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Evolutions of the Ruled Surfaces along a Spacelike Space Curve

Gill UGUR KAYMANLI
Department of Mathematics,
Cankiri Karatekin University, Cankiri Turkey
Email: gulugurk@karatekin.edu.tr

Cumali EKICI
Department of Mathematics and Computer Sciences,
Eskisehir Osmangazi University, Eskisehir, Turkey
Email: cekici@ogu.edu.tr

Received: 04 October, 2021 / Accepted: 25 March, 2022 / Published online: 25 April, 2022

Abstract.: In this paper, we work on the ruled surfaces obtained by a
guasi normal and quasi binormal vectors along a spacelike space curve in
three dimensional Minkowski space. Time evolution equations depending
on quasi curvatures are obtained. Studying directional evolutions of both
quasi normal and quasi binormal ruled surfaces by using their directrices,
we investigate some geometric properties such as inextensibilty, developa-
bility, flatness and minimality of these ruled surfaces.
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1. INTRODUCTION

Curves, in three dimensional space, are essential tool to model numerous problems in
physics. Flows; especially, inextensible flows of a curve(surface) generate the time evolu-
tion of a curve(surface). If the arclength of the curve is preserved, the flow of the curve is
inextensible and if the instrinsic curvature of the surface is preserved then the flow of the
surface is said to be inextensible. Since the motion, in physics, is created by the inextensi-
ble curve flows, the evolutions of curves have numerous imperative applications of physics
as magnetic spin chains and vortex filaments ([2][10][17][21]).

The motions of inelastic plane curves have been of great interest to many authors in
both Euclidean and Minkowski spaces ([7],[9],[14],[15]). Many researchers have studied
the surfaces generated by these curves such as translation surfaces in ([1]), special ruled
surfaces in ([8],[12]), timelike ruled surfaces in ([24]) and developable surfaces in ([16]).
Using Serret Frenet frame, some geometric properties of the surfaces generated from the
motion of inextensible curves iR3 are investigated ([11]). In ([25]), flows of the curve
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that are inextensible must satisfy a partial differential equation which has curvatures of the
curve on a null surface is given.

After quasi-normal vector of a space curve was presented in ([5]), Dede et.al. ([6]) found
out quasi frame in 2015 since the well known Serret Frenet frame has not been adequate.
One of the advantages of quasi frame is that it is well defined even if the second derivative
of the curve is zero unlike Serret-Frenet frame and it avoids unnecessary twist around the
tangent vector. Besides, it is easy to calculate unlike Bishop ([3]). Using quasi frame,
timelike surfaces of evolution in Minkowski space and the evolutions of the ruled surface
along both space curve and timelike curve were studied in ([20],[23],[13]).

In this work, we deal with evolutions of the ruled surfaces generated by spacelike space
curve by quasi frame. We get three differential equations depending on quasi curvatures for
the quasi frame vectors of the spacelike space curve by using quasi frame equations with
respect to arc-length parameteand timet. With the help of first and second fundamental
forms of these ruled surfaces, we get geometric properties such as curvatures, flatness,
inextensibility and minimality of the quasi normal ruled surface (QNRS) and quasi binormal
ruled surface (QBRS).

2. PRELIMINARIES

In three dimensional Minkowski spad?, the dot and cross products of two vectors

a = (a1,as,a3) andg = (01, Bs, B3) are defined as
<a,B>= a1+ axfe — azfs
and
al B = (azfy — azf3)us + (13 — azfBi)uz + (a1 B2 — o fB1)us

whereu; A us = uz, us A uz = —u, ug A u; = —ug, respectively.

The norm of the vectaw is given by

o] = V/[{ev, )|

We say that a Lorentzian vecteris spacelike, lightlike or timelike ifc, ) > 0 or
a=0,{a,a) =0anda # 0, {(a, a) < 0, respectively ([18],[19]).

A ruled surface is a surface generated by the movement of a line on a curve in space.
Therefore, it has a parametrization of the form

p(v,v) =w(v) +vdé(v)

wherew is called the directrix and is the director curve.
Let ¢ be a surface in Euclidean 3-space, the first fundamental form of the syrfiace
given asl = Edv? + 2Fdvdyv + Gdv? where

E =<0y, > F =<y, > G=<,,0, >. (2. 1)
The second fundamental form efis defined ad 1 = edv? + 2fdvdv + gdv? where

e =< Yy, N > f =<y, N >, 9g=< p,,, N > (2. 2)
and N is the unit normal ofp. The Gaussian and mean curvatures are written as

— f? —2fF E
€9 ‘f andH:M

K=-9-1_
EG - F? 2(EG — F?)

2. 3)
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respectively. A necessary and sufficient condition for a curve to be a flat and minimal is its
Gaussian and mean curvatures vanishes identically, respectively ([4]).

On the other hand, in ([16]) a surface evolutiofv, v, t) and its flowa—(p are inexten-

sible if the partial derivatives of the coefficients of the first fundamental form vanish. That
is,

OE OF 0G
oo o @9
Given a curveu(v), the quasi framdt, n,, b,, p} is given by
W' tAp

t= ||w’||’nq_ IIt/\p”,bq—t/\nq (2.5)
wheret, n,, b, andp be the unit tangent vector, quasi-normal vector, quasi-binormal
vector and standard unit vectorsii, respectively.

Let w(v) be a spacelike space curve. In ([22]), there are four cases for the spacelike
space curve to examine.

& Case 1 : The derivative equations of the Frenet frame and quasi frame for the space-
like space curve when both tangent vector and normal vector are spacelike while projection
vectorp = (0,0, 1) and quasi-binormal vector are timelike are written as

t’ 0 x O t
n |=| - 0 7T n (2. 6)
b’ 0 7 0 b
and
t’ 0 ki —ko t
1’1; = —k/’l 0 —kig n, (2 7)
b}, —ko —ks O by

respectively. Then, we have a relation matrix and relation between curvatures in the fol-
lowing form

t 1 0 0 t
ng | =] 0 coshux sinh s n |. (2. 8)
b, 0 —sinhs —coshir b

k1 = kcosh s, ko = ksinhs, k3 = —dx—T.

wheresr be the hyperbolic angle betwebrandb,,.

& Case 2 : The derivative equations of the Frenet frame and quasi frame for the space-
like space curve when tangent vector and quasi-binormal vector are spacelike while pro-
jection vectorp = (0,0, 1), normal vector and quasi-normal vector are timelike are written
as

t’ 0 0 t
n |=|kx 0 7 n (2.9)
b’ 0 7 0 b
and
t/ 0 ki —ks t
l’l; = —k1 0 —k‘3 n, (2 10)
b}, —ky —kz O b,



224 Gl UGUR KAYMANLI and Cumali EKICI

respectively. Then, we have a relation matrix and relation between curvatures in the fol-
lowing form

t 1 0 0 t
n, | =0 —sinhs»x —coshs n |. (2. 12)
b, 0 coshs sinh s b

k1 = ksinh s, ko = —kcoshz, k3 =dx+ 7.

wheres be the hyperbolic angle betwearandb,,.

& Case 3 : The derivative equations of the Frenet frame and quasi frame for the space-
like space curve when tangent vector, projection veptet (0,1,0) and quasi-binormal
vector are spacelike while normal vector and quasi-normal vector are timelike are written

t’ 0 v 0 t
n |=|k 0 7 n (2. 12)
b’ 0 7 0 b
and
t/ 0 —ki ko t
n, |=| -k 0 k3 n, (2.13)
b’ —ky ks O b,

respectively. Then, we have a relation matrix and relation between curvatures in the fol-
lowing form

t 1 0 0 t
ng | =] 0 coshsx sinhs n |. (2. 14)
b, 0 sinhs cosh s b

k1 = —kcosh», ko = —ksinh, ks =dx+T.

wheres be the hyperbolic angle betwearandn,,.

& Case 4 : The derivative equations of the Frenet frame and quasi frame for the space-
like space curve when tangent vector, projection vegter (0, 1, 0), normal vector, quasi-
normal vector are spacelike while quasi-binormal vector is timelike are written as

t/ 0 ~ 0]t
n |=| -k 0 7 n (2. 15)
b’ 0O 7 0 | b
and
t/ 0 —k k][ t
l’l; = —k1 0 k‘3 n, (2 16)
bj, ~ky ks 0 | [ by

respectively. Then, we have a relation matrix and relation between curvatures in the fol-
lowing form

t 1 0 0 t
ng | =] 0 sinhx cosh » n |. (2. 17)
b, 0 —coshs —sinhsr b

k1 = ksinh s, ko = —kcoshs, k3 = —dx —T.

wheres be the hyperbolic angle betwebrandn,,.
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3. EVOLUTION OF SPACELIKE SPACE CURVE WITH TIME BY QUASI FRAME

In this part, we obtain time evolution equations depend on quasi curvatures of the evolv-
ing curvew(v, t) in order to obtain spacelike space curve with quasi frame. That is, in-
tegrating time evolution equations for givenu, n, one can find quasi curvatures. Using
variations of quasi frame, we get evolving spacelike curve for each cases.

& Case 1:

Theorem 3.1. The variation formula for the quasi curvatures with respect to tiroéthe
evolving spacelike curve(v, t) is written as

— | k| =] - 0 X ko | +=— | 1 (3.18)
ot i A ov
3 poo—A 0 3 n
where the derivation formula of quasi frame with respect to tirisan the form
t 0 A - t
0
& nq = _A O -n nq
b, —n —n 0 b,
Proof. Using equation ( 2. 7 ), and defining
t 0 kl —kQ 0 A -l
q = n, 7A = 7]431 0 7]63 7B = —A 0 - 5 (3 19)
b, ke —ks 0 —p —n 0
we can write
9q
2 - A
ov 4
9q
2 —- B
ot 7

Applying the compatibility condition
0 8q 0 8q
ot \ov) " ov\ot

0A OB

— - —+[A,B] = 3.20

o~ gg TABI=0 (3. 20)
where[A, B] = AB — BA s the Lie bracket oA and B.

The equations (3. 19 ) and ( 3. 20 ) give us the matrix of evolution equations as

one can find easily

0 Ok — OA f foon —hgp =92 4 OB k4 k3
—8k1 _|_ 8)\ + kSIJI kQT] 0 —akg + _|_ kl,u o =0
—d’w +8"+k3)\ g — % 4 00 X + ki 0
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Thus the compatibility condition becomes

Ok oA
T ken— K et
En 3 — Kan + 90
8]62 8/1,
AL N W 3 il
o AT R 5,
8](53 - 8’17
ot —klﬂ_k2)\+%-

With the help of the obtained equations, we prove the theorem.

Theorem 3.2. Time evolution of the curve(v, t) is represented by

ko
A=———kk
v 1h3
Ok
=——— — kok
2 o0 2R3
Ok
O(——— — kaoks)
_ 1 81) 23 (9]{}2 8k2
T ( au 5+ e —hiks).
Proof. The velocity of the curvev is given by
%: = at + bn, + cb,.
Using equation? (22) = 2 (22)  we have the following equations
A= % + ak; — cks
v
n= —%‘Fakz-f—bk’g
ov
0= %+bk‘1+0k‘2.
From equation ( 3. 23), and Theorem 1, we obtain
dc
O(— = + aky + bks)
1 ov 8k2 8b
= — — — 4+ ks(——=— + aky —cks) ).
" k1< a0 5t * ha(= gy + aky = ko))

For a solution of smoke ring equation, the velocity vectawa$ given by

Ow Ow 0 ( Ow

o~ a0 "o \aw
The equality of equations ( 3. 22 ) and ( 3. 25) gives

a:O,b:—kQ,c:kl.

) = —k‘gnq + klbq.

Substituting the equation ( 3. 26 ) into equations ( 3. 23 ) and ( 3. 24 ), we have desired

equations.

Case 1 and Case 2 have the same calculation and results.
& Case 3 :

(3. 21)

3. 22)

(3. 23)

(3. 24)

(3. 25)

(3. 26)

O
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Theorem 3.3. The evolution equations for the quasi curvatures of the evolving spacelike
curve are written as

5 ks 0 n —pu ks 5 A
— |k |=|7n 0 =X ko |+ | 1 (3. 27)
ot & k v
3 po=A 0 3 n
where the derivation formula of quasi frame with respect to tirisan the form
t 0 =X pu t
0
g ng | =|-x 0 9 n,
b, - n 0 b,

Proof. The steps to prove the theorem are exactly the same as the previous one.

There is nothing to special for the Case 4, therefore, we omit that part.

4. INEXTENSIBLE FLOW OF THE RULED SURFACES
DEPEND ON ASPACELIKE SPACE CURVE

In this part, we work on some geometric properties of evolutions of both gNRS and
gBRS by calculating their Gaussian and mean curvatures.

4.1. Evolution of quasi Normal Ruled Surface. & Case 1 : If the curvew(v) moves
with the timet, the equation of the gNRS is

w(vv v, t) =w (U’ t) +ng (Uv t)

First partial derivatives of the surfagév, v, t) are

v = (1—vki)t—vksb,
Yy = ng.
The normal vector op(v, v, t) is

Po A Pv —l/kgt + (1 - I/kl) bq

Clew Avull -T2 (B2 — kD) + 20k |

The coefficients of the first fundamental form are calculated by

E = 12k —k2)— 2wk +1
F =0
G = 1.

Second partial derivatives of the surfac@, v, t) are

Pouv U(k‘gk‘g — %)t =+ ((1 — l/k‘l) k‘l + Vk‘%)nq + ((Vk‘l — 1)1{,‘2 — V%
Yoy = —kit — ksb,
oY, = 0.

)by
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The coefficients of the second fundamental form are calculated by

ko + V(58 — 2kiks) + V2 [k3 25 () + ko (kT — k3)]
V=1 +v2 (k2 — k2) + 2vk, |
k3
V=142 (k3 — k3) + 2vky |

g = 0.

f =

One can find Gaussian and mean curvatures
f2 k2

K =
E (2 (k2 — k2) — 2uky + 1)
and
Ho € _ ko + V(5 — 2k ks) + 12 [k3 5 () + ka (k3 — K3)]
25 2(12 (k3 — K3) + 2vky — 1)°/?
respectively.

The gNRS is minimal if and only if

Ok 0 k
ko = v(2k1ka — 87113) - [kg(‘) (k;

The gNRS is both flat and developability if and only if

)+ ko (kT — K2)).

ks = 0.
Using ( 2. 4), if the gNRS is inextensible, we have

8k1 - l/ 8 2 2

& Case 3 : If the curvew(v) moves with the time, the equation of the gNRS is
(p(U, v, t) =w (U7 t) + an (Uv t)
First partial derivatives of the surfagév, v, t) are
v = (1—vki)t+vksb,
Y = g
The normal vector op(v, v, t) is
_ Ukst+(vky — 1) b,
VI+v2(k] +k3) —2vk

The coefficients of the first fundamental form are calculated by
E = 1402 (kf+k3) —2vk
F =0
G = -1
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Second partial derivatives of the surfac@, v, t) are

Qv = (8k1 + k‘gk‘3)t + ((V/Cl — 1) ki + I/k‘%)nq + ((1 — l/k‘l)kg + Vak3)bq
Pov = *klt + k3b
o, = 0.

The coefficients of the second fundamental form are calculated by
—ky — V(G2 — 2kiko) + 12k (52) — k(KT + 3)]
\/1—|—V2 k%—kkg) — 2uky

— _k?’
fo= V1412 (k2 +k2) — 2uk;
g = 0.
One can find Gaussian and mean curvatures
K = k3
(1402 (k2 4+ k2) — 2vk;)”
and
o —ky — V(G2 — 2k1ky) + 2k 2 (32) — ka (K3 + k3)]
2(1+ 02 (k2 +k3) — 2uk1)3/2
respectively.

The gNRS is minimal if and only if

ok 0
ko = v(2kyky — 073) [kfa (k ) — ka(k? + E32)).
The gNRS is both flat and developability if and only if
ks = 0.
Using (2. 4), if the gNRS is inextensible, we have
6k1 o 1% 3 2
T (8t(k +k3)).

4.2. Evolution of quasi Binormal Ruled Surface. & Case 1 : If the curvew(v) moves
with the timet, the equation of gBRS is

o(v,v,t) = w(v,t) + vby (v,t)

First partial derivatives of the surfagév, v, t) are
Yo = (1—vko)t—vksn,
Yy b,.
The normal vector op(v, v, t) is
~ vkst+ (1 —vko)n,
V12 (k2 kD) — 2vky




230 Gl UGUR KAYMANLI and Cumali EKICI

The coefficients of the first fundamental form are calculated by

E = vi(k3+k3)—2vky +1
F =0
G —1.
Second partial derivatives of the surfag@, v, t) are
oo = vlkiks — Z2)t+ (1 — vka) k1 — v22)ng + ((vk2 — 1)k2 + vk3)b,
Qouy = 7k2t — k‘gnq
Y = 0.

The coefficients of the second fundamental form are calculated by

by — V(52 + 2k1 ko) + V23 2 (12) + k(K3 + k3))]
V1402 (k3 + k%) — 2vksy
_k3

V1+ 02 (k3 + k%) — 2vk,

g = 0.

f =

One can find Gaussian and mean curvatures
(V2 (k2 — k2) — 2vky +1)°

and
ki — v(G2 + 2hke) + V2 (K3 5 () + k(K3 + K3)]

2 (12(k2 + k2) — 2wky + 1)*?

H =

respectively.

The gBRS is minimal if and only if
_Oks 5 0
ky = (8— + 2k1 ko) — [k28 (k2

The gBRS is both flat and developability if and only if

ks = 0.

Using ( 2. 4), if the gBRS is inextensible, we have
8k2 - V( 3(
ot 20t

& Case 3 : If the curvew(v) moves with the time, the equation of gBRS is

o(v,v,t) = w (v, t) + vby (v,t)

)+ k1 (k3 + k3)).

k3 + k32)).

First partial derivatives of the surfagdv, v, t) are

Yo = (1—vko)t+vksn,
¢ = by
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The normal vector op(v, v, t) is

—vkst + (vke — 1) n,
\/1/2 k2 —k3) + 2wky — 1

The coefficients of the first fundamental form are calculated by

E = v*(k3—k3)—2vky +1
F =0
G = 1.

Second partial derivatives of the surfag@, v, t) are

oo = —vlkiks + G2t + ((vka — 1) k1 + v 52 )0, + (1 — vka)ka + vk3)b,
Oy = —kat+ k3nq
Y, = 0.

The coefficients of the second fundamental form are calculated by

—ky + (92 4 2k1 ko) + V2R3 (32) + ka (K — K3))]
V2 (k3 —k3) + 2vky — 1
k3
\/1/2 k2 — k2) + 2vky — 1

f =

g =
One can find Gaussian and mean curvatures
—k§
(v2 (k2 — k2) + 2vky — 1)°

and
—ky + (G2 + 2k1 ko) + V2 [R3E (82) + ka (KF — K3))]

2 (12 (k2 — k2) + 2vky — 1)/

respectively.

The gBRS is minimal if and only if

Oks

o k
by = v+ 2kks) +v 2[k32 2

S0 (o) + k(K — )L
The gBRS is both flat and developability if and only if

ks = 0.
Using ( 2. 4), if the gBRS is inextensible, we have

814:2 v,o0

ot 2(6t(k2 K3)-
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