4),

(Russia,0.2,0.3,0.5), (Nicaragua, 0.3,0.1,0.3), (Mezico,0.4,0.2,0.2) } setK express-

ing the countries.

L = {((India,UAE)0.2,0.3,0.4), ((India, Russia)0.2,0.3,0.5),

((UAE, Russia)0.2,0.3,0.5), (UAE, Nicaragua)0.2,0.1,0.4),

((Nicaragua, Mezico)0.3,0.1,0.3))} setL expressing the legal travel of people from
one country to another country.

M = {((India, (India,UAE)),0.05,0.3,0.39), (UAE, (India,UAFE),0.1,0.2,0.31),
(India, (India, Russia)),0.12,0.21,0.42), (Russia, (India, Russia)0.2,0.29,0.4),

(UAE, (UAFE, Russia)),0.2,0.15,0.5), (Russia, (UAE, Russia)0.2,0.17,0.48),

(UAE, (UAE, Nicaragua)0.1,0.06,0.33), (Nicaragua, (UAE, Nicaragua)0.19,0.1,0.32),
(Nicaragua, (Nicaragua, Mexico)0.23,0.1,0.21),

(Mezico, (Nicaragua, Mexico)0.21,0.02,0.3))}. SetM shows the illegaly transfer of
people from one country to another country.

From Figurel4 it can be seen that the paidndia), (India, UAE)), (UAE), (India, U AE)),
((UAE), (UAE, Russia)) and((India), (India, Russia)) are the PFICPs. So, the gov-
ernment of these countries must make some severe rules to overcome the illegal transporta-
tion of people. We show our suggested method in the Algoritlgiven below. Algorithm

1 will be beneficial to us to find PFICP easily. Below we are presenting the important Steps
of our algorithm to find the PFICP.

(UAE,0.2,0.3,0.4) (0.
0.2.01,04)§;

(0.2,0.3,0.5) (0.3,0.1,0.3

(India,0.3,0.5,0.2)

0208050 [3037,042) (Russia,0.2,0.3,05)  (Mexico,0.4,0.2,0.2)
(0.2,0.3,0.5

FIGURE 14. A phenomenon of illegal migration from India to America

Algorithm 1: Steps to find PFICP.

Step 1. Inputthe vertex sétand edge sebl C V x V.

Step 2. Make the PFR onV'.

Step 3. Makethe PFEonE CV x V.

Step 4. Make the PF&/ onV x FE.

Step 5. Compute th&(v;, v;) of all paths fromw; to v;, such that
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icy = N Pu(vi, vivig1) @ (v, v0i41) € T},
ico = AN{Nar(vi, vvip1) = (vi, vvi41) € 1},
icg = \/{nM(vi,viviH) : (vi,viviﬂ) S I}

Step 6. Compute th&>®(v;, v;) of paths fromw; to v;.

Step 7. Deletév;, v;v;41) from I.

Step 8. Repeat stépand7 to computel[> (v;, v,) from v; to v,.

Step 9. Compare the two maximui

Step 10. I[>°(v;,v;) < Ig°(vs,v;5), then(v;, v;v,) is the desired PFICP.

4.1. Algorithm applied on the case study of Figurel4. In Figure 14 we have vertex
setV = {India,UAEFE, Russia, Nicaragua, Mexico} expressing different countries,

E = {(India,UAE), (India, Russia), (UAE, Russia), (UAE, Nicaragua),

(Nicaragua, Mexico)} showing legal traveling among these countries and

I = {(India, (India,UAE)),(UAE, (India, UAFE)), (India, (India, Russia)),

(Russia, (India, Russia)), (UAE, (UAE, Russia)),

Russia, (UAE, Russia)), (UAE, (UAE, Nicaragua)), (Nicaragua, (UAE, Nicaragua)),
Nicaragua, (Nicaragua, Mezico)), (Mexico, (Nicaragua, Mexico))} expressing il-

legal transfer of people among these countries.

From Figurel4, it can be seen that there are two possible paths from India to UAE, first is
India to UAE and second is from India to Russia and Russia to UAE. Then by Step (5) we
calculatel, of first pathl;(India, UAE) = I,(UAE, India) = (icy,ica, ic3) where

ic; = N{(India, (India, UAE)), (UAE, (India,UAE))} = (0.05,0.1) = 0.05

ico = N{(India, (India, UAE)), (UAE, (India, UAE))} = (0.3,0.2) = 0.2

ics = V{(India, (India, UAE)),(UAE, (India,UAE))} = (0.39,0.31) = 0.39

Now, theI,(India, UAE) = (0.05,0.2,0.31). In similar way, thel, from India to Rus-

sia and Russia to UAE is given by(India, UAE) = I,(UAE, India) = (ic1,icz,ic3)
where,

ic; = N{(India, (India, Russia)), (Russia, (India, Russia)),

(Russia, (Russia, UAE)),(UAE, (Russia, UAE))} = (0.12,0.2,0.2,0.2) = 0.12

ica = N{(India, (India, Russia)), (Russia, (India, Russia)),
(

—~

(Russia, (Russia, UAE)),(UAE, (Russia, UAE))} = (0.21,0.29,0.17,0.15) = 0.15
ics = V{(India, (India, Russia)), (Russia, (India, Russia)),

(Russia, (Russia, UAE)),(UAE, (Russia, UAE))} = (0.42,0.4,0.48,0.5) = 0.5
Therefore [ (India, UAE) = I,(UAE, India) = (0.12,0.15,0.5).

Now by Step (6) the greatest is provided by,

[=(India, UAE) = I®(UAE, India){V(0.05,0.12), V(0.2,0.15), A(0.39,0.5)}

= (0.12,0.2,0.39).

Similarly the remaining greatest are given below.

I (India, Russia) = (0.12,0.21,0.42) = Ig°(Russia, India),

I (India, Nicaragua) = (0.1,0.06,0.39) = I°(Nicaragua, India),

I (India, Mexico) = (0.1,0.02,0.39) = I°(Mexico, India),

IX(UAE, Russia) = (0.2,0.2,0.42) = I°(Russia, UAE),

IX(UAE, Nicaragua) = (0.1,0.06,0.33) = I°(Nicaragua, UAE),

I*(UAE, Mexico) = (0.1,0.02,0.33) = I>°(Mexico, UAE),

I (Russia, Nicaragua) = (0.1,0.06,0.42) = I°(Nicaragua, Russia),

I (Russia, Mexico) = (0.1,0.02,0.42) = (Mexico, Russia) and

I (Nicaragua, Mezico) = (0.21,0.02,0.3) = I°(Mexico, Nicaragua).

Now by Step(7), one by one we remove pairs frofmand computd/>. After deleting,
(India, (India,UAFE)) from I we getl!*°(India,UAE) = (0.12,0.15,0.5). Then by
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Step (9) we compare

I'*(India, UAE) = (0.12,0.15,0.5) < I>°(India, UAE) = (0.2,0.21,0.39).

This shows thatIndia, (India, UAFE)) is a PFICP. Similarly, the remaining PFICPs are
(UAE, (India,UAE)), (India, (India, Russia)) and(UAE, (U AE, Russia)).

5. COMPARATIVE ANALYSIS

A FIG is shown in Figurel5. There are two paths from India to UAE nameR, =
India — UAE and P, = India — Russia — UAE. Thel,(Py) = I;(India,UAE) =
A(0.05,0.1) = 0.05 and I,(P,) = Iy(India, UAE) = A(0.12,0.2,0.2,0.2) = 0.12.
Now, thel, between these two countries is givenl§y(India, UAE) = V(0.05,0.12) =
0.12 = I*(UAE, India). In a similar manner, the remaining greatésare
I (India, Russia) = 0.12 = I°(Russia, India),
I (India, Nicaragua) = 0.1 = I°(India, Nicaragua),
I (India, Mexico) = 0.1 = I (Mexico, India),
I°°(UAE Russia) = 0.2 = I°(Russia, UAE),

I (UAE, Nicaragua) = 0.1 = I°(Nicaragua, UAE),
IOO(UAE Mezxico) = 0.1 = I°(Mexico,UAE),
I°(Russia, Nicaragua) = 0.1 = I (Nicaragua, Russia),
I (Russia, Mexico) = 0.1 = IOO(Mexzco Russia) and
I (Nicaragua, Mezico) = 0.21 = I°(Mexico, Nicaragua).
In Figure13, (India, (India, Russia)) is a cutpair because after deleting it from FIG the
I'*(India, Russia) = 0.05 < I>°(India, Russia) = 0.12. In the same way,
(UAE, (UAE, Russia), (Russia, (UAE, Russia)), (Nicargua, (Nicaragua, Mexico)),
(Mexico, (Nicaragua, Mexico)), (UAE, (UAE, Nicaragua)),
(Nicaragua, (UAE, Nicaragua)) are all cutpairs. So, in the case of FIGs, almost gov-
ernment of each country will have to work and make some ordinance, laws, and strategies
to lessen the illegal transfer of people from one country to another but after addiivg the
andn, in FIG the result will be PFIG which is a generalization of FIG in which PFICPs
will be different from these cutpairs. In Figutd, after removing India, (India, UAFE))
from the PFIG thd/>*°(India, UAE) = (0.12,0.15,0.5) < I°(India, UAE) = (0.2,0.21,0.39)
therefore(India, (India, UAFE))isaPFICP. Inthe same wayU AE, (India, UAE)),
(India, (India, Russia)) and(UAE, (UAE, Russia)) are PFICPs. So, in the case of
PFIGs the government of only two countriesAE and India will have to make some
strict rules and policies to overcome the illegal transfer of people among all these coun-
tries. Therefore, PFIGs are more instrumental, favorable, and productive than FIGs. Also,
if we change the values dfy;, N, andn,; we will receive different PFICPSs. In Figure
16, after changing the values ofy,, andn,; the PFICPs arélndia, (India, Russia)),
(UAE, (UAE, Russia)) and(Russia, (UAFE, Russia)) which are all not same from the
previous ones. This shows that changing of value®f N,;, andn,; or changing the
values ofN,,, andnj, will change the PFICPs. So, this will affect the results of the overall
network of the countries. Also, PFICP in one network of countries may or may not remain
PFICP in another network of countries after changingfhedegree Ny, andny,.

6. CONCLUSION

Graph theory is a handy tool to analyze various kinds of mathematical structures, but
they fail to talk about the influence of vertices on the edges. This deficiency was cause to
introduce FIGs because FIGs are convenient, reliable, and beneficial for this purpose. The
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(Nicaragua,0.3)

(0.2 0.3)

(India,03) (0.2) (.03 (Russia,0.2) (Mexico, 0.4)

FIGURE 15. FIG

(UAE,0.2,0.3,0.

(0.2,0.3,0.5)
(India,0.3,0.5,0.2)

i Russia,0.2.0.3.0.5) (Mezico,0.4,0.2,0.2)
(0.2,0.3.0.5

FIGURE 16. PFIG

PFIGs are a generalization of FIGs that can be applied as a gimmick for building math-
ematical models with unpredictable information. In this article, several properties with
crucial results of PFIGs are being discussed. The study of order, size, and different kinds
of degrees in PFIGs is also explored. We present a comparison between PFIGs and FIGs
and draw some exclusive results. An application of control of illegal transportation of peo-
ple from India to America has also been discussed. The results discussed in this paper may
be used to study different PFIGs invariants. Our objective is to extend our research work
to interval-valued PFIGs, soft PFIGs, bipolar PFIGs, threshold PFIGs, competition PFIGs,
regular PFIGs, g-rung PFIGs, and application of PFIGs to human trafficking. Further work
on these ideas will be reported in upcoming papers.
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