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Abstract. This article defines an independence system for a classical knot
diagram and proves that the independence system is a knot invariant for
alternating knots. We also discuss the exchange property for minimal un-
knotting sets. Finally, we show knot diagrams where the independence
system is a matroid, and there are knot diagrams where it is not.
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1. INTRODUCTION

When we draw a knot diagram, we can define a  U -independence s ystem associated 
with it. The U-independence system can help to find new invariants for alternating knots. 
A more motivating factor for the U-independence system is its usefulness in examin-
ing the relationships between knots and combinatorial objects like matroids. When a U-
independence system for a knot diagram is a matroid, we can say that all maximal U-
independent sets have the same cardinality. As a result, all minimal unknotting sets have 
the same minimal cardinality. In other words, we need only find a minimal unknotting set 
to determine the unknotting number of a knot diagram. This concept makes the algorithmic 
methods of finding the unknotting number of a knot much simpler and quicker.

This paper delves further into the definition of the U-independent set and U-independence 
system in Section 2. In Section 3, we provide examples of independence systems and ma-
troids, and discuss the exchange property for minimal unknotting sets. Next, in Section 4, 
we discuss the properties of a U-independence system and provide proof of the existence 

of isomorphisms between two U-independence systems of reduced alternating diagrams
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of a knot. Section 4 will also highlight how invariants of the U-independence system can
be used as invariants of knots. Finally, we conclude this paper with proof of the various
relationships between a U-independence system of a knot diagram and matroids in differ-
ent families. We further intend to extend our research to other available research areas,
including bridge numbers and algebraic unknotting numbers.

2. DEFINITIONS AND EXAMPLES OF BASIC NOTATIONS

To define what a U-independent set is, we begin with an understanding of unknotting
numbers and unknotting sets.

The unknotting number u(D) of a knot diagram D is the minimum number of crossing
switches required to untangle that particular knot diagram. In contrast, the unknotting
number u(K) of a knot K is the minimum number of the crossings needed to switch to the
unknot that ranges over all possible diagrams of the knot K.

An unknotting set for a knot diagram comprises all crossings that, when switched, trans-
form the diagram into the unknot. We define the minimal unknotting set as having no proper
unknotting subsets.

Definition 2.1. Minimal unknotting sets for a knot diagram have the exchange property in
whenever S and R are two minimal unknotting sets and r ∈ R then there exists s ∈ S so
that S − {s} ∪ {r} is a minimal unknotting set.

In simpler terms, the exchange property is true if we can remove any element from a
minimal unknotting set S and replace it with another element from some other minimal
unknotting set R so that the resulting set is also a minimal unknotting set. The exchange
property raises certain advantages: if the exchange property holds for two sets, then every
minimal unknotting set for that diagram has the same size. Then, the algorithmic meth-
ods to find the minimum size of an unknotting set are easier. For example, the exchange
property for the diagram of the figure-eight knot (Fig. 1(a)) holds because all the minimal
unknotting sets are of cardinality one . However, to show that the exchange property does
not hold, we need to show two minimal unknotting sets with different cardinalities exist.
For example, the three twist knot (Fig. 1(b)) has the following minimal unknotting sets:

{v4}, {v5}, {v1, v2}, {v1, v3} and {v2, v3}.

Since the minimal unknotting sets do not have the same cardinality, the exchange property
does not hold. There are cases, however, in which the exchange property still does not
hold for minimal unknotting sets with the same cardinality (see subsection 3.3 for further
explanation).

A property defined in a finite set, which is also a property of its subsets, is called a
hereditary property[15]. An independence family I on a finite ground set E is a non-empty
collection of sets X ⊂ E, satisfying the hereditary property. An independence system
(E, I) for the set E consists of an independence family I with subsets of E. The maximal
independent sets are called bases of (E, I). An independence system is called a matroid if
all of its bases have the exchange property (see [15, Definition 8.2.18]).

With these terms in mind, we can formulate our key definition.
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Definition 2.2. A U-independent set is a set W of crossings in a given knot diagram such
that W \ S is not an unknotting set for every non-empty set S ⊆ W . In other words, a
U-independent set is the set of crossings that does not contain an unknotting set.

The definition of a U-independent set leads to the U-independence system (E, I) for a
knot diagram D, where E is the set of all crossings of D, and I is the independence family
consisting of the U-independent sets for D. In other words, the independence system (E, I)
is the set of all subsets of E that do not contain a proper unknotting set.

We say that a U-independent set is maximal if it is not contained in any other U-
independent set. By the definition of U-independence, every minimal unknotting set is
a maximal U-independent set. While this statement is true, its converse (every maximal
U-independent set is a minimal unknotting set) may not always be true.

Definition 2.3. A reduced knot diagram is a knot diagram where no crossing can be re-
moved just by twisting it.

Definition 2.4. A minimal knot diagram is a knot diagram which needs the minimum cross-
ings to draw the knot.

A minimal knot diagram in a Rolfsen table [13] is denoted by mt, where m is the num-
ber of crossings in the diagram and t is the number of different knot diagrams with m
crossings. An alternating knot is a knot that has a knot diagram in which crossings alter-
nate under and over each other. For alternating knots, the notions of minimal and reduced
diagrams coincide. Consequently, all the reduced alternating diagrams of a knot have the
same number of crossings [6]. The U-independence system for a reduced alternating dia-
gram of a knot is declared as a knot invariant by the following theorem (see Section 4.2 for
its proof):

Theorem 2.5. Let (E1, I1) and (E2, I2) be the U-independence systems of reduced al-
ternating diagrams D1 and D2 of a knot K respectively. There exists an isomorphism φ
between (E1, I1) and (E2, I2).

Knots given by c1, c2, . . . , cj in Conway notation are denoted by (c1, c2, . . . cj), see [1,
5]. The following proposition describes whether the U-independence systems of families
(2n+ 1, 1, 2n), (2n+ 1), (2n, 2) of knot diagrams are matroids or not.

Proposition 2.6. The U-independence system of each knot diagram:
a) is not a matroid in the family (2n+ 1, 1, 2n) for n ≥ 2 (Fig.7);
b) is a matroid in the family (2n+ 1) for n ≥ 1 (Fig. 8); and
c) is not a matroid in the family (2n, 2) for n ≥ 2 (Fig.9).

We define the U-independence system for a knot diagram to examine the interplay be-
tween knots and combinatorial objects like a matroid. Another motivation is to find new
invariants for alternating knots. There is a considerable advantage when a U-independence
system for a knot diagram is a matroid. All maximal U-independent sets have the same car-
dinality if it is a matroid. As a result, all minimal unknotting sets have the same minimal
cardinality. In other words, one needs only to find a minimal unknotting set to determine
the knot diagram’s unknotting number.
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2.7. Independence System. An independence system (E, I) is also called abstract sim-
plicial complex and a hereditary system[15]. The set X is called an independent set if
X ⊂ I and called a dependent set otherwise. The empty set ϕ is independent and, the set
E is dependent by definition. Based on the definition of independence in different contexts,
there are a variety of independence systems. For example, in linear algebra, the indepen-
dence is the usual linear independence[16]. Similarly, for a simple undirected graph the
property is edge-independent, i.e., a set of edges is independent if its induced graph is
acyclic[15]. The reader can see [4, 17] for other graph invariants. The independent sets of
each independence system (E, I) form different partitions of the ground set E. The parti-
tion of E into the smallest number of independent sets is called a minimum partition. The
number of independent sets in a minimum partition of E is called the I-chromatic number
denoted by χ(E, I) of (E, I) (see [18] for details).

2.8. Matroid. A matroid is a generalization of the linear independence in linear algebra.
The formal definition of a matroid is given here which will be used later in our discussion.

Definition 2.9 ([15]). The independence system (E, I) consisting of a family I with subsets
of a finite set E is a matroid if it satisfies the exchange property, as previously defined. To
reiterate, the exchange property states that for any two maximal independent sets M1 and
M2 and for every x ∈ M1, there exists a y ∈ M2 such that (M1 \ {x}) ∪ {y} is also a
maximal independent set.

The independence systems described in Subsection 3.1 form matroids. The first inde-
pendence system of linearly independent sets in a vector space is the linear matroid. The
second whose independent sets are acyclic sets of edges for a simple undirected graph, is
known as the graphic matroid[12]. A set of vertices in a simple graph is called a vertex
independent set if no two vertices in the set are adjacent to each other. In general, the vertex
independence system of a simple graph is not a matroid.

2.10. The Exchange Property for Minimal Unknotting Sets. If the exchange property
holds for all maximal independent sets (bases) of an independence system, then those bases
have the same cardinality[15]. Since minimal unknotting sets are maximal U-independent
sets for a knot diagram and if the converse is also true, the following remark is worth
mentioning.

Remark 2.11. If the exchange property for minimal unknotting sets of a knot diagram
holds, then all minimal unknotting sets have the same size and the unknotting number of
the diagram can be determined by just finding a minimal unknotting set.

The exchange property for the diagram of the figure eight knot (Fig. 1(a)) holds trivially
because all the minimal unknotting sets are of cardinality one. To show that the exchange
property does not hold, we show that there exist two minimal unknotting sets of different
cardinalities. For example, the three twist knot (Fig. 1(b)) has the following minimal
unknotting sets:

{v4}, {v5}, {v1, v2}, {v1, v3} and {v2, v3}.
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These minimal unknotting sets do not have the same cardinality, so the exchange property
does not hold. However, the exchange property may still not hold for the minimal unknot-
ting sets that have the same cardinality. For example, the minimal diagram of 83 knot (Fig.
2) has two minimal unknotting sets {v1, v2} and {v5, v6} of the same cardinality. All pos-
sible sets obtained by exchanging elements of these sets are {v1, v5}, {v1, v6}, {v2, v5},
and {v2, v6}, which are not unknotting sets. For example, when the crossings v1 and v5 are
switched (Fig. 2(a)), the knot 83 is not transformed to the unknot. The set {v1, v6} is also
not an unknotting set (Fig. 2(b)). Similarly, {v2, v5} and {v2, v6} are not unknotting sets.
The Table 1 lists some minimal knot diagrams up to 8 crossings that depict their exchange
property for minimal unknotting sets.
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Knot ExchangeProp. holds Knot ExchangeProp. holds

31 yes 74 no

41 yes 75 no

51 yes 76 no

52 no 77 no

61 no 81 no

62 no 82 no

63 no 83 no

71 yes 84 no

72 no 85 no

73 no 86 no

TABLE 1

3. U-INDEPENDENCE SYSTEM OF A KNOT DIAGRAM

3.1. Basic Properties.
1.Minimality and maximality

The idea of converting a minimality in one sense to a maximality in another sense was first
introduced by Boutin (see [3] where det-independent and res-independent sets were defined
for determining and resolving sets respectively in simple graphs). Also, see [19] for some
corrections in [3]. In this paper, the definition of a U-independent set (see Definition 2.2)
is slightly different than the one given in [3]. This definition is modified to suit our purpose.

2.U-independent set may be unknotting as well as non-unknotting.
The knot diagram of 73 (Fig. 3(a)) given in the Rolfsen knot table [13] has the unknotting
number two. Let E = {v1, v2, v3, v4, v5, v6, v7} be the set of all crossings in the minimal
diagram (Fig. 3(a)). Some of the unknotting sets are W1 = {v1, v2},W2 = {v1, v3},W3 =
{v1, v4},W4 = {v2, v3},W5 = {v2, v4} and W6 = {v3, v4}. All these unknotting sets are
U-independent. For example, W1 \{v1} and W1 \{v2} are not unknotting sets. There may
be other U-independent sets not necessarily unknotting sets, e.g., {v1, v5} is not an unknot-
ting set but U-independent because {v1, v5} \ {v1} and {v1, v5} \ {v5} are not unknotting
sets.

3.Minimum and minimal unknotting sets
A minimum unknotting set has the smallest cardinality among all the minimal unknotting
sets of a knot diagram. This smallest cardinality is actually u(D) of the knot diagram.
Every minimum unknotting set is minimal, but the converse may not always be true. For
example, for the knot diagram 73 (Fig. 3(a)), all minimal unknotting sets are:
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{v1, v2}, {v1, v3}, {v1, v4}, {v2, v3}, {v2, v4} {v3, v4}, {v1, v5, v6}, {v1, v5, v7},
{v1, v6, v7}, {v2, v5, v6}, {v2, v5, v7}, {v2, v6, v7}, {v3, v5, v6}, {v3, v5, v7}, {v3, v6, v7},
{v4, v5, v6}, {v4, v5, v7} and {v4, v6, v7}. Only W1,W2,W3,W4,W5 and W6 are mini-
mum unknotting sets.

4.Unknotting number and minimal diagram
We know that while a knot K has infinite many knot diagrams, it is not necessarily true
that u(K) is always obtained from a minimal diagram of K. In addition, there might be a
knot diagram of K, not necessarily a minimal one that has the same unknotting number as
u(K). For many knots listed in the Rolfsen Table of knots in [13], u(K) is the same for the
minimal and other diagrams of K. However, for the knot 108 ((5, 1, 4)) in Conway notation
[5]), the minimal diagram (Fig. 3(b)) is unknotted by switching at least three crossings
with the minimum unknotting set {v2, v4, v6}. There is another diagram (Fig. 3(c) ) of 108
which turns to the unknot by switching only 2 crossings with a minimum unknotting set
{v6, v′9}. The unknotting number of this diagram is actually the unknotting number of the
knot 108 (see [2, 11]). An unknotting number, called umin(K), can be defined for each
minimal diagram of a knot K, see [14]. Note that for a knot K, the following inequality
holds:

u(K) ≤ umin(K).

3.2. U-independence System as knot invariant.

Definition 3.3 ([9]). Let (E1, I1) and (E2, I2) be two independence systems. Let there exist
a bijection φ : E1 → E2 such that φ(X) ∈ I2 if and only if X ∈ I1. Then, (E1, I1) and
(E2, I2) are said to be isomorphic.

In order to prove that the U-independence system is a knot invariant for an alternat-
ing knot, the following well-known conjecture of Tait (proved in [10] by Menasco and
Thistlethwaite) is needed.

Theorem 3.4. ([The Tait flyping conjecture]) Given reduced alternating diagrams D1, D2

of a knot (or link), it is then possible to transform D1 to D2 by a sequence of flypes (Fig.
4).

Proof of Theorem 2.5. Let vi be a crossing in the diagram D1. Apply the flype (Fig.
4) to D1 to remove the crossing vi and create a new crossing with the same label vi. More
precisely, the tangle (the shaded disc in Fig. 4) is turned upside-down to map the crossing
(one to its left) to the crossing (one to its right). During the application of the flype all
the unknotting/not unknotting sets of the diagram D1 are preserved. Consequently, all the
U-independent sets are preserved in the process. By Theorem 3.4, the diagram D1 can be
converted to D2, through a sequence of the flypes, preserving the U-independent sets. As
a result, an isomorphism φ between (E1, I1) and (E2, I2) is established. □

Theorem 2.5 further states that the U-independence system (defined for a reduced alter-
nating diagram D of a knot K) itself and all its invariants are knot invariants. The number
umin(K) can also be defined as the cardinality of a U-independent set which is also a min-
imum unknotting set. The number is not a complete invariant, i.e., there are non-isotopic
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FIGURE 3. (a) Minimal diagram of 73 knot (b) Minimal diagram of
108 knot (c) Non-minimal diagram of 108 knot.
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FIGURE 4. flype

knots having the same umin(K). However, other invariants of the U -independence systems
of non-isotopic alternating knots may distinguish them where umin(K) fails to do so. Here
are two such examples.
The Number of U-independent Sets of a Fixed Cardinality

Example 3.5. Consider the reduced diagram (Fig. 5(a)) of knot 61 and the reduced dia-
gram (Fig. 5(b)) of knot 62. For the knot 61, the set of all crossings E = {v1, v2, v3, v4, v5, v6}
is divided into two disjoint sets A and B: the set A = {v1, v2, v3, v4} and B = {v5, v6}.
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In A, no single crossing switch turns the knot into the unknot. In contrast, when any
crossing in B is switched, the knot is unknotted. All possible subsets of {v1, v2, v3, v4}
of cardinality two are minimal unknotting sets. Furthermore, every subset of cardinal-
ity three, four, or five contains an unknotting set. Thus, all the U-independent sets are
{v1}, {v2}, {v3}, {v4}, {v5}, {v6}, {v1, v2},
{v1, v3}, {v1, v4}, {v2, v3}, {v2, v4}, {v3, v4}. There are six U-independent sets of size 2.
For the knot 62, the set E = {v1, v2, v3, v4, v5, v6} (Fig. 5(b)) is divided into three disjoint
sets A, B, and C: in the set A = {v1, v2, v3}, there is no crossing in A which turns the knot
to the unknot; the set B = {v4} is an unknotting set; and the set C = {v5, v6} contains no
unknotting set. When any two crossings from A ∪ B are switched, the knot is unknotted.
However, there is no unknotting set of cardinality 2 in B ∪ C. Furthermore, every subset
of cardinality 3, 4, or 5 contains an unknotting set. Thus, the U-independent sets are {v1},
{v2}, {v3}, {v4}, {v5}, {v6}, {v1, v2}, {v1, v3}, {v1, v5}, {v1, v6}, {v2, v3}, {v2, v5},
{v2, v6}, {v3, v5}, {v3, v6}, {v5, v6}. There are 10 U-independent sets of size 2. The knots
61 and 62 are distinguished by the number of U-independent sets of cardinality 2.

The I-chromatic Number
The set of crossings of a reduced knot diagram D can be partitioned into U-independent
sets and the minimum number of such U-independent sets gives a minimum partition of
E. The number of U-independent sets in a minimum partition of E gives the I-chromatic
number χ(E, I). The number χ(E, I) for D can be used as a knot invariant in combination
with umin(K). In other words, two alternating knots can be distinguished by χ(E, I) if
the knots have the same umin(K).

Example 3.6. Consider the reduced diagram (Fig. 6(a)) of knot 72 and the reduced dia-
gram (Fig. 6(b)) of knot 77. For the knots 72, E = {v1, v2, v3, v4, v5, v6, v7} (Fig. 6(a))
is divided into two disjoint subsets A and B: A = {v1, v2, v3, v4, v5} and B = {v6, v7}.
The set A contains no unknotting set of cardinality one and two. Each subset of A with
cardinality three is a minimal unknotting set. Every crossing in B unknots the knot, but B
itself is not an unknotting set. Every subset of E containing {v6} or {v7} is not a minimal
unknotting set. Furthermore, every set of cardinality four, five and six contains an unknot-
ting set. Thus, the U-independent sets are:
{v1}, {v2}, {v3}, {v4}, {v5}, {v6}, {v7}, {v1, v2}, {v1, v3}, {v1, v4}, {v1, v5}, {v2, v3},
{v2, v4}, {v2, v5}, {v3, v4}, {v3, v5}, {v4, v5}, {v1, v2, v3}, {v1, v2, v4}, {v1, v2, v5},
{v1, v3, v4}, {v1, v3, v5}, {v1, v4, v5}, {v2, v3, v4}, {v2, v3, v5}, {v2, v4, v5}, {v3, v4, v5}. A
minimum partition is {{v1, v2, v3}, {v4, v5}, {v6}, {v7}} and χ(E, I) = 4. For the knot
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77, the set E = {v1, v2, v3, v4, v5, v6, v7} (Fig. 6(b)) is divided into three disjoint subsets
A, B, and C. The set A = {v1, v2, v3}, B = {v4, v5}, and C = {v6, v7}. In the set A, no
unknotting set of cardinality one exists; for cardinality two, all of the sets are unknotting
sets except for {v1, v2}. In B, {v4} and {v5} are unknotting sets but B itself is not an un-
knotting set. In C, neither a set of cardinality one nor C itself is an unknotting set. Every set
of cardinality three, four, five and contains an unknotting set. Thus, the U-independent sets
are: {v1}, {v2}, {v3}, {v4}, {v5}, {v6}, {v7}, {v1, v2}, {v1, v3}, {v1, v6}, {v1, v7}, {v2, v3},
{v2, v6}, {v2, v7}, {v3, v6}, {v3, v7}, {v6, v7}.
A minimum partition is {{v1, v2}, {v3}, {v4}, {v5}, {v6, v7}} and χ(E, I) = 5. Hence,
the knots 72 and 77 are distinguished by χ(E, I).

4. U-INDEPENDENCE AS A MATROID

4.1. Family (2n + 1, 1, 2n). For a knot K in the family (2n + 1, 1, 2n) with n ≥ 2,
u(K) = n < umin(K) = n + 1, see [2]. The unknotting number of a knot in this family
can be obtained from the diagram (Fig. 7).

Proof of Proposition 2.6(a). For the knot diagram D (Fig. 7) with u(D) = n, there
are two minimal unknotting sets {w, u′

3, u
′
5, u

′
7, . . . u

′
2n−1} and {v2, v4, v6, . . . , v2n, w} of

cardinalities n and n+1 respectively. Consequently, there are two maximal U-independent
sets of different cardinalities. By Remark 2.11, the U-independence system is not a matroid.

□

4.2. Family (2n + 1). The following result may be known to an expert in knot theory.
Anyhow, it is proved here for the sake of completion.

Lemma 4.3. A knot diagram D in the family (2n+ 1) has u(D) = n.

Proof. Apply induction on n. For n = 1, (2n+1) is a reduced diagram of trefoil knot with
u(D) = 1. Suppose u(D) = m for (2m+1). For n = m+1, (2(m+1)+1) = (2m+3)
is a family of knot diagram with 2m+ 3 alternating crossings (Fig. 8). When the crossing
v2m+3 is switched, the crossing v2m+2 is also killed and the knot diagram (2m + 1) is
obtained (Fig.8). By induction, u(D) ≤ m + 1. The knot diagram (2m + 1) can not be
unknotted by fewer than m crossings because if m−1 crossings are switched, then 2(m−1)
alternating crossings are untangled and a reduced diagram of trefoil knot is obtained. It
follows that the unknotting number of (2m+ 3) is m+ 1. □



An Independence System As a Knot Invariant 423

2n+1 1

.

2n

. .

v1

v3

.

.

. .
.
.

.

.

.
.

.

.

.

v2n+1

w

u1

u2

u'3
u4

u5

u2n

u'5

u'2n-1

v2

v4

u3

FIGURE 7. (2n+ 1, 1, 2n)

v1

v2
v3
v4
v5

v2m+1

v2m
v2m-1

v1

v2
v3
v4
v5

v2m+3

v2m+2
v2m+1

FIGURE 8. (2m+ 1) and (2m+ 3)

Proof of Proposition 2.6(b) The diagram (Fig. 8) has the property that every subset
A ⊂ E = {v1, v2, v3, . . . , v2n, v2n+1} with | A |= n is an unknotting set. By Lemma
4.3, the set A must be a minimal unknotting set (a maximal U-independent set). There is
no maximal U-independent set of cardinality < n. Also, there is no U-independent set B
of cardinality > n because B contains an unknotting set of cardinality n. It follows that a
U-independent set is maximal if and only if it is a minimal unknotting set and of cardinality
n. The exchange property holds for all maximal U-independent sets as every subset of E of
cardinality n is a maximal U-independent. Hence, the U-independence system is a matroid
by Definition 2.9. □

4.4. Family (2n, 2). For n ≥ 1, each diagram D (Fig. 9) has u(D) = 1 and its U-
independence system is not a matroid except for the figure eight knot, i.e., when n = 1.
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v1

v2

v2n-1
v2n-2

v2n

v3 w
u

FIGURE 9. (2n, 2)

Proof of Proposition 2.6(c). For the diagram (Fig. 9), the sets {w} and {v1, v2, v3, v4, . . . , vn}
are minimal unknotting sets of cardinality 1 and n respectively. Thus, there are two maxi-
mal U-independent sets having different cardinalities. By Remark 2.11, the U-independence
system is not a matroid. □

5. CONCLUSION

This completes our introduction to U-independence system of a classical knot. On the
same lines, independence systems can also be defined for a knot diagram with respect to
other invariants like bridge numbers and algebraic unknotting numbers. The corresponding
invariants of these independence systems may also be used as knot invariants in combi-
nation with these invariants. Every independence system (E, I) is an abstract simplicial
complex, see [8]. Therefore, the homology of (E, I) can be investigated for more refined
invariants of the corresponding knots. Similarly, independence systems can be associated
with and studied for virtual knots [7]. There is much that implores further investigation.
For example, one can show that the U-independence systems for reduced alternating dia-
grams of 61 and 63 are isomorphic. The knots 61 and 63 are not mirror images of each
other. We can then ask the following open question:
Question. Does there exist two non-isotopic alternating knots (not the mirror image of
each other) that have the same number of crossings in their reduced alternating diagram
and the same umin(K) ≥ 2 with isomorphic U-independent systems?
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