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Abstract. In this paper, our aim is to establish the control mechanism of
the iteration process defined as S-iteration in the literature. First of all, it
is to determine the dynamics of a system with chaotic property under S-
iteration. Afterward, we investigate the stability state of the chaotic sys-
tem under this iteration with the parameters of the S-iteration. In addition,
using the chaotic logistic system, we will illustrate the theoretical results
in this example in the MATLAB program. Finally, we will examine the
periodic state of the S-iteration and investigate the cases in which the pe-
riodic behavior is stable or unstable of the S-iteration with the Lyapunov
exponent.
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1. INTRODUCTION AND PRELIMINARIES

Chaos, which entered the literature as unpredictability, attracted the attention of many
researchers and started to be studied as a theory. It should be emphasized that objects open
to change in nature are expressed mathematically with a growth rate within the framework
of a rule. In other words, let xn+1 = h (xn) be a linear or non-linear system, then xn+1−xn

xn

is called a growth rate and sensitive to initial conditions. Changes in nature are generally
studied as differential equations. However, we will consider the discrete dynamical system
as the difference equations. While the growth rate takes place on any object, external
factors affecting this growth rate must also be taken into account. A growth rate taken
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together with external factors is mathematically expressed as xn+1−xn

xn

∼= λ
(

h(xn)
xn

− 1
)

,
where λ is a sufficiently small external effect. The mathematical notation representing the
growth rate as a discrete dynamical system corresponds to an iteration with the growth part,
which is the famous iteration method of fixed point theory with a wide field of study.

Fixed point iteration systems obtained by the above relationship can be considered dis-
crete dynamical systems. Then, whether the fixed point is stable or unstable in the iteration
system can be discussed as a factor affecting this system. Considering the fact that the
change in the external effect λ in the growth rate will cause the chaotic behavior of the sys-
tem, the appropriate selection of the external factor λ has led to the idea of control theory.
Since λ is found as a parameter in fixed point iteration systems, control can be expressed
as the appropriate parameter selection in chaotic iteration systems. Therefore, chaos con-
trol mechanisms have been developed by many researchers to control the chaotic structures
given in [4, 5, 8, 9, 10, 17].

If a fixed point iteration method involves a chaotic structure as a dynamical system, then
the control of this chaos becomes an important research area. The fixed point iteration
method is widely used both in different branches of science and in technological appli-
cations as a useful method. For this reason, examining iteration methods from different
aspects provides many benefits in the field of theory or practice. Therefore, the authors
studied the chaos control of different iteration methods and some applications in the given
list [18, 19]. In addition, fixed point and control applications related to robotics or machine
learning can be found in [2, 3, 12, 13, 14].

In the literature, there are different iteration methods studied by many authors. These
processes, which started with Picard [16], have been developed over time and have been
replaced by many new faster iteration types. Recently, the S-iteration process was defined
by Agarwal et al. [1]. This iteration process cannot be reduced to previous fixed point
iteration processes that are Picard [16], Mann [15] and Ishikawa [11] iteration processes,
but it is more useful as it converges faster than them.

The main purpose of the work is to introduce the chaos control mechanism of the S-
iteration process, which is considered a dynamical system. In order to obtain the establish-
ment of the control mechanism, it is to investigate how a function with chaotic behavior
turns into chaos to stability by selecting appropriate parameter ranges under the S-iteration
process. In addition, using the logistic system with chaotic behavior, the stability regions,
periodic regions, and chaotic regions of the iteration will be decided by using the MATLAB
program. Finally, it is to determine the stable or unstable states of the periodic behavior of
the S-iteration process using the Lyapunov exponent.

Now let’s give the basic definitions and theorems that we will use throughout the pa-
per. The general structure of a dynamical system is expressed as a sequence of composite
functions with

x0, h (x0) , h
2 (x0) , . . . , h

n (x0) , . . . ,

where x0 ∈ R is a initial point and h : X → X is a selfmap. In this iterative structure
consisting of an initial point x0, each element is evaluated as a dynamic and the sequences
formed by the repeating composition of a function is called the orbit of the initial point x0.
Hence, hn (x0) is the nth iterate of h evaluated at x0.
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Definition 1.1 (see [7]). Given x0 ∈ R, then the orbit of a point x0 under the mapping
h is defined to be the sequence of points x0, x1 = h (x0) , x2 = h2 (x0) , . . . , xn =
hn (x0) , . . . . The point x0 is called the seed of the orbit.

Definition 1.2 (see [6]). Let X be a nonempty set and h : X → X be a selfmap. A point
x∗ ∈ X is said to be fixed point of h if h (x∗) = x∗.

Definition 1.3 (see [7]). Let h : X → X be a mapping. A point x∗ ∈ X is a periodic point
of h with period p if hp (x∗) = x∗. The point x∗ has prime period p if hp (x∗) = x∗ and
hn (x∗) ̸= x∗ for 0 < n < p.

Definition 1.4 (see [7]). Let h : X → X be a selfmap having a fixed point x∗, and let
h′ (x∗) denote the first derivative of h (x) at x = x∗. Then, the point x∗ is called an
attracting (stable) fixed point if |h′ (x∗)| < 1. The point x∗ is called a repelling (unstable)
fixed point if |h′ (x∗)| > 1. And, if |h′ (x∗)| = 1, the fixed point x∗ is called neutral or
indifferent.

Definition 1.5 (see [16]). Let X be a nonempty set and h : X → X be a selfmap. Let (xn)
be iteration sequence for any x0 ∈ X . If

xn+1 = h (xn) = hn+1 (x0) , (1. 1)

(n ∈ N) , then it is called Picard iteration process.

Definition 1.6 (see [1]). For C a convex subset of a linear space X and h a mapping of C
into itself, the iterative sequence (xn) of the iteration process is generated from x1 ∈ C,
and is defined by {

xn+1 = (1− λn)h (xn) + λnh (yn) ,
yn = (1− µn)xn + µnh (xn) ,

(1. 2)

(n ∈ N) , then it is called S-iteration process where (λn) , (µn) are real sequences in (0, 1)
satisfying the condition:

∞∑
n=1

λnµn (1− µn) = ∞. (1. 3)

2. FIXED POINT TYPE CONTROL MECHANISM OF THE S-ITERATION

The general form of one-dimensional discrete dynamical systems is given by

xn+1 = h (xn) , (2. 4)

for all n ∈ N, where h : [a, b] → [a, b] be a continuous function with [a, b] ⊂ R. Since h
is defined on a continuous and closed interval, the function h has at least one fixed point.
If the original system ( 2. 4 ) is rearranged in light of Definition 1.6, then we get the
S-iteration system given by

xn+1 = S (λ, µ, h) (xn) = (1− λn)h (xn) + λnh [(1− µn)xn + µnh (xn)] , (2. 5)

where (λn) , (µn) ⊂ (0, 1) are control parameter sequences. Using Eq. ( 2. 5 ), we can
construct the fixed point type control mechanism of the S-iteration. In the remainder of the
article, fixed point type controlling mechanism of S-iteration will be briefly illustrated as
S − f.p.t.c. mechanism.
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As it is known, the main purpose of establishing a control mechanism in iterations is
the existence of an unstable fixed point and the unstability of the system accordingly. This
state of unstability is tried to be stabilized with the control mechanism. For the S-iteration,
this situation will be explained by the following theorem.

Theorem 2.1. Let x∗ be an unstable real fixed point of an original system h given by
Eq. ( 2. 4 ). Given that if h(x∗) = x∗, then S (λ, µ, h) (x∗) = x∗. Then there always
exists an effective regime of the control parameters (λn) , (µn) (n ∈ N) for the S−f.p.t.c.
mechanism S (λ, µ, h) defined by Eq. ( 2. 5 ) such that

|S′ (λ, µ, h) (x∗)| < 1,

for |h′(x∗)| ̸= 1.

Proof. Suppose that x∗ ∈ [a, b] is a fixed point of h, that is h(x∗) = x∗, then

S (λ, µ, h) (x∗) = (1− λn)h (x
∗) + λnh [(1− µn)x

∗ + µnh (x
∗)]

= (1− λn)h (x
∗) + λnh (x

∗)

= (1− λn)x
∗ + λnx

∗

= x∗,

that is, x∗ is a fixed point for S (λ, µ, h) (x∗) .
Let x∗ be an unstable fixed point for the original system h, then it should be |h′(x∗)| >

1. In this case, there are two cases such that h′(x∗) < −1 and h′(x∗) > 1. However, since
the stability range obtained in the case of h′(x∗) > 1 contradicts with the definition ranges
of control parameters (λn) , (µn) (n ∈ N), we will not examine situation h′(x∗) > 1.
Therefore, let’s consider two cases of S (λ, µ, h) under condition h′(x∗) < −1. The change
of the mechanism defined by Eq. ( 2. 5 ) at unstable fixed point x∗ can be controlled by the
derivative of the function S (λ, µ, h). Taking the derivative of S (λ, µ, h) , then we obtain

S′ (λ, µ, h)(xn) = (1− λn)h
′ (xn) + λn (h [(1− µn)xn + µnh (xn)])

′

= (1− λn)h
′ (xn) + λn[1 + µn (h

′ (xn)− 1)]h′ [(1− µn)xn + µnh (xn)] .

So, the derivative of S (λ, µ, h) at the fixed point x∗ is calculated as follows:

S′ (λ, µ, h) (x∗) = (1− λn)h
′ (x∗)

+ λn[1 + µn (h
′ (x∗)− 1)]h′ [(1− µn)x

∗ + µnh (x
∗)]

= (1− λn)h
′ (x∗) + λn[1 + µn (h

′ (x∗)− 1)]h′ (x∗)

= (1− λn)h
′ (x∗) + λnh

′ (x∗) + λnµnh
′ (x∗) (h′ (x∗)− 1)

= h′ (x∗) + λnµnh
′ (x∗) (h′ (x∗)− 1)

= h′ (x∗) (1 + λnµn (h
′ (x∗)− 1)) . (2. 6)
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Under the condition h′(x∗) < −1, if |S′ (λ, µ, h) (x∗)| < 1, we have

|h′ (x∗) (1 + λnµn (h
′ (x∗)− 1))| < 1

−1 < h′ (x∗) (1 + λnµn (h
′ (x∗)− 1)) < 1

1

h′ (x∗)
< 1 + λnµn (h

′ (x∗)− 1) <
−1

h′ (x∗)

1− h′ (x∗)

h′ (x∗)
< λnµn (h

′ (x∗)− 1) <
−1− h′ (x∗)

h′ (x∗)

1 + h′ (x∗)

h′ (x∗) (1− h′ (x∗))
< λnµn <

−1

h′ (x∗)
. (2. 7)

When the inequality ( 2. 7 ) is solved according to control parameters (λn) , (µn) (n ∈ N),
two solution sets that are symmetrical with respect to the other are obtained. However,
since these regions are symmetrical, it will be sufficient to take one of them.

Λ1
λ =

(
1 + h′ (x∗)

h′ (x∗) (1− h′ (x∗))
,

−1

h′ (x∗)

]
and Λ1

µ =

(
1 + h′ (x∗)

h′ (x∗) (1− h′ (x∗)) (λn)
, 1

)
,

Λ2
λ =

(
−1

h′ (x∗)
, 1

)
and Λ2

µ =

(
1 + h′ (x∗)

h′ (x∗) (1− h′ (x∗)) (λn)
,

−1

h′ (x∗) (λn)

)
.

Thus, we obtain the effective regime of the control parameters of the S (λ, µ, h) that stabi-
lizes the system h. �

Let us give the following example with a logistic system with chaotic behavior in order
to implement the control mechanism that we have proved analytically for the S-iteration.

Example 2.2. Consider the logistic system defined by h : [0, 1] → [0, 1]

xn+1 = h(xn) = 4xn (1− xn) . (2. 8)

This system is a chaotic system in terms of the parameter and it has two fixed points as
x∗
1 = 0 and x∗

2 = 3
4 which are both unstable fixed points with h′ (x∗

1) = 4 > 1 and
h′ (x∗

2) = −2 < −1. To find a suitable stability range that will stabilize the logistic system
h, let us apply the S − f.p.t.c. mechanism S (λ, µ, h) defined by Eq. ( 2. 5 ) to the logistic
system given by Eq. ( 2. 8 ).

Firstly, we obtained the controlling mechanism S (λ, µ, h) modified with the logistic
system as follow:

xn+1 = S (λ, µ, h) (xn) = (1− λn)h (xn) + λnh [(1− µn)xn + µnh (xn)]

= 4xn (1− xn) (1− λn) + λnh [(1− µn)xn + 4xn (1− xn)µn]

= 4xn (1− xn) (1− λn) + λnh [xn (1 + µn (3− 4xn))] (2. 9)

= 4xn (1− xn) (1− λn) + 4xnλn (1 + µn (3− 4xn)) (1− xn (1 + µn (3− 4xn))) .

If we construct the mechanism given by Eq. ( 2. 9 ) for an unstable fixed point x∗, we have

S (λ, µ, h) (x∗) = 4x∗ (1− x∗) (1− λn) + 4x∗λn (1 + µn (3− 4x∗))

× (1− x∗ (1 + µn (3− 4x∗))) .
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By solving the equation S (λ, µ, h) (x∗) = x∗, we obtained the fixed points of the S −
f.p.t.c. mechanism

x∗
1 = 0, x∗

2 =
3

4
,

x∗
3,4 =

8λnµn + 12λnµ
2
n ±

(
−64λnµ

2
n (1 + 4λnµn) +

(
−8λnµn − 12λnµ

2
n

)2) 1
2

32λnµ2
n

.

It is clear that x∗
1 and x∗

2 are common real fixed points with the logistic system h, while the
other fixed points x∗

3 and x∗
4 are complex.

Now, we will investigate the control parameter ranges at which the fixed point x∗
2 = 3

4 ,
which is unstable for the logistic system h, becomes stable by the controlling mechanism
S (λ, µ, h) . For this, we will examine the stability condition |S′ (λ, µ, h) (x∗

2)| < 1. Using
the Eq. ( 2. 6 ), we have

S′ (λ, µ, h) (
3

4
) = 6λnµn − 2.

Hence, under the stability condition, the solution is

1

6
< λnµn <

1

2
.

As a result, the unstable fixed point x∗
2 = 3

4 of the logistic system h becomes stable after
a processing order with the appropriate control parameters (λn),(µn) (n ∈ N) choices of
the S − f.p.t.c. mechanism S (λ, µ, h) defined by Eq. ( 2. 9 ). This situation exhibits that
there is an effective regime consisting of two regions where the unstable fixed point x∗

2 = 3
4

behaves completely stable as follow

Λλ =
1

6
< λn ≤ 1

2
⇒ (λn) ⊂

(
1

6
,
1

2

]
,

Λµ =
1

6λn
< µn < 1 ⇒ (µn) ⊂

(
1

6λn
, 1

)
, (n ∈ N) .

Here, we used the MATLAB software program because it would be very difficult to calculate
how the system will behave in what range with analytical methods. Table 1 shows the
control parameter ranges in which the stable, periodical and chaotic behaviors of the orbit
of the controlling mechanism S (λ, µ, h) is determined for the initial value x0 = 0.7333
and 10, 000th iterations. Then, a range of control parameters given in Table 1 is shown
by graphical analysis. In Figure 1 and Figure 2, it is shown that the original function h,
which has a chaotic structure, exhibits a stable behavior with the fixed point controlling
mechanism. Also, in Figure 3, the function diagram of the chaotic state of the logistic
system h given and in Figure 4, it is shown on the function diagram that the unstable fixed
point x∗

2 becomes repel for the same parameter values selected in Figure 2, while it becomes
attractive with the S−f.p.t.c. mechanism S (λ, µ, h). In addition, the bifurcation diagram
is given in Figure 5, where all the behaviors of the control parameter ranges obtained in
Table 1 are shown together.
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FIGURE 1. Chaotic
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FIGURE 2. Stabilized
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FIGURE 5. Bifurcation
diagram of S (λ, µ, h)
for λn = 0.35, 0 <
µn < 1
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TABLE 1

Parameter values (λn) Parameter values (µn) Orbit of S (λ, µ, h)

0.17 ≤ λn ≤ 0.5
0 < µn ≤ 0.5099
0.5099 < µn ≤ 0.9804
0.9804 < µn < 1

Chaotic Behavior
Periodical Behavior
Stable Behavior

0.25 ≤ λn ≤ 0.5
0 < µn ≤ 0.3430
0.3430 < µn ≤ 0.6667
0.6667 < µn < 1

Chaotic Behavior
Periodical Behavior
Stable Behavior

0.35 ≤ λn ≤ 0.5
0 < µn ≤ 0.2366
0.2366 < µn ≤ 0.4762
0.4762 < µn < 1

Chaotic Behavior
Periodical Behavior
Stable Behavior

0.48 ≤ λn ≤ 0.5
0 < µn ≤ 0.1672
0.1672 < µn ≤ 0.3472
0.3472 < µn < 1

Chaotic Behavior
Periodical Behavior
Stable Behavior

3. STABILIZATION OF THE UNSTABLE PERIODIC POINTS VIA S-ITERATION PROCESS

In this section, we firstly take the system hm = h ◦ h ◦ ... ◦ h in place of original
system h and then we will investigate that unstable fixed point in original system became
to stable fixed point via S−f.p.t.c. mechanism S (λ, µ, h) . Let us redefine the S−f.p.t.c.
mechanism as

xn+1 = Sm (λ, µ, h) (xn) = (1− λn)h
m (xn) + λnh

m [(1− µn)xn + µnh
m (xn)] ,

(3. 10)
where hm denotes mth recurrent process of h.

In fixed point algorithms, it is necessary to advance the iteration m-steps to obtain peri-
odic behaviors. To explain this situation, let’s give the following theorem.

Theorem 3.1. Let x∗ be an unstable periodic fixed point of periods-m of an original system
h defined by Eq. ( 2. 4 ). Given that if hm(x∗) = x∗, then Sm (λ, µ, h) (x∗) = x∗.
Then there always exists an effective regime of the control parameters (λn) , (µn) in the
S − f.p.t.c. mechanism Sm (λ, µ, h) defined by Eq. (3.10) such that

|S′
m (λ, µ, h) (x∗)| < 1,

for |hm′(x∗)| ̸= 1.

Proof. Given that x∗ ∈ [a, b] is a fixed point of periods-m of an original system h given by
Eq. ( 2. 4 ), that is hm(x∗) = x∗, then

Sm (λ, µ, h) (x∗) = (1− λn)h
m (x∗) + λnh

m [(1− µn)x
∗ + µnh

m (x∗)]

= (1− λn)x
∗ + λnh

m (x∗)

= x∗.

Let x∗ be an unstable fixed point of periods-m for the original system h given by Eq. ( 2.
4 ). The altering of the controlled mechanism defined by Eq. ( 3. 10 ) at unstable fixed
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point x∗ can be obtained by the derivative of the function Sm (λ, µ, h). The derivative of
Sm (λ, µ, h) at the fixed point x∗ is calculated as follows:

S′
m (λ, µ, h) (x∗) = hm′ (x∗) (1 + λnµn (h

m′ (x∗)− 1)) .

Since |S′
m (λ, µ, h) (x∗)| < 1, we obtain the following effective regime interval under the

condition hm′ (x∗) < −1 as

Λλ =

(
1 + hm′ (x∗)

hm′ (x∗) (1− hm′ (x∗))
,

−1

hm′ (x∗)

]
,

Λµ =

(
1 + hm′ (x∗)

hm′ (x∗) (1− hm′ (x∗)) (λn)
, 1

)
. (3. 11)

�

Now let’s study the following example using the logistic function to illustrate the peri-
odic behaviors that occur in the iteration hm and its S − f.p.t.c. mechanism.

Example 3.2. Consider the logistic system defined by h : [0, 1] → [0, 1]

xn+1 = h(xn) = 4xn (1− xn) . (3. 12)

Let us determine the stability range of the unstable periods-2 fixed points of the system
h2 for an effective regime of control parameters (λn) , (µn) (n ∈ N) in the S − f.p.t.c.
mechanism defined as Eq. ( 3. 10 ).

First of all, in order to find the periods-2 fixed points of the logistic system h, it is
necessary to solve the fourth order equation h2(x∗) = x∗. Therefore, we get

h2(x∗) = h (h (x∗)) = h (4x∗ (1− x∗)) = 16x∗ (1− x∗)
(
4x∗2 − 4x∗ + 1

)
.

Solving the equation h2(x∗) = x∗ will find two trivial periods-2 fixed points x∗
1 = 0,

x∗
2 = 3

4 and a pair of non-trivial periods-2 fixed point x∗(2)
1 = 5−

√
5

8 , x
∗(2)
2 = 5+

√
5

8 .

Given derivative of h2, we obtain

h2′(x∗) = 16 (1− 2x∗)
(
8x∗2 − 8x∗ + 1

)
.

Therefore, we have h2′(x
∗(2)
1 ) = h2′(x

∗(2)
2 ) = −4 < −1 which is unstable periods-2 fixed

points.
Now, consider the S − f.p.t.c. mechanism of S2 (λ, µ, h) defined by Eq. ( 3. 10 ) for

m = 2 as follow

xn+1 = S2 (λ, µ, h) = (1− λn)h
2 (xn) + λnh

2
[
(1− µn)xn + µnh

2 (xn)
]
.

According to Eq. ( 3. 11 ), we obtain the stability interval for periods-2 fixed points x∗(2)
1

and x
∗(2)
2 as follows

Λλ =

(
1 + h2′ (x∗)

h2′ (x∗) (1− h2′ (x∗))
,

−1

h2′ (x∗)

]
=

3

20
< λn ≤ 1

4
⇒ (λn) ⊂

(
3

20
,
1

4

]
,

Λµ =

(
1 + h2′ (x∗)

h2′ (x∗) (1− h2′ (x∗))λn
, 1

)
=

3

20λn
< µn < 1 ⇒ (µn) ⊂

(
3

20λn
, 1

)
.
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When control parameters (λn) , (µn) (n ∈ N) are taken within Λλ,Λµ, the controlling
mechanism S2 (λ, µ, h) will converges to periodic fixed points either x

∗(2)
1 or x

∗(2)
2 de-

pending on where the initial point start at. This situation is shown in Figure 6 for the initial
values of x0 = 0.3333, x0 = 0.8333 and (λn) = 0.25, (µn) = 0.75.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

No. of iterations

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x n
+

1

x0=0.3333

x0=0.8333

xn+1 2

xn+1 1

FIGURE 6. Stabilized orbits of the system S2 (λ, µ, h) for (λn) = 0.25,
(µn) = 0.75 and x0 = 0.3333, 0.8333.

4. APPLICATION OF THE LYAPUNOV EXPONENTS FOR S-ITERATION PROCESS

Lyapunov exponent is a method used in nonlinear systems to measure the sensitive de-
pendence between two orbits for very close starting points. For stable periodic behavior,
this method measures the rate of convergence towards the stable fixed point. For chaotic
behavior, it measures the rate of divergence between orbits.

Now, let’s construct the Lyapunov exponent to use the S-iteration process. Let us denote
the S − f.p.t.c. mechanism S (λ, µ, h) defined by Eq. ( 2. 5 ). Also, let x and x +
ε (0 < ε < 1) be two different points for orbits in the S-iteration process. In addition,
assuming that the divergence between the two orbits measures δ and the exponential growth
rate as εemρ, where ρ is the Lyapunov exponent, and m is a S-iteration of order m. Then,
we can write

S (λ, µ, h) (x+ ε)− S (λ, µ, h) (x) = δ,

with n ∈ N. That is,

Sm (λ, µ, h) (x+ ε)− Sm (λ, µ, h) (x) = εemρ,

and
Sm (λ, µ, h) (x+ ε)− Sm (λ, µ, h) (x)

ε
= emρ. (4. 13)

After taking the limit as ε → 0 in Eq. ( 4. 13 ) , we get

lim
ε→0

Sm (λ, µ, h) (x+ ε)− Sm (λ, µ, h) (x)

ε
= emρ.
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So, we can write as follows

S′
m (λ, µ, h) (x) = emρ. (4. 14)

If the logarithm is applied to both sides of the last equation again, we get

ρ =
1

m
log |S′

m (λ, µ, h) (x)| ,

where (λn) , (µn) ⊂ (0, 1) . Here, S′
m (λ, µ, h) (x) is the first derivative of Sm (λ, µ, h).

We will use the chain rule to derivative the mth-degree polynomial. From the Eq. ( 4. 14 ),
we can write that

|S′
m (λ, µ, h) (x)| = S′ (λ, µ, h) (x1).S

′ (λ, µ, h) (x2) . . . S
′ (λ, µ, h) (xm) = emρ.

(4. 15)
By the logarithm of the Eq. ( 4. 15 ), we get

ρ =
1

m

m∑
k=1

log |S′ (λ, µ, h) (xk)| . (4. 16)

By using Eq. ( 4. 16 ), we measure the convergence and divergence rates of an iteration,
and we also decide whether the fixed points and periodic points of the given system are
stable or unstable. In other words, we can explain when ρ < 0, the system is stable and
when ρ > 0, it is also unstable.

Based on the above explanation, we will give the next two examples to decide on the
stability and unstability of the periodic behavior of both S-iteration and Sm iterations with
the Lyapunov exponent.

4.1. Lyapunov exponent ρ for the fixed point x∗
2 = 3

4 when λn = 0.35, µn = 0.50 for
S-iteration. Consider the S − f.p.t.c. mechanism S (λ, µ, h) defined by Eq. ( 2. 5 ) such
that

S′ (λ, µ, h) (xn) =(1− λn)(4− 8xn) + λn[1 + µn(3− 8xn)]

× [4− 8((1− µn)xn + 4µnxn(1− xn))]. (4. 17)

In ( 4. 17 ), taking λn = 0.35, µn = 0.50 and x∗
2 = 0.75, we get

S′ (λ, µ, h) (x∗
2) =(1− (0.35))× (4− 8× (0.75)) + (0.35)

× [1 + (0.5)× (3− 8× (0.75))]

× [4− 8((1− (0.5))× (0.75) + 4× (0.5)× (0.75)× (1− (0.75)))]

= −0.95.

From the Eq. ( 4. 16 ) for the fixed point x∗
2 = 0.75, we obtain

ρ = log |S′ (λ, µ, h) (0.75)| = log |−0.95| = −0.0222 < 0.

As a result, we obtain the S − f.p.t.c. mechanism is stable according to value x∗
2, for

λn = 0.35, µn = 0.50.
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4.2. Lyapunov exponent ρ for the periodic points x∗(2)
1 , x∗(2)

2 when λn = 0.25, µn =
0.75. Lyapunov exponent, given in Eq. ( 4. 16 ) for the S− f.p.t.c. mechanism defined by
Eq. ( 2. 5 ), is defined by taking m = 2 as follows

ρ =
1

2

2∑
k=1

log
∣∣∣S′ (λ, µ, h) (x

(2)
k )
∣∣∣ .

In ( 4. 17 ), taking periodic points x
∗(2)
1 = 5−

√
5

8 , x∗(2)
2 = 5+

√
5

8 and λn = 0.25, µn =
0.75, we have

S′ (λ, µ, h) (x
∗(2)
1 ) = (1− (0.25))× (4− 8×

(
5−

√
5

8

)
) + (0.25)

× [1 + (0.75)× (3− 8×

(
5−

√
5

8

)
)]

× [4− 8× ((1− (0.75))×

(
5−

√
5

8

)
+ 4× (0.75)×

(
5−

√
5

8

)
× (1−

(
5−

√
5

8

)
))]

= 0.303792.

S′ (λ, µ, h) (x
∗(2)
2 ) = (1− (0.25))× (4− 8×

(
5 +

√
5

8

)
) + (0.25)

× [1 + (0.75)× (3− 8×

(
5 +

√
5

8

)
)]

× [4− 8× ((1− (0.75))×

(
5 +

√
5

8

)
+ 4× (0.75)×

(
5 +

√
5

8

)
× (1−

(
5 +

√
5

8

)
))]

= −2.49129.

So, we get

ρ =
1

2

2∑
k=1

log
∣∣∣S′ (λ, µ, h) (x

(2)
k )
∣∣∣

=
1

2

(
log
∣∣∣S′ (λ, µ, h) (x

∗(2)
1 )

∣∣∣+ log
∣∣∣S′ (λ, µ, h) (x

∗(2)
2 )

∣∣∣)
=

1

2
(log |0.303792|+ log |−2.49129|)

=
1

2
(−1.19141 + 0.912801)

= −0.139305 < 0.

Since ρ < 0, the orbit of the logistic function h has a stable behavior. Thus, it is proved
that the unstable periods-2 fixed points of the system h are stabilized by the S − f.p.t.c.
mechanism defined as Eq. ( 3. 10 ).

Remark 4.3. Consider the iteration sequence obtained by the m-step iteration of the gen-
eral logistic system h(x) = rx (1− x). It is clear that the original logistic system has
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a chaotic behavior for r = 4. However, it has been shown in the present study that for
r = 4, a control mechanism can be established in which an unstable fixed point becomes
stable with the appropriate parameter selection of the S−iteration. For all that, how to
develop a control mechanism for r > 4 of the coefficient r of the logistic the system without
being dependent on an unstable fixed point is also an important problem. According to the
results we obtained in the example we studied in Subsection 4.2, it has been shown that
the chaotic logistic system can be stabilized for r > 4 using the λn, µn selected from the
control interval. As can be seen from the Table 2, it has been shown that the behavior of
the periodic S−iteration becomes stable with the help of the Lyapunov exponent when the
r parameter in rx (1− x) equation is rmax = 8.555. Figure 7 shows the graphical repre-
sentation of positive Lyapunov exponent ρ for r ∈ [1, 4] of the original system h(x). That
is, the original system h(x) behaves chaotic. Further, from Figure 8, it is observed that the
Lyapunov exponent approaches to negative Lyapunov exponents ρ which means, for each
initial point x ∈ [0, 1] the orbit of the map converges to the stable attractor.

TABLE 2

(λn) (µn) rmax ∈ [1, 10]

0.16 0.94 6.922

0.2 0.76 7.806

0.25 0.61 8.555
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-7
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-4

-3

-2
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0

FIGURE 7. Lyapunov exponent diagram of original sytem h(x) for r ∈ [1, 4]
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0

FIGURE 8. Lyapunov exponent diagram of the controlled system
S (λ, µ, h) for λn = 0.25, µn = 0.75 for r ∈ [1, 4]

5. CONCLUSION

We generally use two different methods to obtain the chaos control mechanisms of
chaotic systems. The first method is to find the appropriate ranges of the parameters that
are representative of the environmental factors affecting the system. Chaos control mech-
anisms related to fixed point iteration processes are possible with the appropriate selec-
tion of the parameters of the iteration. We should emphasize that the form xn+1 − xn =
λn (h(xn)− xn) representing growth in the real world corresponds to the Mann iteration
process mathematically represented as xn+1 = (1− λn)xn + λnh(xn). Since the math-
ematical modeling in which growthis represented corresponds to the fixed point iteration,
the parameter (λn), which is determined as the environmental factor in the fixed point it-
eration process, causes chaos in certain situations. With the appropriate selection of the
parameter that causes the chaos, the system is prevented from going into chaos and this
process is called chaos control. The growth concept and its corresponding fixed point iter-
ation process form the theoretical basis of algorithms used in contemporary scientific fields
such as artificial intelligence, robotics, and machine learning. The use of chaotic functions
in iteration processes creates chaos in the system and naturally, controlling mechanisms
are required to prevent chaos. For example, the logistic function rx (1− x) is chaotic for
r = 4 and has unstable fixed points under the fixed point iteration system. Therefore, in the
4x (1− x) function, under fixed point iteration processes, the fixed point of the iteration is
stabilized by choosing the appropriate interval. This method, which is used in the chaos
control mechanism, guarantees the stability of the fixed points of the iteration processes and
transforms the system from instability to stability. The second method provides the interval
of r, which is the chaos coefficient of the rx (1− x) function, for the parameters selected
pointwise under the iteration processes of a function in the form of rx (1− x). However,
in this method, since the fixed point of the system changes for each r coefficient, it does not
give the information that the fixed point of the iteration process is stable or unstable. Ap-
propriate selection of iteration parameters used in the first method is a successful method
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in both transforming the system from unstable to stable and obtaining the maximum value
of the r chaos coefficient in the function rx (1− x) .
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