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Abstract.: Metric dimension is one of the distance based graph - theoretic
parameters which is widely used in the various disciplines of sciences such
as computer science, chemistry, and engineering. The local fractional met-
ric dimension is latest derived form of metric dimension and it is used to
find the solutions of integer programming problems. In this paper, we
have computed local fractional metric dimension of different families of
Toeplitz networks. It is also proved that the local fractional metric di-
mension of these Toeplitz networks remain bounded when the order of the
networks approaches to infinity.
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1. INTRODUCTION

The concept of locating set is introduced independently by Slater [14]. Melter and Harary
[11] formally defined this concept by the name of metric dimension (MD) for connected
networks. Moreover, they studied MD of different families of networks such complete,
cycle and wheel networks . Later on, Chartrand et al. [7] established the bounds of metric
dimension (MD) of unicyclic networks and they also proved th&tD) of connected net-

work (R) is 1 iff X is a path network .

Applications of MD exist in various areas of our daily life such as, coin weighting [27],
drug discovery, integer programming [7], robot navigation [21], network discovery and
verification [6], master mind games [8]. The concept of MD is also used in chemistry in
representation of chemical structures ' [18], [19] and to solve problems in pattern recog-
nition and image processing [25].

Nadeem et al. ('[23],[24]) proved that some classes of Toeplitz networks have constant
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MD. For the study of MD of certain families of generalized Petersen and Harary networks,
see '[26], [10]'. The concept of edge MD is defined by Kelenc et al. [20] they also made a
comparison among edge and standard metric dimension and for the study of constant MD
of different connected networks, we refer '[1], [2].

Currie and Oellermann [4] defined the concept of fractional metric dimension (FMD) to

find the solution of the specific integer programming problem IPP and by using FMD Fe-

her et al. [9] purposed the optimal an improved solution of linear relaxation of the IPP .

Arguman and Matthew [22] formally defined the concept of FMD and computed the exact
values and FMD of many connected networks FMD of trees, unicycles and hererical prod-
uct of networks computed in [5].

Asiyah et al. [3] defined the latest invariant of FMD known as local fractional metric
dimension (LFMD) and they also computed the exact values of LFMD of corona prod-
uct of networks . Javaid et al. [16] established the sharp bounds of LFMD and they also
constructed a computational criteria to compute exact values of LFMD of the different
connected networks. Recently, Javaid et al. [13] improved the lower bound of LFMD from
unity and they also established a computational cetraria to compute exact values of LFMD
of the connected networks under certain conditions . Upper and lower bounds of LFMD of
generalized gear, convex polytopes and sunlet networks, we refer '[29, 17], [15]'. In this
paper, we have computed LFMD of Toeplitz netwotks(1, 2) and7Z,,(1,4) in the form

sharp bounds.

The remaining part of the paper is organised so that, Section Il contains preliminaries,
Section Il deals with main results and Section IV consists of conclusion among the main
results.

2. NOTATIONS AND PRELIMINARIES

Let® = (V(N), E(R)) be a network with vertex sét (X) and edge sef/(R) C V(R) x

V(R). Awalk is a sequence,, e1, v1, ..., Um—1, €m, U, Of vertices and edges such that the
edgee; has end points; _; andv; for 1 < i < m. A path is a walk with no repetition

of vertices. A network is connected is there exist a path joining each pair of vertices. The
number of edges in the shortest path between two vertigegl¢ is called distance be-
tween them denoted hi(s, ¢). For more about fundamental concepts, we refer to [29]. A
vertext € V(R) is distinguished or resolve a paitv € V(G) if d(t,v) # d(t,u). Let

R ={z1,29,23,....,xm} C V(X)is called as resolving set if any pair of vertices éayy)

of N is distinguished by some vertices Bfand the minimum cardinality of a resolving set

is called MD ofR.

For an edget € E(R) the set of all vertices which resolve the edgés denoted byR’(st)
is called a local resolving neighbourhood set of that edge. A funetioli (X) — [0, 1] is
a local resolving function (LRF) i(R'(st)) > 1 for any st € E(X), whereg(R/(st)) =
> rer(st) @(@). Alocal resolving functiony’ is called minimal if¢" : V/(R) — [0,1]
such thaty’ < ¢ and¢’(z) # ¢(«x) for at least one: € V(R) in not a local resolving
function ofR. Then the local fractional metric dimension is defined as



Metric Based Fractional Dimension of Toeplitz Networks 3

dimyr(R) = min{|¢| : ¢ is minimal LRF ofX}.
The adjacency matrix, of a network is7a x m matrix whoseij*" entry is 1 ifv; andv,
vertices are adjacent and 0 otherwise.

o O
O O O
OO =
o = O

0 1 0 0

Toeplitz Matrix

A matrix is called Toeplitz if it has constant elements along its diagonals. A network is
known as a Toeplitz network if its adjacency matrix is a Toeplitz matrix. Toeplitz networks
have derived from Toeplitz matrices hence both have equal importance. Toeplitz matrices
plays a key role in moment problem, stationary process in the orthogonal polynomials
for further details see [12]. The Toeplitz netwdik, (t1,t2, ts, ...., t) IS @ Symmetric
network with vertex sefvi,vs, vs, ..., v, } @and the edge between two verticgsandv;

1 <i < j < mexitsiff|j —i| € t,,. For more details see Figure 1.

Figure 1. Toeplitz Network§,,, (1,2) and7,,(1,4).

3. MAIN RESULTS
In this section our objective is to compute LRN sets and LFMD of Toeplitz networks.
3.1 Local Resolving Neighbourhood Sets of Toeplitz Networks
In this particular subsection, we compute LRN sets of Toeplitz networks.

Lemma3.1.1
Let 7,,,(1,2) be a Toeplitz network , where is odd. Then

@ | R (vivier)| = 257+ and U |R (vivig1)] = [V (T (1,2))].
=1

(0) | R (viviga)| < | R (vivig1)| and| R (vivig2) N U | R (vivigr)| > | R (vivig1)|-
i=1

Proof
Consider;v; 1, v;v;42 € E(Ty(1,2)) andm +1 = 1 (mod m), wherel < i < m.
(a) R/(Uivi+1) = {Ui,’UH_l, Vi+3, Vitd, ...,Um} with |R/(’Ui’0i+1)‘ = mTH Furthermore,
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| U R (vivit1)| = |V(7m(1,2))|. Because of symmetry of Toeplitz networks, they pos-
=1

sess a pattern of elementsi(v,v,—1), R (Vn—10n—2), R (Un—20n—_3), ....., R’ (v1v3) @s

in R/(UiUH_l).

(b) R/(Uivi+2) = V(Tm<1, 2>)—{’U¢+1}With |R/(Ui’l)i+1)| = m~—1. Since ,‘ U R’(vivi+1)| =

=1

‘V(Tm<1, 2>)| and thereforéR’(viviH) N U |R/(Ui’l)i+1)| > |R/(Uz’vi+1)|~
i=1

LRN sets of Toeplitz networks7,,(1,4).

To compute the local resolving neighbourhood sets of Toeplitz net®g(k, 4) , we have
following Lemmas

Lemma 3.1.2

Let 7,,,(1,4) be a Toeplitz network, whene = 1( mod 4). Then

(@) [’ (vivit1)| = *75 and ‘U1 |R (vivig1)| = [V (T (1,2))].

1=

(b) |R (vivis2) (| R (vivit1) | @and[ R/ (vivig2) N U [R (vivigr)| = [R (vivis)].
i=1
Proof
Consider(v;v;y1), (vivire) € E(T,,(1,2)) andm+1 = 1 (mod m), wherel < i < m.
(a) R/(Uﬂ]lqu) = {’UiJrg, Vit 7y Vid11y -y U4m,1} with IR/(UiUi+1)| = % Furthermore,

| U R (vivit1)| = |V (T (1, 2))]. Because of symmetry of Toeplitz networks, they posses
i=1

pz;ttern of elements i’ (v Vm—1), R (Vm—1Vm—2), R (Vm—2Um—3), ....., R’ (v1v2) @s in
R/(vivi+1).

(b) R/<’Ui1}i+2) = V(,Tm,<17 2>)7{’U74+1}W|th |R/(’Ul"Ui+1)| = m—1. Since ,‘ G R/(Ui’l)i+1)| =

i=1

‘V(Tm<1,2>)| therefore|,R'(vivi+2) n U |RI(UZ'UZ‘+1)‘ > \R/(vivi+1)|.
=1

=

Lemma 3.1.3
Let 7,,,(1,4) be a Toeplitz network, whene = 3( mod 4). Then

(@) | R (v3v4)| = |R (v4v5)| = | R (Um—3Um—4)| = |R (Vm—s0m—5)| = 252, | R (vvig1)| =
m — 1 andU| R’ (vsvy)| = |V (T (1,4))].

()[R (vivita) [(| R (v3vs)| @nd| R (vivira) N U R (vivig1)] > [R (viviq1]-
=1

Proof

Consider(vsvy), (v405), (Vm—3Vm—4), (Vm—aVm-5) € E(Tyn < 1,4)) andm +1 =
1 (mod m), wherel <i < m.

(a) R/(’U3U4) = V(Tm<1,4>) — {1]1,1}6,’010,....,U47,L+2}, R/(’U4’U5) = V(Tm<1,4>) —
{v2,v7, 011, oy Vamas }, R (Vm—30m—4) = V(T < 1,4)) —{Vm; Vm—6,Vm—10 ----s V2 },
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R/(’Um_4’l}m,_5) = V(Tm<1,4>)7{7}m_1, Um—6;VUm—10, ....,’Ul} with |R/(’l)3’l)4)| = 3772_1 .
Furthermore| U R’ (vsv4)| = |V (710 (1,4))].

(b) R’(vivi+4) = V(Tm<1,4>)—{’l}i+2}With |R/(Ui’l)i+4)| = m—1. Since ,‘ G R’(vivi+4)| =
i=1
‘V(T4<1, 2>)| therefore|,R’(vivi+4) N U|R/(U3U4)| > |R/(U3’U4)‘.

Lemma 3.1.4

Let 7,,(1,4) be a Toeplitz network, whera = 0( mod 4) . Then

(@) |R (vivip1)| = 22 and J |R (vivie1)| = |V(Tm(1,2))|, wherei # 2,m — 1.
=1

4
%

(0) [ R (viviga)l, [ R (v2v3)[(| R (vivigr)| and| R (vvipa) NV U |R (vivig1)| > [R (viviga]-
=1

1=

Proof

Consider(v;v;1+1), (v;viy2) € E(Tn(1,2)) andm + 1 = 1 (mod m), wherel < i <
m.

(a) R/(’Ui’UH_l) = {UZ‘+3, Vit 7y Vid115 -+-5 ’U4m_1} with |R/(Ui’01'+1)| = Bmfjl Furthermore,

| U R (vivit1)| = |V (Tmm(1, 2))|. Because of symmetry of Toeplitz networks, they posses
=1

pattern of elements iR’ (v, Vm—1), R (Vm—2Um—3), ..., R (v1v2) @S INR' (v;0;11).

(0) R (viviga) = V(T (1,2)) —{vig2}, R (v2v3) = V(T3 (1,2)) —{vit3, Vit7, Vig11, Vam—1}

with |R/(’U7;’U,j+1)| =m-—1. Hence|R’(v,;v,;+4)|, |R’(U2v3)|<\R’(vwi+1)|.

3.1. LFMD of Toeplitz Networks. In this subsection our aim is to compute LFMD of

Toeplitz networks.

Theorem 3.2.1 :If 73 < 1, 2) be a Toeplitz network. Thedjm; (75 < 1,2)) = 2.
Proof :
The possible local RN sets @§(1,2) are :

R/(Ulvg) = {111,1}2}, R/<’U2’U3) = {’Ug,vg} andR’(vlvg) = {1}1,1}3}. Each of local RN
sets has order 2 therefore, we define a constant magping (73(1,2)) — [0, 1] hence,
dimr(T3(1,2)) = 5.

Theorem 3.2.2 :Let 7,,,(1, 2) be a Toeplitz network, where is odd. Then

2m

< dimyp(Tn(1,2)) < :
—— < dimup(Tn( >)_mle

Proof
For different vertices of,, (1, 2), we have two cases

Case 1l
From the local RN sets}’ (vyv3), R (vav3), R’ (vsvs) and R’ (vqv5) have minimum cardi-
nality and their union i§/(75(1, 2)). Hence areal valued functioh: V(75(1,2)) — [0, 1]
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TaBLE 1. Local RN sets of Toeplitz networkg (1, 2) .

RN Sets R/(’Ul’Ug) R/(U2U3) R/(U3U4) R/(Ul’vg) R/(UQU4) R/(U3U5)
Deleted Vertices V3, Us U1, U4 V1, U3 () U3 Vg4

defined byf(v) = 1,V v € V(I5(1,2))is a LRF. Thereforedim;p(75(1,2)) < 2.

From, above local RN set®’(viv3), R (vevs), R (vsvs) have maximum cardinality and
their union isV (75(1, 2)). Hence a real valued functiofi: V(75(1,2)) — [0, 1] defined
5

by f(v) = 1, Vv € V(T5(1,2))) is an upper LRF. Thereforéjm;r(7(1,2)) > > 1 =
i=1

5. Consequently,

< dimyp(75(1,2)) <

= | ot
w| ot

Case 2
Form > 7, wherem is odd by Lemma 3.1.1R'(y)| < |R'(z)| and| |J R'(y)]
=1

|V (75(1,2))|, where R'(x) are the other local RN sets. Therefore, we define a real val-
ued functionf : V(7,,(1,2)) — [0,1] which is a minimal LRF and it is defined as
fv) = 25V v € V(T,,(1,2)). Consequentlylimr (T, (1,2)) < ;274

From, Lemma 3.1.1 bothR/ (v,v,12)|, |R' (vjvj+2)|)| R ()|, where R(x) are other lo-

cal RN sets. Hence the real valued functjgn V (7,,,(1,2))) — [0, 1] and it is defined as
f'(v) = =5 Vo € V(T,(1,2))) isamaximal lower LRF sdimr(7;,(1,2)) > -2
Consequently,

2m

m
< dimyp(Tin(1,2)) < .
m—1 = dmur(Tn{l,2) < 22

Theorem 3.2.3 :If 75(1,4) be a Toeplitz network, then

) 5
dzmlF(’ZE,<174>) = Z
Proof
All the local RN set§ R’ (viv2)| = |R'(vov3)| = | R/ (vsva)| = |R'(vavs)| = | R (v1vs)]
4 therefore, we define a constant mappjhg V (75(1,4)) — [0,1] asf(v) = 1, Vv
V(75(1,4)). The possible local RN sets & (1, 4) ar

. 5
dszf-(’Z},(l,Zl)) = Z
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TABLE 2. Local RN sets of Toeplitz networkg; (1, 4)

RN Sets R/(’Ulvg) R/(Ugvg,) R/(’U3U4) R/(U4’U5) R/(Ulv5)
Deleted Vertices V4 Us U1 V2 U3

Theorem 3.2.4 :Let 7,,(1,4), be a Toeplitz network, whera = 1( mod 4). Then

4m
< di Tn(1,4
m—1 " imup (Tom >)*3m—|—1

Proof. For different vertices of,, (1, 4), we have following cases

Case 1l
Form = 9 the possible local RN sets are,

TaBLE 3. Local RN sets of Toeplitz Networky (1, 4).

RN Sets R/ (v1v2) || R (vavs) || R/ (vsva) || R (vsve) || R (vevr) || R (vrvs) || R (vsvg)

R/(U1U5)

Deleted Vertices Vg, U Vs, Vg U1, Vg V3, U V4, V8 Vs, U1 Vg, V2

U3

TABLE 4. Local RN sets of Toeplitz Networfy (1, 4).

RN Sets R'(vavg) || R (vsvr) || R (vavs) || R (vsvs)
Deleted Vertices V4 Us Vg V7

The local RN sets hav&'(vivs), R (vavs), R (vsvs), R (vqvs), R (vsvg), R (vevr),

R’ (v7vs) and R’ (vsvg ), have minimum cardinality and their umonWé(?;( ,4)). There-
fore, we define a minimal LLRF : V/(T5(1,4)) — [0,1],asf(v) = £,V v € V(Ty(1,4)
hencedim;p(T(1,4)) < 2

From, above the local RN set&'(vivs), R (vevg), R (vsvg) and R/ (vsv7) have cardi-

nality 8. Furthermore their union 8 (7y(1, 4)). Therefore, we define a maximal LLRF
[ V(To(1,4)) — [0,1] asf'(v) = § hencedim;p(Ty(1,4)) > 2. Consequently,

< dimyr(To(1,4)) <

0| ©
| ©

Case 2
Forn > 13, wherem 2= (1 mod 4) by Lemma3.1.2R’(v;v;41)| < R'(z) and| U R (v;vi41)] =

|V (7,,(1,4)|, whereR'(x) are other local RN sets. Therefore, we define a m|n|mal ULRF
f:V(Thn(1,4)) — [0,1] asf(v) = n+1,VU € V(7,,(1,4) hence dim;;(T,,(1,4)) <

4m
m4+1"
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From, Lemma 3.1.2R'(v;v;14)|)| R (x)], whereR'(z) are other local RN sets. Hence, we
define minimal LLRFf : V(T;,(1,4))) — [0,1] asf'(v) = =15 Vv € V(T;,(1,4)),
thereforedim, r(7,,(1,4)) > 5. Consequently,

4m
< dimyp (T (1,4
w1 = dmur(Tn(l4) < 3077

Theorem 3.2.5 :Let 7,,,(1,4), be a Toeplitz network , wherme = 3 ( mod 4). Then

m , (4m)
< Ton(1,4)) < .
m—1 = dimur(Tnll4) < 3775

Proof : For different vertices of,,, (1, 4), we have following cases
Case 1Form = 7 the possible local RN sets are,

TABLE 5. Local RN sets of Toeplitz network; (1, 4).

RN Sets R/(’Ul’l)g) R/(Ugvg) R/(’Ug’U4) R/(U4’U5) R/(’U5U6) RI<’U6’U7>

R/(U11)5)

Deleted Vertices V4, Us V1, Vg V1, Vg Vg, U7 U3 V4

U3

TABLE 6. Local RN sets of Toeplitz network; (1, 4).

RN Sets R/(Uzvg) R/(U3117)

Deleted Vertices on Us

The local RN set®’ (vsvy), R (v4vs5), have minimum cardinality and their unionig 77 (1, 4)).

Therefore, we define a minimal ULRF : V(77(1,4)) — [0,1], asf(v) = £,V v €
V(T7(1,4) hencedimp(77(1,4)) < L

From, above the local RN set&/ (vivs), R'(vevg) have cardinality 6 and their union is
V(T7(1,4)). Therefore, we define a maximal ULRF : V(7;7(1,4)) — [0,1] asf'(v) =
% hencedim;r(T7(1,4)) > . Consequently,

[N
[SAYN

< dinyp(77(1,4)) <
Case 2

Form > 11, wherem 2= 3('mod 4) by Lemma 3.1.3R/(v,—3vn—4)] < R/(z) and

| U R (Um—30m—4)| = |[V(T1n(1,4)|, whereR'(z) are other local RN sets. Therefore, we

Tm(1,2)) — [0,1] asf(v) = 3n+1,Vv e V(Tn(1,4).
) < 2m_Simlarly, | R (viviys)|)| R (z)], where R’ (z)

3m—1°

deflne a minimal LLRFf : V
Consequentlydim; g (7,,(1, 4

(
)
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are other local RN sets. Hence we define a maximal LERFV/(T;,,(1,4))) — [0,1] as
f'(v) =L Vo € V(T,,(1,4)) . Hencedimyp(T;,(1,4)) > -2~. Consequently,

m—1"

4m
< dimyp(Tin(1,4)) < .
m—1 = dmue (Tl 4) < 3077

Theorem 3.2.6
Let7,,(1,4), be a Toeplitz network, where = 0 ( mod 4). Then

4
m"jl < dimup (T (1,4)) < 5.
Proof
For different vertices of,,(1,4), we have following cases
Casel

Form = 8 the possible local RN sets are,

TABLE 7. Local RN sets of Toeplitz networkg (1, 4)

RN Sets R/(’Ul’vg) R/(U2U3) R/(’U3U4) R/(U5’UG) R/(U607) R/<’U7’U8) R/(Ulvg,)

Deleted Vertices V4, U Us V1, Vg Vg, U7 on V1, Us U3

TABLE 8. Local RN sets of Toeplitz networkg (1, 4)

RN Sets R/(UQUG) R/(U51}9)

Deleted Vertices V4 U7

The local RN setsR/(vivs2), R/ (vsvy), R (v4vs), R (vsvg), R (vrvs), have minimum
cardinality and their union i¥/(T5(1,4)). Therefore, we define a minimal ULRF :
V(T3(1,4)) — [0,1],asf(v) = £, Vv € V(Ts(1,4). Hencedimp(Ts(1,4)) < 3.

The local RN set$/ (v1vs5), R (vavs), R (vsvg) and R’ (vsv7), have maximum cardinality

and their union id/(7g(1,4)). Therefore, we define a maximal LLRF : V(75(1,4)) —
[0,1] asf'(v) = 1 hencedim;p(Ts(1,4)) > £. Consequently,

< dimyp(7s(1,4)) <

31
wol i

Case 2

Form > 12, wherem = 0 (mod4) by Lemma 3.1.4R/(v;v;1+1)| < R'(x) and

| U R (vivit1)| = |V(Tim(1,4)|, where R’ (x) are other local RN sets . Therefore, we
i=1

a minimal ULRFf : V(7,,(1,4)) — [0,1] asf(v) = 4, Vv € V(T},(1,4). Hence,
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dimup (T, (1,4)) < 3. Likewise, |R'(v;vi44)|)|R' ()|, where R'(z) are other local RN
sets. Hence, we define a minimal LLRF : V(T,,(1,4))) — [0,1] as f'(v) = 5
Vv € V(Tn(1,4)) hencedimr(T,,(1,4)) > =

7. Consequently,

m 4
< d1 < —.
o dimyp (T (1,4)) < 3

4. CONCISION

In this manuscript, we have computed local fractional metric dimension of different fami-
lies of generalized Toeplitz networks in the form of exact values and bounds. Furthermore,
the upper bound of local fractional metric dimensionZgf(1,4) is constant. It has also
observed that local fractional metric dimension of these Toeplitz networks remain bounded
whenm — oo.

e Boundedness of Toeplitz networks illustrated in Table 8.

TABLE 9. Boundedness of LFMD of Toeplitz networks.

Network LFMD Lower bound | Upper bound | Comment
T (1,2) e < dimyp (T (1,2)) < 22 1 2 Bounded
Ton (1, 4) < dimmyp (T (1,4)) < o220 1 2 Bounded
When m =

3( mod 4)

Ton (1, 4) S < dimyp (T (1,4) < 4 1 2 Bounded
When m o~

0( mod 4)

Ton(1,4) —m < dimyp (T (1,4)) < gimg. 1 2 Bounded
When m =

1( mod 4)

REFERENCES

[1] M. Ali, G. Ali, U. Ali and M. T. Rahim. On cycle related graphs with constant metric dimension, Open
Journal of Discrete Mathematic4.(2012) 21-23.

[2] M. Ali, M. T. Rahim, G Ali. On two families of graphs with constant metric dimension, Journal of Prime
Research in Mathematic8,(2012) 95- 101.

[3] S. Aisyah, M. Utoyo and L. SusilowatiOn the local fractional metric dimension of corona product
networks, IOP Conference, Earth Environ. Sci. Hungar243(2019) 14.

(4]
[5] S. Arumugam, V. MathewThe fractional metric dimension of graphs,Discrete M&[2012) 1584- 1590.

[6] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihalk, L. Rietwork discovery and
verification, IEEE Acces24 (2006) 2168-2181.



Metric Based Fractional Dimension of Toeplitz Networks 11

[7] G. Chartrand, L. Eroh, M. Johnson, O. OellermaResolvability in graphs and the metric dimension of a
graph Discrete Appl. Math105, (2000), 19- 28.

[8] V. Chvtal MastermindCombinatorica3 (1983) 325-329.

J. Currie, O.R. OellermaniThe metric dimension and metric independence of a graph, J. Coi3®in.
(2001) 157167.

[9] M. Fehr, S. Gosselin, and O. R. Oellermaitihe metric dimension of Cayley digraphs, Discrete M08,
(2006) 31-41.

[10] C. Grigorious, P. Manuel, M. Millera, B. Rajand, S. Steph@m. the metric dimension of circulant and
Harary graphs, Applied Mathematics and Computatidf8(2014) 47-54.

[11] F. Harary and R. Melte©n the metric dimension of a grapArs Combin2 (1976) 191 - 195.

[12] G. Heinig and K. RostAlgebraic Methods for Toeplitz-Like Matrices Operators, Boston, MSA:
Birkhuser, (1984).

[13] M. Javaid, H. Zafar, Q. Zhu and A. M. Alanazmproved Lower Bound of LFMD with Applications of
Prism-Related NetworkMathematical Problems in Engineering021(2021) 9 pages.

[14] P.J. SlaterLeaves of treesCongressus Numerantiyi4 (1975) 549559.

[15] M. Javaid, H. Zafar, A. Aljaedi, A. M. AlanaziBoundedness of Convex Polytopes Networks via Local
Fractional Metric Dimension, Mathematical Problems in Engineeri2@021(2021).

[16] M. Javaid, M. Raza, P. Kumam and J. B .LBharp upper bounds of local fractional metric dimesion of
connected graphs, IEEE ACCE832020) 172329-172342.

[17] M. Javaid, H. Zafar, E. Bonyalkractional Metric Dimension of Generalized Sunlet Networks, Journal of
Mathematics2021(2021).

[18] M.A. Johnson Structure-activity maps for visualizing the graph variables arising in drug design, Journal
of Biopharmaceutical Statistic8,(1993) 203-236.

[19] M.A. Johnson, R. Carb-Dorca and P. MezByowsable structure-activity datasesdvances in Molecular
Similarity JAI Press(1998) 153-170.

[20] A. Kelenc, N. Tratnik, I. G YeroUniquely identifying the edges of a graph The edge metric dimen-
sion,Discret. Appl. Math2018(2018).

[21] S. Khuller, B. Raghavachari and A. Rosenfdldndmarks in Graphs Disc Applied Mathematigé (1996)
217 -229.

[22] D A. Krismanto and S. W. Saputrd=ractional Metric Dimension of Tree and Unicyclic Graph, Procedia
Computer Science4, (2015) 47-52.

[23] J. B. Liu, M. F. Nadeem, H. M. A. Siddiqui and W. Nazi€omputing metric dimension of Certain families
of toeplitz graphslEEE Accessy, (2019) 126734-126741.

(24]



12 H. Zafar and M. Javaid

[25] R.A. Melter, I. TomescWMetric bases in digital geometry, Computer Vision, Graphics, and Image Process-
ing, 25(1984) 113-121.

M. F. Nadeem, S. Qu, A. Ahmad and M . AzeeMetric Dimension of Some Generalized Families of
Toeplitz Graphs, Mathematical Problems in Engineerid@2 (2022).

[26] Z. Shao, S. M. Sheikholeslami, Pu Wu, Jia-Biao LThe Metric Dimension of Some Generalized Petersen
Graphs, Discrete Dynamics in Nature and SocE2$,8(2018) 10 pages.

[27] H. Shapiro, S. Sderberg. combinatory detection problem Amé&tath. Monthly,70, (1963) 1066-1070.
[28] D. B. West. Introduction to Graph Theory, EditiorP2entice Hall,USA, 2011.

[29] H. Zafar, M. Javaid, E. BonyalComputing LF-Metric Dimension of Generalized Gear Networks, Mathe-
matical Problems in Engineerin@021(2021).



