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Abstract.:In this paper, a new iterative algorithm for finding common ele-
ments of the set of fixed points for a finite family of asymptotically quasi-
nonexpansive multivalued mappings and the set of minimizers for a finite
family of minimization problem is constructed. Under mild conditions on
the control sequences, strong convergence of our algorithm was achieved
without necessarily imposing any compactness condition on the space or
the operator by using an independent approach. Our results improve, ex-
tend and generalize many important results recently announced in current
literature.
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1. INTRODUCTION

Let H be a real Hilbert space. In this paper, we denotd,by), .|| and K, the inner
product onH, norm onH and a nonempty, closed and convex subsdt pfespectively.
Also, if {z,} is any sequence i/, then we denote the strong and weak convergence of
{z,} by — and—, respectively; a set of natural numbers will be representedRith

LetV : K — K be a nonlinear mapping whose domain and rangel¥€) and
R(V), respectively. The set of fixed points BT will be denoted byF' (V) = {z € K :
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x = Vz} while the set of common fixed points of the mappifig }’”, : K — K will
be denoted by, F'(V;). Recall thatl is:

(a) Lipschitizian if there exists a constafitsuch that
Ve = Vy| < Bllz —yl,vz,y € D(V), (1.1)

where > 0 is the Lipschitizian constant df. Note that if3 € [0.1) in (1. 1),
thenV is a contraction whild/ is called nonexpansive i = 1in (1. 1).

(b) asymptotically nonexpansivece [17], [1]) if for all =,y € D(V), there exists a
sequencé i, } C [1, 00) with lim,, o u, = 1 such that

V™% — V™y[| < pnllz —yll,Vn € N. 1.2
(¢) uniformly Lipschitizian if there exists a constafit> 0 such that
V' = V"yl| < Bllz — yll,Vo,y € D(V), 1.3)

(d) asymptotically quasi-nonexpansive (V) # () and (b) is satisfied; that is, if
F(V) # 0 andforall(z x q) € D(V) x F(V), there exists a sequenég,,} C
[1, 00) with lim,, .« p,, = 1 such that

[V*e = V"q < pnllz = q|,Vn € N. (1.4)

Whereas the class of uniformly Lipschitizian mapping is a superclass of the classes of non-
expansive mapping and asymptotically nonexpansive mapping, the class of asymptotically
guasi-nonexpansive mapping is a superclass of the classes of asymptotically nonexpansive
mapping and quasi-nonexpansive mapping (Recall that a nonlinear mappihg— K
is called quasi-nonexpansive K(V) # () andV(z x ¢) € D(V) x F(V), we have
Ve — Vgl < Bllz — q|)(see [45 : Examples [4.1,4.3 and 4.9] for details) . A
nonlinear mapping” : H — H with domainD(V) C H and rangeR(V') C H is called:

(e) strongly positive bounded linear operator if there exists a conatant) such that

the inequality

(Vt,tyg > a||t||*, vVt € H (1. 5)
holds.
(f) monotone if
(Vo —Vy,x—y) 20,Vz,y € D(V). (1. 6)
(g9) a-strongly monotone if there exists > 0 such that
(Vo —Vy,z—y) > alz—y|* Va,y € D(V). 1.7
(h) o-inverse-strongly monotone (for sh@rism) such that
(Vo —Vy,z —y) > a||Ve — Vy||?,Va,y € D(V). 1. 8)

If V' is nonexpansive, then the map- V' is monotone. It is worthy to note that the projec-
tion operatorPx is 1 — ism. Inverse-strongly monotone, otherwise known as co-oercive,
operators have been intensively employed in solving practical problems in such an impor-
tant area as traffic assignment problems (see [3], [19] for further details) Fixed points
for single-valued mappings have been a subject of major concern and different methods
have been used to address this issue. Since exact solution is difficult to attain, approxi-
mation via iteration scheme becomes an indispensable tool for the solution of fixed point
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problems. Letf be a contraction map oH. Starting from an initial point; € H, define
the sequencéz,, } iteratively as follows

Tn4+1 = Tnf(xn) + (1 - Tn)Txna n Z 07 (l 9)

where{r, } is a sequence if0, 1) andT is a honexpansive mapping f. The iteration
sequence (1. 9) was first introduced by Moudafi [32]and has been gainfully used in ap-
proximating fixed points of different nonlinear mappings in recent times (see [49], [50] and
the reference therein for further study).

Iteration scheme for the fixed point of nonexpansive mappings has been extensively in-
vestigated mainly because of the intimate connection between nonexpansive mappings and
monotonicity methods. In this direction, Marino and Xu [34] and Xu [50] discovered that
iterative method for nonexpansive mappings could be used to solve convex minimization
problem. To be precise, it was shown in [50] that a typical minimization problem of a
guadratic function of the form:

. 1
mmzep(T)§<Vz, z) — (b, z) (1. 10)

over the set of fixed points for nonexpansive mappings in real Hilbert space could be solved
using the iteration scheme

Tnt1 = @b+ (1 — @, V)Ta,,n >0,

whereT' is a nonexpansive mapping afdis a strongly positive bounded linear operator
(Recall from Definition 1.2 [(e) and (g)] that a strongly bounded linear operatof{5/ja
Lipschitizian andx-strongly monotone operator).

Inspired by the results in [32], Xu [49] generalized (1. 9) as follows: &k a con-
traction onH, T is a nonexpansive mapping di@ andV : H — H be a strongly
positive bounded linear operator. Lgt,} be the sequence generated from an arbitrary
pointsy € H such that

Snt1 = anYf(sn) + (1 — a,V)Tsp,n >0, (1. 12)

where{«, }22, is a sequence if0, 1]. He showed that (1. 11 ) converges strongly to the
fixed point of T, which at the same time serves as an answer to the variational inequality
problem below:
(Vs* —~f(s*),s* —q) <0,v¥q € F(T). 1. 12)

Passing onto multivaued mapping, there has been a concentrated efforts in the evaluation
of fixed points for nonlinear multivalued mappings. This special interest is believed to
have come from the various practical applications of multivalued mappings. For instance, a
monotonic operator in optimization theory is the multivalued mapping of the subdifferential
of the functiong, dg : D(g) € H — 2H and is defined by

Og={s€H:9(z) > g(t)+ (s,z —t),Vz € K,
and0 € 0g(t) satisfies the condition
(t—2,0)=0<g(t)—g(2),Vz € K.

In particular, ifg : K — R is a convex, continuously differentiable function, then
A = g, the gradient is a subdifferential which is single-valued mapping and the condition
vg(t) = 0is an operator equatioks/g(t),t — z) > 0 is variational inequalities and both
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conditions are closely related to optimality conditions. Hence, finding fixed points or com-
mon fixed points for multivalued mapping is an important area in applications. However,
we have noticed (with concern) that fewer iteration schemes, especially in the direction of
asymptotically nonlinear multivalued mappings, does exists.

Let (X, p) be a metric spacel) a nonempty subset o andV : D — 2” be a
multivalued mapping. A point € D is said to be a fixed point df if s € V's. The fixed
point set ofV is denoted by (V) = {s € D : s € Vs}. LetCB(X), KC(X) andP(X)
represent the family of closed and bounded subsegf ahe family of nonempty compact
and convex subset df and the family of proximinal subset of, respectively. A subsdd
of X is called proximinal if for eacls € X, there exists a poirit € D for which (1. 13)
holds.

p(s, k) =1inf{|ls —t|| : t € D} = p(s, D), (1. 13)
wherep(s,t) = ||s — t||,Vs,t € X. Itis known that every nonempty closed and convex
subset of a real Hilbert is proximinal.

Let @, W € CB(D), the Hausdorff metrid{ induced by the metrip is defined as

H(Q,W) = maz{sup p(s, W), sup(t,Q)}
SEQ tew

Recall that a multivalued mappifig: D(V) C X — CB(X) is called:
(1) B-Lipschitizian if there existg > 0 such that

H(Vs,Vt) < flls —t|,Vs,t € D(V). (1. 14)

Note that in (1. 14 )V is a contraction if3 € (0, 1) and nonexpansive j§ = 1.
(2) uniformly Lipschitizian if there existg > 0 such that

H(V"s, V™) < B|ls —t||,¥s,t € D(V),¥n > 1. (1. 15)

(3) asymptotically nonexpansive if forall y € D(V'), there exists a sequente,, } C
[1, 00) with lim,, .o t,, = 1 such that

H(WV"s, V™) < up|ls —t||,¥Yn > 1. (1. 16)

(4) asymptotically quasi-nonexpansive [49]#f(V) # 0 and (3) holds; that is, if
F(V) # @ andforall(s x ¢) € D(V) x F(V), there exists a sequen¢g,, } C
[1, 00) with lim,, .o pt,, = 1 such that

H(V"s,V"q) < pnlls — q|,¥n > 1. 1. 17)

Every asymptotically nonexpansive multivalued mapping properly includes nonexpansive
multivalued mappings and contraction multivalued mappings. Also, the class of asymp-
totically quasi-nonexpansive multivalued mapping is a superclass of the classes of as-
ymptoatically nonexpansive multivalued mappings and quasi-noexpansive multivalued map-
pings (Recall that a multivalued mappifg: D(V) C E — CB(FE) is called quasi-
nonexpansive (a superclass of the class of nonspreading-type multivalued mapping) if
F(V) # 0 and for all(z x q) € D(V) x F(V), we haveH (Vz,Vq) < ||z — q||. Also,

V is called nonspreading-type if the inequalt¥? (Vz, Vy)? < p(z, Vy)? + p(y, V)?
holdsvz,y € D(V). Infact, every nonspreading-type multivalued mapping with nonempty
fixed point set is quasi-nonexpansive). Minimization problem, an invaluable problem
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in application, especially in the area of optimization and nonlinear analysis, is defined as
follows: find¢ € H such that

g(t) = min.emg(z), (1. 18)

whereg : H — (—o0, +00) is a proper, convex and lower semicontinuous function. Note
that problem (1. 18) is consistent if it has a solution. The set of all solutions (minimizers)
of g on H is defined asrgmin.c g g(t).

Letg : H — (—o00,400) be a proper, convex and lower semicontinuous function.
Starting from an arbitrary point; € H, define the iteration scher{e;,, } as follows:

r1 € H

Tnal = argmingen [g(u) + %Hu —x,])?|,n €N (1.19)
The algorithm (1. 19) for solving problem (1. 18 ) was first introduced in 1970 by Mar-
tinet [39], and was called proximal point algorithm (for short, PPA). In recent times, many
researchers have studied and generalised (1. 19) and many interesting results have been
obtained for different classes of nonlinear single-valued and multivalued mappings: Rock-
feller [41] solved problem (1. 18) using (1. 19); Marino and Xu [34], and subsequently
Phuengrattan and Lerkchaiyaphum [33], obtained weak and strong convergence to the com-
mon solution of minimzation problem and fixed point problem using the modified version
of (1. 19) in the setting of real Hilbert spaces

More recently, Chang,Wu and Wang [9], using the scheme

T € H,;
. 1
Yn = argmingen | f(u) + 5[l — 2| |;
2\,
Zn = (]- - 5n)xn + ﬁnwnawn S Tyru
Tpt1 = (1 — apn)Tp + @pvp, vy € Tzp,n €N,

(1. 20)

where{w,, }, {5n} € [0,1], K is a closed and convex subset of a real Hilbert sgdand
g : K — (—o00,400) is a proper convex and lower semicontinuous function, proved
that (1. 20 ) converges weakly and strongly to the common solutions of the minimization
problem of (1. 18) and fixed point problem of nonspreading-type multivalued mafiping
in the framework of a real Hilbert spadé.

Most recently, EL-yekheir, Mendy and Sow [15] introduced and studied the follow-
ing modified PPA: LetK be a closed and convex subset of a real Hilbert sgace :
K — (—o0,+00) a proper convex and lower semicontinuous functipn, K — H
and-Lipschitizian mappingB : K — H ana-strongly monotone and-Lipschitizian
operator and” : K — CK(K) a multivalued quasi-nonexpansive mapping. The PPA-
Ishikawa iteration method is defined as follows:

r1 € H;

Zn = argmingey | f(u) + %ﬂ”u —x,|?|;

Yn = (1 — Bn)zn + Bpwn, Wy € Tzy;

Tnt1 = Pr(anvg(xn) + (1 —nanB)yn),n € N,

(1. 21)
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where{a, } and{j,} are sequences i, 1]. Under mild conditions on the iteration pa-
rameters, they proved that the sequence defined by (1. 21 ) converges strongly to the fixed
point of a quasi-nonexpansive multivalued mapping in the framework of a real Hilbert
space.

Inspired and moltivated by the results in [15] and [34], it is natural to ask the following
guestion:

Question 1.1. Can we construct a modified proximal point algorithm that generalizes
(1. 21y If yes, can the proposed modified PPA be used to achieve convergence results
for a larger class of asymptotically quasi-nonexpansive mappings in the setting of real
Hilbert spaces?

It is our purpose in this paper to give an affirmative answer to Question 1.1K llst a
closed and convex subset of a real Hilbert space{g;}7*, : K — (—o0,+00) a fi-

nite family of a proper convex and lower semicontinuous function @hd’”, : K —
CB(K) be a finite family of asymptotically quasi-nonexpansive multivalued mappings.
Then, the modified PPA iteration scheme generatefihy for the above mentioned map-
pings is as follows:

xo € K;

sn = Wi'(z);

Yn = (1= 20001 Bni)Sn 4 D iey Briizn,is Znyi € Ti'sn;
Tpt1 = Pr(anyf(@n) + mn + (1 =) — nanA)y,),

(1. 22)

where{a,,} and{3,} are sequences [fi, 1] andW(z) = J{' 0 J{'" ' 0 J{'*0- -0 J{?0
J{(z),l =1,2,--- ,m. Observe thatif :

(I) i=1in (1. 22), we get

zg € K
sn = argminyerr |9(v) + [lo = 222 @ 23)
Yn = (1= Bn)sn + Bnzn, 2n € T"Sp;
Tnt1 = P (o7 f(@n) + @ + (L= )l — nanA)yn), -
(II) i=1,~, =0= B, andT™ =T in (1. 22 ), we get
9 € K;
Sp = argmingem |g(v) + ||v — 2,12 |; (1. 24)
Yn = (L = Bn)Sn + Bnzn, 2n € Tsn;
Tnt1 = Pr(omyf(an) + (I = nonA)yn).
(III) a, =0in (1. 24), we get
9 € K;
Sp = argmingeg [g(v) + v — 2,12 ]; (1. 25)

Znt1 = (1 = Bn)sn + Bnzn, 2n € Tsy.
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(IV) B, =0in (1. 25), we get

zo € K

Tpt1 = ATgMingey [g(v) + |lv — zal?|; (1. 26)

(V) i=1, W = I (where | is an identity map of/) and3, = 0 in (1. 22, we get,
starting from an arbitrary point, € H,

Tnt1 = (v f(xn) + (I — nanA)Tx, 1. 27)

Note that (1. 23 ) generalizes (1. 21), (1. 20) and many other iteration schemes in this
direction; (1. 24) is the same as (1. 21), which in turn generalizes (1. 20 ) insa
multivalued quasi-nonexpansive mapping; (1. 25) generalizes (1. 19), (1. 11)and (1. 9)
and finally, (1. 27 ) generalizes (1. 9).

2. PRELIMINARY

Assumptiom 2.1:
Throughout the remaining section§, K, g : H — (—o0, o0, the operatodd : K —
H and the functiory : H — (—o0, +00) shall represent, a real Hilbert space, a non-
empty, closed and convex subsetrdf L-Lipschitizian andx-strongly monotone operator
and proper, convex and lower semicontinuous function, respectively.

Also, for the sake of convenience, we restate the following concepts and results:
Let H and K be defined as in Assumption 2.1. For evérg H, there exists a unique
nearest point iff(, represented aBxt, such that

It — Pt < ||t = sll, Vs € K
It has been established that for every H,
(t — Pxt,s — Pgt) <0,Vs € K. (2. 28)

Let £ be a real Banach space afid D(T) C E — 2¥ a multivalued mapping. Then,
I — T is said to be weakly demiclosed at the origin (see, [@4.26]) if for any sequence
{tn}2, € D(T) such that{t,,} converges weakly tg and a sequence, with s,, € T't,,
for all n € N such that{t,, — s, } converges strongly to zero, there Tq. (see [23]) A
multivalued mapping’ : D — 2P is H-continuous if whenevevels,,} converges ta:
in D, we have

lim d(g, — Tx) =0,

for any sequencéq, } such thaty, € Ts,, for n € N. Note thatifV : D — 2P is
asymptotically nonexpansive, théhis H-continuous. Given a closed convex subket
of a Hilbert spaced, a mappingl’ : K — H is firmly nonexpansive if for alk, t € K,

|Ts — Tt||*> < (s —t,Ts — Tt).
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Lemma 2.1. (see, e.gJ11] ) Let H be defined as in Assumption 2.1. LeEbe a nonempty
closed and convex subsetidf LetG : U — K (U) be a nonspreading-type multivalued
mapping. Le{z,, } be a sequence dii such that:,, — ¢ andlim,, ., ||z — yn| = 0 for
somey,, € Gx,,. Then,g € Gq.

Lemma 2.2. (see, e.g.[10], [15]) Let H be defined as in Assumption 2.1. Then, for every
s,t € H and for everyu € [0, 1], the following inequality holds

(4)
(i)

ls = 1% < lIs[|* +2¢¢, s + ¢)

ez + (1 =yl < pllsl® + @ = wItl* = p(1 = ws —¢)?
Lemma 2.3. (see, e.9.[47]) Let {a,,} be a sequence of nonnegative real numbers with
ant1 = (1 — ay)ay, + by, n > 0, wherea, is a sequence if0, 1) andb,, is a sequence in

R such thaty">° , o, = oo andlimsup,,_, ., — < 0. Then lim,,_, a, = 0.
a

Lemma 2.4. (see e.q.[15], [46] ) Let H, A, and K be defined as in Assumption 2.1 with
2k L3n
a, L > 0. Assume tha{L—2 >n>0andr = n(k — T) Then, we have
(1 = snA)e — (I — snA)y|| < (1 —tr)||z =yl Yo,y € K.

Lemma 2.5. (see ,e.g[15], [36] ) Let H, K andg be defined as in Assumption 2.1. Then,
for 0 < r and0 < p , the following equality holds:

Jox = Jox ( v+ (1 )Jg)

Lemma 2.6. ( Subdiffential inequality, sef2]) Let H and g be defined as in Assumption
2.1. Then, for every,y € H and )\ > 0, the following subdifferential inequality hods

1 1 1
gﬂUw—yW—§ﬂM—MP+iﬂw—hﬂFSﬂm—gUw) (2. 29)

Lemma 2.7. (see, e.g.[15], [37] ) Let {s,} be a sequence of real numbers that does
not decrease at infinity in the sense that there exists a subseqgsignoé{s,,} such that
sn, < sp, +1fork > 0. For n € N, sufficiently large, define the sequence of integers
7(n) as follows
T(n) =maz{j <n:s; <s; +1}
Then,r(n) — oo asn — oo and
max{sT(n), Sn} < Sr(n) +1 (2 30)

Proposition 2.8. (see [42]) Let D be a nonempty subset of a real Hilbert spdée For
a mappindl’ : D — H, the following definitions are equivalent:
(a) T is firmly nonexpansive;
) 2T — I is nonexpansive, wheteis the identity map oiif;
1

c) T (I + S) with S nonexpansive;

)

)

(b

(

(d OS(Tx—Ty,(I Tx)x — (I —T)y),Vx,y € D;

(e) Tz = Ty|* < [lz — y|I* = [(z = Tz) — (y = T)yl*, Yo,y € D.
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Lemma 2.9. Let g be defined as in Assumption 2.1. For any> 0, define the Morea-
Yosida resolvent af in Hilbert spaceH as

. 1
J{(x) = argmingcn [g(y) + ﬁHy — |||,V € H. (2. 31)

Then,

(i) The sef(J}) of fixed points of the resolvent@toincides with the seirgmin,c u
of minimizers ofy (see[14] and[22] for details), and for any\ > 0, the resolvent
J{ of g is firmly nonexpansive mapping, and hence nonexpairiye

(i) SinceJy is firmly nonexpansive mapping, i(J{) # 0, then from Proposition
2.9, we have

17z — ql® < llz — g — | Sz — 2], Ve € Hoq e F(J))  (2.32)
Proposition 2.10. (see [48]) Let C be a nonempty closed convex subset of a Banach

spaceX and letT : C — C be a nonexpasive mapping. The map 7" is demiclosed if
and only if the following implication holds:

((xn) CCyxyy = 20y — Ty > y) =z —Tx =1y

This is called the demiclosedness principle for nonexpansive mappings, which holds in the
following spaces:

(7) uniformly convex Banach space;

(7i) Banach spaces satisfying Opial’s property.

Proposition 2.11. Let K be a nonempty, close and convex subset of a real Hilbert space
H and letW]" be as defined b{8. 38 ) Then,F(W}") = N~ F(J{').

Proof. Itis clear that!™, F'(J{) C F(W}"). So, it remains to show that

F(W") C A, F(J). (2. 33)
Letz* € F(W{") andy* € NI, F(J{*). Then, we have

" =yl = W™ =y

= g =y

< Wt gl

= W = Sy

< Wt =yl

< wiet -yl

13 " =y
< 2=yl

The last inequality implies that

o =y || = [Wita* —y*|| = W lar =yt = - = [Wha™ —y*| = |3 2" — |
(2. 34)
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It follows from (2. 34 ) and Lemma 2.1 that for eack- 1,2, - - - , m, we have
IWia* —y*|| + [Wia* — Wi—la*|| < [Wila* —y*| = [l=* —y*|. (2. 35)
Since||Wiz* — y*|| = ||z* — y*||, it follows that, for eachi = 1,2,--- ,m, we have
[Wiz* — Wi la*| =0, ie, Wi 'a*e F(JJ). (2. 36)

Now, fori = 1in (2. 36 ), we have
ot = J{x".
Fori = 2in (2. 36 ), we have
z* = J{a* = JPar
Fori = 3in (2. 36 ), we have

* . J91 . . 792 % __ 793 ,.%
z* = J§ =J3 = Jyz".

Thus, fori = 1,2,--- ,min (2. 36 ) we can easily see that
l‘* — ng * ng * J/I\]s * L — Jim—l * Jf\]ml’*.
Thatis,z* € N, F)J{"), which is as desired. O

3. MAIN RESULTS

Assumption 3.1
Throughout this section, we assume that:
() K is a nonempty, closed and convex subset of a real Hilbert sace
(I f: K — H is anp-Lipschitizian mapping;
amy ¢g; : K — R,i = 1,2,--- ,m, is a finite family of a proper convex and lower
semicontinuous function. For a given> 0, we define the Moreau-Yosida resol-
vent ofg; in K by

1
sp = JY (x) = argmingyek | 9:(v) + ﬁHU - x||2},7} =1,2,---,m. (3.37)
Set
Wi(z)=J{ o J) o {200 Jf o J{(2),l=1,2,-- ,m. (3.38)

(v) {T:}», : K — P(K) is a finite family of uniformly L;-Lipschitizian and
asymptotically quasi-nonexpansive multivalued mapping With, ... &k, = 1
andT;,i = 1,2,--- ,m is demiclosed at the origin (that is, for any bounded se-
quencer,, i K such thalim,, . z, = ¢ andlim, . ||z, — T;x,|| = 0, then
Tig=q,i=1,2,--- ,m.

Let H andK be defined as in Assumption 3.1. A mutivalurd mapgihg Kk — CB(K)
is called asymptoticallyp-nonspreading if there exists> 0 such that

H(T"z, T"y)* < B(d(T"x,y)* + d(z, T"y)?),Va,y € K.

Note that a multivalued mappirif is called asymptotically nonspreading-typelit= %;

that is,
2H (T "z, T™y)? < d(T™z,y)* + d(z, T"y)?,Va,y € K.
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Again, every asymptotically nonspreading-type multivalued mapginvgth a nonempty
fixed point set is asymptotically quasi-nonexpansive. Indeeds K andq € F(T), we

have
2H(T"z,T"q)? < d(T"xz,y)* + d(z, T"q)?
< H(T"z,T"q)* + |« — g

Thus, it follows that
H(T"z,T"y) < [lz — q|.
LetK, f, 9, : K — RandT; : K — C(K),i = 1,2,--- ,m, be defined as
in Assumption 3.1 with sequencé$k;, 15,17, € [1,00) such thatim,,_,. kip = 1,

wherez, ; € T;s, with d(Sn,zn,;) = d(sn,T;sy), for eachi = 1,2,--- ,m. Suppose
F = N2, F(T;) NN argmingergi(v) # 0 andTyq = q,Vq € F(T;), for each i =
1,2,--- ,m.Let A: K — H be anL-Lipschitizian andx-strongly monotone mapping
with L, a > 0. Assume that
1 2 L?
0< 1 <K= (1—@),O<n< L—(;,O<'yp<r,whererzn<a—7n)
T

andl — T;, is demiclosed at the origin for ea¢h= 1,2, --- ,m. Let {z,,} be a sequence
generated iteratively by

g € K

sp = W (z);

3.39
Yn = (1 - Zﬁl ﬂn,i)sn + Z:il ﬁn,izn,izn,i € Tisp; ( )

Tn+1 = PK(anPYf(mn) + YnZTn + ((]— - 'Yn)-[ - nanA)yn)a
where{a,, } and{3, } are sequences if, 1] satisfying the following conditions:
. [e's) . kn -1

(i) lim, oo, =0,>° | @, = oo andlim,,
O{’I'L
(i) 0%, Bin = L and 0 < liminf B, (1 — Bin) < limsup Bin(1 — Bin) < 1, for
eachi=1,2,--- ,m;
(i) {A.}issuchthat, > A > 0,¥n > 1 and for some\.
Then, the sequence defined by (3. 39 ) converges strongly ta F, which is also a
unigque solution of the variational inequality problem:

(nAz* —~yf(z*),2* —q) <0,q € F. (3. 40)

= 0, wherek,, = maxgigm{kin};

Proof. First, we show that the solution of the variational inequality defined by (3. 77) is
unique. To do this, we assume for contradiction that there exists two pointg € F
which are solutions of (3. 77 ) angr # y*. Then, we get

(nAz* —yf(2¥),2* —y*) <0 (3. 41)
and

nAy* —~f(y*),y" —2*) <0 (3. 42)
(3.41) and (3. 42) imply that

(nAy* —nAx* +yf(2*) —vf(y),y" —2") <0 (3. 43)
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Also, from the assumptions given, we get

L*n °n
— 0 & - —
9 > o 9 <«
L2n
= 77(04——2)<oz1]
< T<an,

sothatd < py < 7 < am.
In addition, the inequality:

A" —nAx® +f(@") =1 f(y"),y" —2*) = (nAy" —ndz",y" — %)
—(fW*) = &™),y — )
= (nAy" —nAz*,y* —a¥)
=M @*) = FE)lly™ — =]
nallz* —y*|1? = yplla* —y*|?
(o =p)|la* —y*1%,
this contradicts (3. 43 ) and henge = y* which is as desired.
Again, we note that the operat®¥ [y + (ayf + ((1 —v)I — naA)] is a contraction.
Indeed, for any two fixed real numbets~ in (O, min{l, 1}) andVx,y € H, we have,

using Lemma 2.4X — [y + (arf + (1 — NI — nad)z andY = [y + (ayf + (1 —
I —naA)ly, that

| PrX — PxY]|| vz + (avf + (1 = NI —nad)z — (yvy + (ayf + (1 =) — nad)y)|
ay|f(@) = )l + Al =yl + [[(1 =N —nad)(z—y)|
avpllz —yll +vllz —yll + (1 =1 — a7)|l(z —y)|

(1 —a(r —vp))llz -yl

(VAN VAR VAR VAN

Thus, by Banach contraction principle, the mappihgyI + (ayf +((1—~)I —naA))
has a fixed point, say = P [vI + (ayf + ((1 —v)I — naA)]Z; and as such, by (2. 28),
similar in value to the variational inequality problem below:

(nAZ —vf(%),Z —q) <0,g € F.
The remaining proof of Theorem 3.1 will be presented in two stages:

Stage 1: We prove that the sequeres,} and{y,} are bounded. Leg € F. Then,
Tiq = {q} andg(q) < g(u), forallu € K. Hence,J{' ¢ = g foralln > 1, whereJ{' is
the Moreau-Josida resolvent @fn K.

By Lemma 2.9, for each = 1,2,--- ,m, J{' is nonexpansive; thereforé/}" is also
nonexpansive. Hence,

80 = gll = WX (2n) = W (@] < ll2n — g|- (3. 44)
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Also, from (3. 39 ), we have

by =gl = 1= Bui)sn+ > Bui)zni —dl
=1 i=1

m m

< (1= Bai)lsn —all + Y Buillzni —al
=1 =1

< (1= Buillsn —dll+ > BuiH(T] 50, T}"q)
=1 i=1

< (1= Builllsn —all + > Buiknllsn — g

i=1 i=1

= [+ Builkn — Dlllsn — 4l (3. 45)

i=1

By condition (i), there exists a constanwith 0 < e <1 —dandd_ ", B,.i(k, — 1) <
eay, foreachi = 1,2,--- ,m. Again, from (3. 39), (3. 44), (3. 45) and Lemma 2.4, we

get

[#nt1 —all =

IN

IAN A

IN

IN

IN

<

| Prc (v f (w0) + ynzn + (1 = )L — nanA)yn) — Pl
lonyf(zn) + Ynzn + (1 =) —nanA)yn) — ql|

llon (v (2n) = nAG) + (@ — q) + (1 = )] — nanA)(yn — q)
anllvf(zn) — nAgll + ynllzn — gl + (1 — ) ! — an7)|lyn — 4l
oY [|f(@n) = F(@I + anllvf(a) — nAg|l + vallzn — 4]

(1 =) = an7)llyn — 4

anypllzn — qll + anllvf (@) — nAgll + mllzn — qll

m

+((1 - Vn)l - anT)[l + Zﬁn,i(kn - 1)]||5n - qH

anypllen — gl + anllvf (@) = nAgll + (1 = an + D Bui(kn — 1))l|zn — gl
=1
[1— (7 — e —p)an]llan — qll + anlvf(q) — nAq|
—nA
q||,”7f(‘J) 1 qH}

max{”mn— F——

By induction, it is easy to see that

o = all < maz{ o —

I [Ivf(q) —nAq| }n > 1
T—€—7p

Hence{x,} is bounded, and so are the sequeriages {f(x,)} and{ Az, }.

Stage 2: We prove that the sequeReg } converges strongly to*.
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From (3. 39 ) and Lemma 2.2 (ii), we obtain

yn — a|?

IN

IN

IA

|| (1 - Z ﬁnﬂ)sn

m

m
I_Zﬁnz ||5n_q||2+2ﬂn z”znz Q||2 Zﬁnl _Zﬁn,i)nsn_zn,i”Q
i=1
1 _Zﬁnz |Sn q||2+2ﬁnz S'ruTn _Zﬁn,i(l_Zﬁn,i)||5n_zn,i”2
i=1 i=1
(- Zﬁn,nnsn i +Zﬁn,iki||sn —al = 3 1= 3 Bl = 2l

+Zﬂnz _1 Hsn_QHQ Zﬂnz I_Zﬂnz ||Sn an” (3. 46)

Sett, = apvf(@n) + mxn + (1 — yn)I — nan A)y,. Then, from (3. 39), (3. 44)
(3. 46 ) Lemma 2.2(i) and Lemma 2.4, we get

[ Zns1 — Q||2

IN

IA

IN

IN

IN

||an7f(xn) + Yn%n + ((1 - Vn)l - nanA)yn) - (I||2

o (7f (@n) — nAG) + V(20 — q) + (1 = )T — nanA) (yn — @) |17

(1 = vu)T = 1o A) (Yn — @) + (@0 — QNI* + 200 (v f (xn) — nAg, tn — q)
(1 = )T = nom A) (yn — QN> + villzn — ql?

+29n (1 = )L = nanA)(Yn — @), Tn — @) + 200 (v f(20) — nAg, tn — q)
(L= v = anT)?(lyn — all® + 72llzn — ql?

+29n (1 = ) ! — an7)yn — qllllzn — qll + 200 (v f(20) — nAg, tn — @)
(L= v = an7)?(lyn — all® + 72llzn — ql?

+n (1= )T — ) [[lyn — all* + [l2n — alI?] + 200 (v f (@) — nAG, tn — @)
((1 - 'Yn)I - anT)((l - 'Vn)I — QT + 'Vn)Hyn - C1”2

9 + (1 =) — 7|20 — ql|* + 200 (v f(zn) — nAg, tn — q)
(=9I = anD){[1+ Y Builki = D]llsn — ql?

i=1

=Y Bui(l =Y Builllsn = znill*} + mllzn = all? + 200 (v f(2n) — nAg, t — q)

i=1 =1

(1= ap7)[|zn — ‘Z||2 + (1= v)I — anT) Z/Bn,Z(erL = fzn — ‘J||2
i=1

(L= 7)T = anm) D Bui(L =D Bui)llsn — 2nill> + 20 (v f (@n) — nAg, tn — q)
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PutD,, = (1=yn) I —anT) Yoty Bri(l=>"1%, Bn.i)ll$n—2n.:||. Since the sequence
{z,} is bounded, there exists a positive constahsuch that the last inequality becomes:

m

Dy < ww = ql” = Jent = qll? + (1= vu)I — anT) Zﬂn,i(ki -1)M
i=1

20, (7 f(zn) — nAg, tn — q) (3. 47)

Now, to show tha{z,, } is convergent, we consider the following two cases:
Case A : Assume that the sequerdl:,, — ¢||} is monotonically decreasing sequence.
Then{||z» — ¢||} is convergent. Indeed, we have

Tim [ = gll = |20t — gl = 0] (3. 48)
Thus, by (3. 47), condition [(i) and (ii)] and the fact that,, ... k, = 1, we have

lim D, = lim ((1 —yn)] — a,7) Zﬁn,i(l — Zﬁm)Hsn — znz||2 =0 (3.49)
i=1 i=1

Since,8,, € [a,b] C (0,1), foreachi =1,2,--- ,m, we get
lim ||sp — 24l =0 (3. 50)

Applying H-continuity (see [50]), we have
lim ||s, — T/'sn|| =0 (3.51)

Also, using (3. 39), we get
||xn+1 - yn” < ||O‘n’7f(xn) + YnTn + ((1 - 'Yn)I - nanA)yn - ynH
< anllvf(@n) — nanAll + vallzn — ynll- (3.52)
(3. 52) and condition (i) imply that

T (741 = yall = lon = yall) = 0. (3. 53)
It follows from (3. 53 ) that
lim |41 — 2n] =0. (3. 54)
Again, from the nonexpansivity of{*,i = 1,2,---,m, (3. 39) and Lemma 2.9, we

get, for anyg € F, that
WXy — Wil

||J§m ° Jimrfl ° J§77L72 0---0 sz ° Jfll‘n
_Jim ° J/!\]m—l o Ji}m—2 .. 0 Ji\iz o ngq”Q
||J§m—1 ° me—z o Ji]m—S 0---0 J§2 o ngxn
Im—1 Im—2 gm—3 g2 g1 |12
=" o XM o 30 IR o JY
_||J§\]m o Ji\]m—l o Ji\]m—z 0---0 Jilz o Jilmn
9m—1 9m—2 9m—3 g2 g1 2
=T o XM o X0 P 0 I ]|

= W = Wl = (W — W

IA

so that
lsn = Wz ||? = W e = W ||® < flan —ql* = [lsn —ql> (3. 55)
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Furthermore, from (3. 39), (3. 44),(3. 46 ) and (3. 55 ), we obtain

a1 —al> < Ny f @) mEn + (1= vu) T — nanA)y,) — ql|?
||O‘n(7f(xn) - UAQ) - 'Yn(q - xn) + ((1 - 7’”)[ - nanA)(yn - Q)||2
< A = 3)I = e A)(yn — @) — (g — z0)||* + 200 (v (20) — NAG, Tpi1 — @)
< A = ) = o A) (Yn — OI° +valla — znll* + 2007 (f(20) = f(@), Znt1 — q)
+20,(7f(q) = 1NAG, Tnt1 — q)
< (=) = an)?yn — alI* + 22l — znll* + 2007 f (@n) = F(@)]|Zns1 — gl
+2a,||7f(q) — nAqll||zn1 — 4l
< (L= —an7)’[1+ ) Builk2 = D]llsn — all* +72llq — zal?
=1
+2anyplzn — qllllznr1 — qll + 2007 f (@) — nAg|[|[2n1 — 4l
m
= ((1 - ’Vn)l - O‘n7')2||3n - q”2 + ((1 - ’771)1 - a7LT)2 Zﬁn,z(ki - 1)||3n - qH2
=1
+72llg = znll® + 20nvpl|l2n — qlllZnt1 — all + 2017 f (@) — nAgl||zn+1 — gl
< (=) = an)?[lzn — all> = llsn = W 2|17
H( =) = anm)® D Builky = Dlan — al* + 72llq — 2nll?
=1
+2anypllzn — allllznr1 — qll + 2007 f (@) — nAg|[|[2n1 — 4l
= [1 =27 +72 4+ 272 = 2(1 — ) anT]||zn — q|?
_((1 - 'Vn)I - O‘nT)QHSn - W;\n_lanQ
HA =) = am)? Y Bri(ks = Dz — all* + 32 llg — znll?
=1
+2anpl|zn — qlll|lTnr1 — qll + 2007 f (@) — nAg|[|[2n1 — 4l
= [14+29 (v —1) + 272 = 2(1 —vp)anT + (1 = ) — anT)eay]||z, — q|?
—((1 = 7)) = ) [[sn = W n|? + 20020 — qlll2ns1 — |
+2an||7f(q) — nAq|l||zns1 — 4l
< 1+ OéiTQ + (1 =) — ap7)ean]||z, — q||2

—((1 =) — anT)QHSn - W;lilanQ + 20 vpl| 20 — gl |01 — 4]
+2a0, |7 f(q) — nAgll[|[znt1 — 4| (3. 56)

(3. 56) implies that

(1= y)I = anT)?||8n = W 2,2 < o — g [P+ [0272 + (1= )] — anT)ean]||z, — g
+2an7pl| 20 — ¢l |Tn+1 — 4]
+2an |7 f(q) = nAg|l[|zni1 — 4l
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The last inequality and condition (i) yields
lim s, — W 2, = 0. (3.57)

n—oo

Similarly, using the same approach as above, it can easily be seen that

lim W]z, — W e | =0,i=1,2,-- ,m— 1. (3. 58)
n—oo
From (3. 57 ) and (3. 58 ), we obtain
[sn —xull = W%y — 20
< W = W a4+ W = W] 4 Wiz — Wiz
HWizn — 2nl| = 0 (n — o0). (3. 59)
Since

Znt1 = snll < l[Tnt1 — zull + |70 — sall,

it follows from (3. 54 ) and (3. 59 ) that

nILH;O |€nt1 — Snll = 0. (3. 60)
Lettinguy, ; € T*sy,, foreachi=1,2,---,m,we have
tn,i — znill < H(T 80, T sn) < Li||sn, — sn]| — 0 as n — . (3. 61)
Using (3. 50 ) and (3. 61), we obtain
Isn — tnill < lI8n = 2Znill + |2ni — Uni|| = 0 as n — oo. (3. 62)
Sinceu,,; C T)*sy, foreachi=1,2,---,m,itfollows thatTu, ; C Ti"Hsn- Also, let

Tni1,i € TPy ; SO thatr, 11, € T" s, SinceT; is uniformly Lipschitizian, for each
1=1,2,--- ,m,we get

< HrnJrl,i - un+1’i|| + HunJrl,i — Spy1]l + Hsn+1 — sp| + Hsn - UnZ”
(3. 63)

[7n41i — nil

Since from (3. 54 ) and (3. 59)
[sn41 = snll < [lsns1 = Znpall + [[ong1 — 2nll + 20 — snll = 0asn — oo, (3. 64)
it follows from (3. 62 ) that
tn,i — Snt1ll < lun,i — Snll + ISn — Snt1]] — 0 as n — . (3. 65)

Letting z,; € T;sy, for eachi = 1,2,---,m, we obtain, using (3. 46), (3. 62) and
(3. 63), that

| 2n,i5 nl 20, = rsrill + I7nr1, = wnll + [[wni — sall
H(Tinsnaﬂn+15n) + o1, — gl + [Jun: — snll

Lil|sn — T snll + Hrn+1,i - Unz” + ||Un,i — 5p|| — 0 as n —(3066)

VAN VANVAN

Now, we show thatim sup,,_, . (nAz* — ~vf(z*),2* — x,) < 0. By the nature off,
and from the boundedness of the sequeinggl 2, we can find a subsequenge,,; 152,

n=01

of {z,, } that converges weakly to a poiate K. With this fact, it is not hard to see that
limsup(ndz* —vf(z%),2" — zn) = limsup(nAz™ — v f(2"), 2" —2,;). (3. 67)

n—o00 j—o00
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Using (3. 59), (3. 66) and the fact that— T; is demiclosed at the origin for ea¢h=
1,2,---,m, we havew € N, F(T;). Also, smceWA is single-valued and nonexpan-
sive, using (3. 59 ), Proposition 2.11 and using Proposition 2.10, we getr’(W{") =
argming,crkg;(v). Consequentlyy € F. Hence, using (3. 67 ) , we get

limsup(nAx™ —yf(x*), 2" —xz,) < (nAz* —~vf(z*), 2" —w)
< 0. (3. 68)

Lastly, we prove that,, — z*(n — oo). From (3. 39), (3. 46) and Lemma 2.5, we
have

[2n1 =22 < oy f(@n)man + (1 =) = nanA)y,) — 2|
= [lan(yf(zn) = nAz*) =y (@* = 2n) + (1 =) = nond)(y, — )|
< A =) = 1o A)(Yn — %) — Yu(z* — xn)HQ
20, (vf(xn) — NAT™, Xpi1 — )
< (A =) = nanA)(yn — a™)|? + 72 lla* — 24
(

+2O‘n7< xn) ( )7xn+1 - :L'*> + 2an<’7f($*) - 77A$*7$n+1 - $*>

< (=) = anT)?|lyn — 2*|* + 7 lJa* — 2|
+H2any| f(an) - f(z *)Illlxn+1 — [ 4 2an (v f(2") — nAT", 2pq1 — 27)
< (L)l - 1+Zﬁm = Dlllsn = 2" |2 + 22" — 2
+an (|| f(@n) — f(2* )II2 + | eng1 — 22 + 200 (v f (%) — nAz*, 20 g0 — o)
= [1 =27 +792 =21 — yp)ant + o272 zn — 22
(1= 7o) = an7)? Y Bai(k2 = D)l — 2|2 + 42 l|2* — |2
=1
Fany[[[f(@n) = FE@? + |2n1 — &)%) + 200 (v f(2*) — nAz*, 2 g1 — 2)
= [1470m —2) = 2(1 = w)ant]l|lzn — z*|?
Hozr? + (1= y)] — an7)? Y Bra(k2 = DIM + anypllzn — 2 + anyllons — 27|
=1
+20(n<’}/f(.13*) - 77A33*a xn-‘rl - $*>
< [1 - (2(1 - ’771)7— - 'Vp)an]Hxn - x*H2 + [a7217—2 + ((1 - ’Vn) - Och Zﬂn z - 1)}M

=1
+anyl|Tny1 — x*H2 + 20 (v f(2¥) = nAx*, 21 — 27)



A Modified Proximinal Point Algorithms for Finite Families fo Minimization Problems and Fixed

513

The last inequality implies that

(1= ang)lnss =22 < [1 = (1 =77 — yp)an]lln — 2°
+a {[oz ?+((1=y) -« T)Ziﬂ m]M
n n rY’rL n — n,t «

n

F2(1f(2%) = A", s — 27) }.

201 — )T — v — n N
*”2 < |:1_ ( ( Wl)ia’yfy '7p)04 :|H-Tn_1' ”2
2 ax~py (k1)
{[anT + (1 =) — an7) ;Zl Bn.i - |M

_i_L
1—any n

+2<"}/f(113*) - WAx*,an - .T*>},

whereM = sup,,> [|@, — z*|]*.

Put
o~ 2 =m)T =y = yp)an
n 1— any )
. Qnp 2 2 ¢ (k?L 7 1)
Tn = m{[ayﬂ' + ((1 *’Yn)I* an,T) ;@an]M
+F2(yf(x*) = nAz*, 2y 10 — x*)}
and
7—”
w, = —
On

- 20 = yu)T =y —p {[a”T + (1 =)l —anT) ;ﬁn,i

(k%ai 1) ]M

n

+2(7f(2%) = A", zppr — ") }.

Then, from condition (i) and (3. 68 ), we get

oo
o, —0 as n—>oo,20n:oo and limsupw, < 0.

n— oo
n=1

Thus, using Lemma 2.3, the result follows as required @2+~ z* asn — ).

Case B:

Suppos€ ||z, — z*||} is monotonically increasing sequence. 8gt= ||z, — 2*|| and the
mappingr : N — N, for all n > nq (for somen, large enough), by,, = maz{k € N :

k < n,Gr < Ggy1}. Thent is a nondecreasing sequence such that> co asn — oo
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andG,,) < G, 41 forn > ng. From (3. 47), we have

D, < g, — @I = 21— 2* P + (1=, )1 Zﬁw 2 -1

+2an, (vf(2r,) —nAz* t,, —2%) — 0(n — o),
whereD,., = (1=, )] —ar, 7) >t B i(L=30 1 B i)|ISr, — 21, )%+ In addition,
we have
lim ||s,, — sziHQ =0
Therefore,
lim d(sr,,, T} s, (ny) = 0. (3. 69)

n—oo

Using similar approach as in Case A above, it is easy to see that

limsup (nAz* —vf(2*), 2" — 27(n)41) < 0.

7(n)—oo

Hence, for alln > ng, we have

0% Loy =2 = for) =P < gy - ST g e
- _“;:)n) {[amﬁ (1= )T = )’
x ZﬁT (n),i T(n( 1)]M+ 20vf(2*) — nAx*, zpi1 — x*>},
which follows that
[2rm) — 2*|I° < 2(1 — %)i — 7 ,yp{[ar(n)TQ + (1 =y — ary7)?

-1
x Zm el A S )}

Qr(n)

Consequently, we get

lim ||m7(n) - .Z‘*H =0.
and
lim G = hm Griny+1 = 0. (3.70)

n—o0

Thus, by Lemma 2.7, we conclude that
0 < Griny < max{Gr(n), Grnys1} = Grin)41. (3. 71)
Hencelim, .., G,, = 0; thatis,{z,,} converges strongly to*. The proof is complete.

O

It is worth to mention at this point that if; : K — C(K),i = 1,2,---,m,is a
finite family of asymptotically nonspreading-type multivalued mapping, then the following
theorem is a direct consequence of Theorem 3.1.
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Let K, fandg, : K — R,i = 1,2,--- ,m, be defined as in Assumption 3.1 and
T,: K — C(K),i =1,2,--- ,m, afinite family of L;-Lipschitizian and asymptotically
nonspreading-type multivalued mappings with sequeréés, }>>,}", € [1,00) such
thatlim, .o ki, = 1, Wherez,,; € T;s,, with d(s,, zn:) = d(sn, T;sn), for eachi =
1,2, ,m. SUpposeF = N, F(T;) N N7 argminyexgi(v) # 0 andT;q = q,Vq €
F(T;), foreachi=1,2,--- ,m.LetA: K — H be anL-Lipschitizian anch-strongly
monotone mapping witl,, o > 0. Assume that

1 2ce L?n
0< v <K= (1—%;/))) 0<n< L270<7p<7where7_n Q_T)
T
andI — T;, is demiclosed at the origin for ea¢h=1,2,--- ,m. Let {z,,} be a sequence

generated iteratively by

Xo € I(7

= Wi (z);
Yn = (1 - Zznlﬁnz)sn +Ez 1ﬁnzznzaznz € T;sn;
Tn+1 = PK(O['rﬂ/f(l'n) + YnTn + ((1 - ’Yn)I nanA)yn)a

(3.72)

where{a,, } and{5, } are sequences if, 1] satisfying the following conditions:
kn, —1

@) lim, e an =0, ZTOLO 1 0 = oo andlim,, .«

Qn
(”) En 16ln =1land0 < hmlnfﬂm( ﬂin) < limSUPﬂm(l - ﬂin) < 17 for
eachi=1,2,--- ,m;

@iy {A\.}is such that\ > A > 0,Yn > 1 and for some\.

Then, the sequence defined by (3. 76 ) converges strongly ta F, which is also a
unique solution of the variational inequality problem:

= 0, wherek,, = mazi<i<m{kin};

(nAz* —~f(z*),2* —q) <0,q € F. (3.73)

Proof. Since every asymptotically nonspreading-type mapping with nonempty fixed point
set is asymptotically quasinonexpansive multivalued mapping, the proof of Theorem 3.2
immediately follows from Lemma 2.1 and Theorem 3.1. O

Again, if {T;}, is asymptotically quasi-nonexpansive single-valued mapping4nd
is a strongly positive bounded linear operator, then the following theorem can be ob-
tained from Theorem 3.1. Lek, fandg; : K — R,i = 1,2,--- ,;m, be defined
as in Assumption 3.1 and; : K — K,i = 1,2,--- ,m, a finite family of asymp-
totically quasi-nonexpansive single-valued mappings with sequef{des}>> 1, €
[1,00) such thatim,,_.. ki, = 1 for eachi = 1,2,--- ,m. SupposeF = N, F(T;) N
N argmingexgi(v) # 0 andT,q = q,Vq € F( i), foreachi =1,2,--- m. Let
A : K — H be anL-Lipschitizian andx-strongly monotone mapping Wltﬁ,a > 0.

Assume that )
1 2a L*n
0< < k= (1—W)70<ﬁ< L270<’7p<7' whereT_n(a—T)

-
andI — T;, is demiclosed at the origin for ea¢h=1,2,--- ,m. Let {z,,} be a sequence
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generated iteratively by
xo € K;
sn = Wi'(z);
Yn = (1 - E:il ﬁn,z)sn + 2111 ﬂn,iTinsn;
Tn41 = PK(O[nrYf(xn) + YnTn + ((1 - ’Y’n)I - nanA)yn);

where{a,, } and{5, } are sequences if, 1] satisfying the following conditions:
ky —

(3. 74)

. 50 . 1
(i) lim, oo @ =0,>," 1 @, = oo andlim,, . = 0, wherek,, = mazi<i<m{kin};

Oy,
(i) 0%, Bin = Land 0 < liminf B, (1 — Bin) < limsup Bin(1 — Bin) < 1, for
eachi =1,2,--- ,m;
(i) {An}issuchthat, > A > 0,¥n > 1 and for some\.
Then, the sequence defined by (3. 74 ) converges strongly to 7, which satisfies the
optimality condition of the minimization problem

minzeHg<Ax,m> — h(z), (3. 75)

whereh is a potential function for f (i.e.,h'(z) = vf(z)on H. LetK, fandg; : K —
R,i=1,2,--- ;m, be defined as in Assumption 3.1. lBt: K — K,i=1,2,--- ,m,
a finite family of asymptotically nonspreading-type single-valued mappings with sequences

{kin}521}™, € [1,00) such thalim,,_, ki, = 1 for eachi = 1,2,--- ,m. Suppose
F =N, F(T) NN argmingergi(v) # 0 andT;q = ¢,Yq € F(T;), for eachi =
1,2,---,m. Let A : K — H be anL-Lipschitizian andn-strongly monotone mapping
with L, a > 0. Assume that
1 2 L?
0<y <k= (1—#),0<n< L—(;,0<7,0<7',Where7':n(a—7n)
T

and! — T;, is demiclosed at the origin for ea¢h=1,2,--- ,m. Let {x,,} be a sequence
generated iteratively by

xg € K;

sn = Wi(z);

3.76
Yn = (1 - Z:il 57171)371 + Z:Zl Bn,iTq;nsn; ( )

Tny1 = PK(an’yf(xn) + TnTn + ((1 - 77L)I - nanA)yn);
where{a,,} and{(, } are sequences if, 1] satisfying the following conditions:

n —

. 50 . 1
(i) lim, oo =0,>° | @, = oo andlim,, = 0, wherek,, = mazi1<i<m{kin};

Q,
(i) 3°°, Bin = 1 and 0 < liminf Bin(1 — Bin) < limsup Bin(1 — Bin) < 1, for
eachi =1,2,--- ,m;
(i) {A.}issuchthat, > A > 0,¥n > 1 and for some\.
Then, the sequence defined by (3. 76 ) converges strongly ta F, which is also a
unigque solution of the variational inequality problem:

(nAz* —yf(z*),2* —¢q) <0,q € F. (3.77)
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4. NUMERICAL EXAMPLE

In this section, we give a numerical example to show that our proposed algorithm can
be implementable.
Let H = R be endowed with the uasual metric alid= [0, 1]. Then,

0, if z <O
Pg(x) =Rz, if v € K;
1, ifx>1
is a metric projection onté. For,i = 1,2, --- ,m, defineT; : R* — P(H) by
1 1
Tix = [ ?x, 5’“4 Vo € R,
Then, for each = 1,2,--- ,m, T; is an asymptotically quasinonexpansive multivalued
mapping withF’(T') = 0. Indeed, for eachh = 1,2, --- ,m and for allz € RT, we have
. 1 1
H(T!z,0) = mazi<i<m? |z=2|, | ==z|
3l7l 57,77,
1
- |3mx|
1
< 1+ — —0].
< (1+5)l-0
Thus,T; is an asymptotically quasinonexpansive multivalued mapping foreach 2, - - - , m.
Again, we check thaf; is uniformly Lipschitizian for each = 1,2, --- ,m. Indeed, for
eachi = 1,2,--- ,m. and for eachr, y € RT, we get
1 1 1 1
@0 = mansen{| = foot ol - gt gl
S
= n T —
31?7, y
< ole—y
< 3 Yy
. . 1 . o
Hence T; is uniformly g-L|psch|t|Z|an foreach =1,2,--- ;m.
Now, defineg; : R — (—o0, oo] by
1
9i(x) = 3|Di(2) — &if?,
whereD;(z) = 3iz andd; = 0, = 1,2,--- ,m. SinceD; is continuous and linear for
eachi = 1,2,--- ;m, then we get thay; is proper, convex and lower semicontinuous
function. Let\, =1 foralln > 1,thenforeach =1,2,--- ,m,

J{(x) = Proxg;(x)

. 1
= argmingex |g:(v) + §||v — :UH2

(I + DI'Dy)~Y(x + DFd,). (4. 78)
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1 in—1 1
Furthermore, for each= 1,2, takea,, = ———,0ni = ——, 7 = —, =
) ) 3 la 2n+1 fn, tin 7 n? /(@)
QTN == pa= LA = ntl ,L = 2 so that all the conditions desired for the

validity of Theorem 3.1 is satisfieT(Lj. Hence, for € R, after applying our algorithm,
(3. 39) becomes

r1 € K;

sn =W (z) = J/O (7 (2);

n—1 2n-1 n—1 2n—1
Yn = |1 — 1 + — Sn+Tzn,1+72n,2;
nl 8n n 8n (4.79)

Zn,i S Ty |3

Jin Zn, 5in

Crel (N (Y (e s e (1A
Tt =R o1 ) \a )\ 2" ) Tzt n2 1220+ 1))V

It follows from (4. 78 ) and (4. 79 ) that far= 1, 2, we have

r € K;

sp =1+ D{Dl)_l(l‘n + D?dl)[(l + Dng)_l(l‘n + ng?)]?

dn — 3 +n—1 +2n—1
8n Sn 4n #n.1

yn = 1 Z’I’L,Q;

. 8n (4. 80)

Zni € %xna ﬁln , fori=1,2;

n? +8(2n+1) 1 1
n :P o 976, 1y 4n 1_7 1_7 n ni»
Has K{ gn2en 1) T (( n2> 122n+1)" )y }

The table below shows the numerical experiment of algorithm (3. 329nclusion

In this paper, a modified proximinal point algorithm to approximate a common element
of the set of solutin of fixed point problem for finite families of asymptotically quasi-
nonexpansive multivalued mapping and minimization problem of (1. 18) is introduced
and studied. Under mild conditions on the iteration parameters, strong convergence results
were obtained using the algorithm so introduced and hence provides an affirmative answer
to Question 1.1 raised in the paper. Since asymptotically quasi-nonexpansive multivalued
mapping is much more general than asymptotically nonexpansive multivalued mapping ,
asymptotically nonspreading-type multivalued mapping, quasi-nonexpansive multivalued
mapping, nonexpansive multivalued mapping, nonspreading-type multivalued mapping,
the problem studied in our paper is quite general and includes in it problems in optimisation,
varirtional inequality and fixed point as its special cases. Again, since (1. 23 ) generalizes
(1. 21), (1. 20) and many other iteration schemes in this direction; (1. 24) is the same
as (1. 21), which in turn generalizes (1. 20 ) sificés a multivalued quasi-nonexpansive
mapping; (1. 25) generalizes (1. 19), (1. 11) and (1. 9) and (1. 27 ) generalizes (1. 9),
it follows that Theorem 3.2 in our paper improves, extends and generalizes the results ob-
tained in[14, 39, 40, 41, 43, 46, 47] and many more others currently existing in literature.
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TABLE 1. Convergence of our new iterative algorithm.

0.00000000

IV /Step 0.4 0.6 0.8 0.11
0.13

1 0.40000000 0.60000000 0.80000000 0.11000000
0.13000000

2 0.05037507 0.11462787 0.20203119 0.00345377
0.00485356

3 0.00071686 0.00375542 0.01206665 0.00000337
0.00000665

4 0.00000014 0.00000398 0.00004108 red!1000.00000000

red!1000.00000000

5 red!1000.00000000 red!1000.00000000 red!1000.00000000 0.00000000
0.00000000

6 0.00000000 0.00000000 0.00000000 0.00000000
0.00000000

7 0.00000000 0.00000000 0.00000000 0.00000000
0.00000000

8 0.00000000 0.00000000 0.00000000 0.00000000




