
Punjab University Journal of Mathematics (2023),55(1),1-11
https://doi.org/10.52280/pujm.2023.550101

Metric  Based Fractional Dimension of Toeplitz Networks

Hassan Zafar,1 Muhammad Javaid2∗

Department of Mathematics,
School of Science, University of Management and Technology,

Lahore, 54770, Pakistan.
Email: hassanzafarmath@gmail.com 1, javaidmath@gmail.com 2∗

∗ Corresponding author javaidmath@gmail.com

Received: 14 June, 2022 / Accepted: 23 December, 2022 / Published online: 28 January, 2023

Abstract.: Metric dimension is one of the distance based graph - theoretic
parameters which is widely used in the various disciplines of sciences such
as computer science, chemistry, and engineering. The local fractional met-
ric dimension is latest derived form of metric dimension and it is used to
find the solutions of integer programming problems. In this paper, we
have computed local fractional metric dimension of different families of
Toeplitz networks. It is also proved that the local fractional metric di-
mension of these Toeplitz networks remain bounded when the order of the
networks approaches to infinity.
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1. INTRODUCTION

The concept of locating set is introduced independently by Slater [14]. Melter and Harary
[11] formally defined this concept by the name of metric dimension (MD) for connected
networks. Moreover, they studied MD of different families of networks such complete,
cycle and wheel networks . Later on, Chartrand et al. [7] established the bounds of metric
dimension (MD) of unicyclic networks and they also proved thatM(D) of connected net-
work (ℵ) is 1 iff ℵ is a path network .

Applications of MD exist in various areas of our daily life such as, coin weighting [27],
drug discovery, integer programming [7], robot navigation [21], network discovery and
verification [6], master mind games [8]. The concept of MD is also used in chemistry in
representation of chemical structures ’ [18], [19]’ and to solve problems in pattern recog-
nition and image processing [25].

Nadeem et al. (’[23],[24]’) proved that some classes of Toeplitz networks have constant
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MD. For the study of MD of certain families of generalized Petersen and Harary networks,
see ’[26], [10]’. The concept of edge MD is defined by Kelenc et al. [20] they also made a
comparison among edge and standard metric dimension and for the study of constant MD
of different connected networks, we refer ’[1], [2]’.

Currie and Oellermann [4] defined the concept of fractional metric dimension (FMD) to
find the solution of the specific integer programming problem IPP and by using FMD Fe-
her et al. [9] purposed the optimal an improved solution of linear relaxation of the IPP .
Arguman and Matthew [22] formally defined the concept of FMD and computed the exact
values and FMD of many connected networks FMD of trees, unicycles and hererical prod-
uct of networks computed in [5].

Asiyah et al. [3] defined the latest invariant of FMD known as local fractional metric
dimension (LFMD) and they also computed the exact values of LFMD of corona prod-
uct of networks . Javaid et al. [16] established the sharp bounds of LFMD and they also
constructed a computational criteria to compute exact values of LFMD of the different
connected networks. Recently, Javaid et al. [13] improved the lower bound of LFMD from
unity and they also established a computational cetraria to compute exact values of LFMD
of the connected networks under certain conditions . Upper and lower bounds of LFMD of
generalized gear, convex polytopes and sunlet networks, we refer ’[29, 17], [15]’. In this
paper, we have computed LFMD of Toeplitz networksTm〈1, 2〉 andTm〈1, 4〉 in the form
sharp bounds.

The remaining part of the paper is organised so that, Section II contains preliminaries,
Section III deals with main results and Section IV consists of conclusion among the main
results.

2. NOTATIONS AND PRELIMINARIES

Let ℵ = (V (ℵ), E(ℵ)) be a network with vertex setV (ℵ) and edge setE(ℵ) ⊆ V (ℵ) ×
V (ℵ). A walk is a sequencevo, e1, v1, ..., vm−1, em, vm of vertices and edges such that the
edgeei has end pointsvi−1 andvi for 1 ≤ i ≤ m. A path is a walk with no repetition
of vertices. A network is connected is there exist a path joining each pair of vertices. The
number of edges in the shortest path between two verticess and t is called distance be-
tween them denoted byd(s, t). For more about fundamental concepts, we refer to [29]. A
vertext ∈ V (ℵ) is distinguished or resolve a pairu, v ∈ V (G) if d(t, v) 6= d(t, u). Let
R = {x1, x2, x3, ..., xm} ⊆ V (ℵ) is called as resolving set if any pair of vertices say(x, y)
of ℵ is distinguished by some vertices ofR and the minimum cardinality of a resolving set
is called MD ofℵ.

For an edgest ∈ E(ℵ) the set of all vertices which resolve the edgest is denoted byR′(st)
is called a local resolving neighbourhood set of that edge. A functionφ : V (ℵ) −→ [0, 1] is
a local resolving function (LRF) ifφ(R′(st)) ≥ 1 for anyst ∈ E(ℵ), whereφ(R′(st)) =∑

x∈R′(st) φ(x). A local resolving functionφ′ is called minimal ifφ′ : V (ℵ) −→ [0, 1]
such thatφ′ ≤ φ andφ′(x) 6= φ(x) for at least onex ∈ V (ℵ) in not a local resolving
function ofℵ. Then the local fractional metric dimension is defined as
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dimlF (ℵ) = min{|φ| : φ is minimal LRF ofℵ}.
The adjacency matrix, of a network is am ×m matrix whoseijth entry is 1 ifvi andvj

vertices are adjacent and 0 otherwise.



0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




Toeplitz Matrix

A matrix is called Toeplitz if it has constant elements along its diagonals. A network is
known as a Toeplitz network if its adjacency matrix is a Toeplitz matrix. Toeplitz networks
have derived from Toeplitz matrices hence both have equal importance. Toeplitz matrices
plays a key role in moment problem, stationary process in the orthogonal polynomials
for further details see [12]. The Toeplitz networkTm〈t1, t2, t3, ...., tm〉 is a symmetric
network with vertex set{v1, v2, v3, ..., vm} and the edge between two verticesvi andvj

1 ≤ i ≤ j ≤ m exits iff |j − i| ∈ tm. For more details see Figure 1.

Figure 1. Toeplitz NetworksTm〈1, 2〉 andTm〈1, 4〉.

3. MAIN RESULTS

In this section our objective is to compute LRN sets and LFMD of Toeplitz networks.

3.1 Local Resolving Neighbourhood Sets of Toeplitz Networks
In this particular subsection, we compute LRN sets of Toeplitz networks.
Lemma 3.1.1
Let Tm〈1, 2〉 be a Toeplitz network , wherem is odd. Then

(a) |R′(vivi+1)| = m+1
2 and

m⋃
i=1

|R′(vivi+1)| = |V (Tm〈1, 2〉)|.

(b) |R′(vivi+2)| < |R′(vivi+1)| and|R′(vivi+2) ∩
m⋃

i=1

|R′(vivi+1)| ≥ |R′(vivi+1)|.
Proof
Considervivi+1, vivi+2 ∈ E(Tm〈1, 2〉) andm + 1 = 1 (mod m), where1 ≤ i ≤ m.
(a) R′(vivi+1) = {vi, vi+1, vi+3, vi+4, ..., vm} with |R′(vivi+1)| = m+1

2 . Furthermore,
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|
m⋃

i=1

R′(vivi+1)| = |V (Tm〈1, 2〉)|. Because of symmetry of Toeplitz networks, they pos-

sess a pattern of elements inR′(vnvn−1), R′(vn−1vn−2), R′(vn−2vn−3), ....., R′(v1v2) as
in R′(vivi+1).

(b) R′(vivi+2) = V (Tm〈1, 2〉)−{vi+1}with |R′(vivi+1)| = m−1. Since ,|
m⋃

i=1

R′(vivi+1)| =

|V (Tm〈1, 2〉)| and therefore,|R′(vivi+2) ∩
m⋃

i=1

|R′(vivi+1)| ≥ |R′(vivi+1)|.

LRN sets of Toeplitz networksTm〈1, 4〉.
To compute the local resolving neighbourhood sets of Toeplitz networkTm〈1, 4〉 , we have
following Lemmas
Lemma 3.1.2
Let Tm〈1, 4〉 be a Toeplitz network, wherem ∼= 1( mod 4). Then

(a) |R′(vivi+1)| = 3m+1
4 and

m⋃
i=1

|R′(vivi+1)| = |V (Tm〈1, 2〉)|.

(b) |R′(vivi+2)|〈|R′(vivi+1)| and|R′(vivi+2) ∩
m⋃

i=1

|R′(vivi+1)| ≥ |R′(vivi+1)|.

Proof
Consider(vivi+1), (vivi+2) ∈ E(Tm〈1, 2〉) andm+1 = 1 (mod m), where1 ≤ i ≤ m.
(a) R′(vivi+1) = {vi+3, vi+7, vi+11, ..., v4m−1} with |R′(vivi+1)| = 3m+1

4 . Furthermore,

|
m⋃

i=1

R′(vivi+1)| = |V (Tm〈1, 2〉)|. Because of symmetry of Toeplitz networks, they posses

pattern of elements inR′(vmvm−1), R′(vm−1vm−2), R′(vm−2vm−3), ....., R′(v1v2) as in
R′(vivi+1).

(b) R′(vivi+2) = V (Tm〈1, 2〉)−{vi+1}with |R′(vivi+1)| = m−1. Since ,|
m⋃

i=1

R′(vivi+1)| =

|V (Tm〈1, 2〉)| therefore,|R′(vivi+2) ∩
m⋃

i=1

|R′(vivi+1)| ≥ |R′(vivi+1)|.

Lemma 3.1.3
Let Tm〈1, 4〉 be a Toeplitz network, wherem ∼= 3( mod 4). Then

(a) |R′(v3v4)| = |R′(v4v5)| = |R′(vm−3vm−4)| = |R′(vm−4vm−5)| = 3m−1
4 , |R′(vivi+1)| =

m− 1 and∪|R′(v3v4)| = |V (Tm〈1, 4〉)|.
(b) |R′(vivi+4)|〈|R′(v3v4)| and|R′(vivi+4) ∩

m⋃
i=1

|R′(vivi+1)| ≥ |R′(vivi+1|.

Proof
Consider(v3v4), (v4v5), (vm−3vm−4), (vm−4vm−5) ∈ E(Tm < 1, 4〉) and m + 1 =
1 (mod m), where1 ≤ i ≤ m.
(a) R′(v3v4) = V (Tm〈1, 4〉) − {v1, v6, v10, ...., v4m+2}, R′(v4v5) = V (Tm〈1, 4〉) −
{v2, v7, v11, ...., v4m+3}, R′(vm−3vm−4) = V (Tm < 1, 4〉)−{vm, vm−6, vm−10, ...., v2},
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R′(vm−4vm−5) = V (Tm〈1, 4〉)−{vm−1, vm−6, vm−10, ...., v1}with |R′(v3v4)| = 3m−1
4 .

Furthermore,| ∪R′(v3v4)| = |V (Tm〈1, 4〉)|.
(b) R′(vivi+4) = V (Tm〈1, 4〉)−{vi+2}with |R′(vivi+4)| = m−1. Since ,|

m⋃
i=1

R′(vivi+4)| =
|V (T4〈1, 2〉)| therefore,|R′(vivi+4) ∩ ∪|R′(v3v4)| ≥ |R′(v3v4)|.

Lemma 3.1.4
Let Tm〈1, 4〉 be a Toeplitz network, wherem ∼= 0( mod 4) . Then

(a) |R′(vivi+1)| = 3m
4 and

m⋃
i=1

|R′(vivi+1)| = |V (Tm〈1, 2〉)|, wherei 6= 2,m− 1.

(b) |R′(vivi+4)|, |R′(v2v3)|〈|R′(vivi+1)| and|R′(vivi+4)∩
m⋃

i=1

|R′(vivi+1)| ≥ |R′(vivi+1|.

Proof
Consider(vivi+1), (vivi+2) ∈ E(Tm〈1, 2〉) andm + 1 = 1 (mod m), where1 ≤ i ≤
m.
(a) R′(vivi+1) = {vi+3, vi+7, vi+11, ..., v4m−1} with |R′(vivi+1)| = 3m+1

4 . Furthermore,

|
m⋃

i=1

R′(vivi+1)| = |V (Tm〈1, 2〉)|. Because of symmetry of Toeplitz networks, they posses

pattern of elements inR′(vmvm−1), R′(vm−2vm−3), ....., R′(v1v2) as inR′(vivi+1).

(b) R′(vivi+4) = V (Tm〈1, 2〉)−{vi+2},R′(v2v3) = V (Tm〈1, 2〉)−{vi+3, vi+7, vi+11, v4m−1}
with |R′(vivi+1)| = m− 1 . Hence|R′(vivi+4)|, |R′(v2v3)|〈|R′(vivi+1)|.
3.1. LFMD of Toeplitz Networks. In this subsection our aim is to compute LFMD of
Toeplitz networks.

Theorem 3.2.1 :If T3 < 1, 2〉 be a Toeplitz network. Then,dimlF (T3 < 1, 2〉) = 3
2 .

Proof :
The possible local RN sets ofT3〈1, 2〉 are :

R′(v1v2) = {v1, v2}, R′(v2v3) = {v2, v3} andR′(v1v3) = {v1, v3}. Each of local RN
sets has order 2 therefore, we define a constant mappingf : V (T3〈1, 2〉) → [0, 1] hence,
dimlF (T3〈1, 2〉) = 3

2 .

Theorem 3.2.2 :Let Tm〈1, 2〉 be a Toeplitz network, wherem is odd. Then

m

m− 1
≤ dimlF (Tm〈1, 2〉) ≤ 2m

m + 1
.

Proof
For different vertices ofTm〈1, 2〉, we have two cases

Case 1
From the local RN sets,R′(v1v2), R′(v2v3), R′(v3v4) andR′(v4v5) have minimum cardi-
nality and their union isV (T5〈1, 2〉). Hence a real valued functionf : V (T5〈1, 2〉) → [0, 1]
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TABLE 1. Local RN sets of Toeplitz networksT5〈1, 2〉 .

RN Sets R′(v1v2) R′(v2v3) R′(v3v4) R′(v1v3) R′(v2v4) R′(v3v5)
Deleted Vertices v3, v5 v1, v4 v1, v3 v2 v3 v4

defined byf(v) = 1
3 , ∀ v ∈ V (T5〈1, 2〉) is a LRF. Therefore,dimlF (T5〈1, 2〉) ≤ 5

3 .

From, above local RN sets,R′(v1v3), R′(v2v4), R′(v3v5) have maximum cardinality and
their union isV (T5〈1, 2〉). Hence a real valued functionf : V (T5〈1, 2〉) → [0, 1] defined

by f(v) = 1
4 , ∀v ∈ V (T5〈1, 2〉)) is an upper LRF. Therefore,dimlF (T5〈1, 2〉) ≥

5∑
i=1

1
4 =

5
4 . Consequently,

5
4
≤ dimlF (T5〈1, 2〉) ≤ 5

3
.

Case 2

For m ≥ 7, wherem is odd by Lemma 3.1.1|R′(y)| ≤ |R′(x)| and |
n⋃

i=1

R′(y)| =

|V (T5〈1, 2〉)|, whereR′(x) are the other local RN sets. Therefore, we define a real val-
ued functionf : V (Tm〈1, 2〉) → [0, 1] which is a minimal LRF and it is defined as
f(v) = 2

m+1∀ v ∈ V (Tm〈1, 2〉). Consequently,dimlF (Tm〈1, 2〉) ≤ 2m
m+1 .

From, Lemma 3.1.1 both|R′(vivi+2)|, |R′(vjvj+2)|〉|R′(x)|, whereR′(x) are other lo-
cal RN sets. Hence the real valued functionf ′ : V (Tm〈1, 2〉)) → [0, 1] and it is defined as
f ′(v) = 1

m−1 ∀ v ∈ V (Tm〈1, 2〉)) is a maximal lower LRF sodimlF (Tm〈1, 2〉) ≥ m
m−1 .

Consequently,

m

m− 1
≤ dimlF (Tm〈1, 2〉) ≤ 2m

m + 1
.

Theorem 3.2.3 :If T5〈1, 4〉 be a Toeplitz network, then

dimlF (T5〈1, 4〉) =
5
4
.

Proof
All the local RN sets|R′(v1v2)| = |R′(v2v3)| = |R′(v3v4)| = |R′(v4v5)| = |R′(v1v5)| =
4 therefore, we define a constant mappingf : V (T5〈1, 4〉) → [0, 1] asf(v) = 1

4 , ∀ v ∈
V (T5〈1, 4〉). The possible local RN sets ofT5〈1, 4〉 are

dimLf (T5〈1, 4〉) =
5
4
.
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TABLE 2. Local RN sets of Toeplitz networksT5〈1, 4〉

RN Sets R′(v1v2) R′(v2v3) R′(v3v4) R′(v4v5) R′(v1v5)
Deleted Vertices v4 v5 v1 v2 v3

Theorem 3.2.4 :Let Tm〈1, 4〉, be a Toeplitz network, wherem ∼= 1( mod 4). Then

m

m− 1
≤ dimlF (Tm〈1, 4〉) ≤ 4m

3m + 1
.

Proof. For different vertices ofTm〈1, 4〉, we have following cases

Case 1
Form = 9 the possible local RN sets are,

TABLE 3. Local RN sets of Toeplitz NetworkT9〈1, 4〉.

RN Sets R′(v1v2) R′(v2v3) R′(v3v4) R′(v5v6) R′(v6v7) R′(v7v8) R′(v8v9) R′(v1v5)
Deleted Vertices v4, v8 v5, v9 v1, v6 v3, v8 v4, v8 v5, v1 v6, v2 v3

TABLE 4. Local RN sets of Toeplitz NetworkT9〈1, 4〉.

RN Sets R′(v2v6) R′(v3v7) R′(v4v8) R′(v5v8)
Deleted Vertices v4 v5 v6 v7

The local RN sets haveR′(v1v2), R′(v2v3), R′(v3v4), R′(v4v5), R′(v5v6), R′(v6v7),
R′(v7v8) andR′(v8v9), have minimum cardinality and their union isV (T9〈1, 4〉). There-
fore, we define a minimal LLRFf : V (T9〈1, 4〉) → [0, 1], asf(v) = 1

7 , ∀ v ∈ V (T9〈1, 4〉
hencedimlF (T9〈1, 4〉) ≤ 9

7 .

From, above the local RN sets,R′(v1v5), R′(v2v6), R′(v5v9) andR′(v3v7) have cardi-
nality 8. Furthermore their union isV (T9〈1, 4〉). Therefore, we define a maximal LLRF
f ′ : V (T9〈1, 4〉) → [0, 1] asf ′(v) = 1

8 hence,dimlF (T9〈1, 4〉) ≥ 9
8 . Consequently,

9
8
≤ dimlF (T9〈1, 4〉) ≤ 9

7
.

Case 2

Forn ≥ 13, wherem ∼= (1 mod 4) by Lemma 3.1.2|R′(vivi+1)| ≤ R′(x) and|
n⋃

i=1

R′(vivi+1)| =
|V (Tm〈1, 4〉|, whereR′(x) are other local RN sets. Therefore, we define a minimal ULRF
f : V (Tm〈1, 4〉) → [0, 1] asf(v) = 4

n+1 , ∀ v ∈ V (Tm〈1, 4〉 hence ,dimlf (Tm〈1, 4〉) ≤
4m

m+1 .
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From, Lemma 3.1.2,|R′(vivi+4)|〉|R′(x)|, whereR′(x) are other local RN sets. Hence, we
define minimal LLRFf ′ : V (Tm〈1, 4〉)) → [0, 1] asf ′(v) = 1

m−1 ∀ v ∈ V (Tm〈1, 4〉),
thereforedimlF (Tm〈1, 4〉) ≥ m

m−1 . Consequently,

m

m− 1
≤ dimlF (Tm〈1, 4〉) ≤ 4m

3m + 1
.

Theorem 3.2.5 :Let Tm〈1, 4〉, be a Toeplitz network , wherem ∼= 3 ( mod 4). Then

m

m− 1
≤ dimlF (Tm〈1, 4〉) ≤ (4m)

3m− 1
.

Proof : For different vertices ofTm〈1, 4〉, we have following cases
Case 1Form = 7 the possible local RN sets are,

TABLE 5. Local RN sets of Toeplitz networkT7〈1, 4〉.

RN Sets R′(v1v2) R′(v2v3) R′(v3v4) R′(v4v5) R′(v5v6) R′(v6v7) R′(v1v5)
Deleted Vertices v4, v5 v1, v6 v1, v6 v2, v7 v3 v4 v3

TABLE 6. Local RN sets of Toeplitz networkT7〈1, 4〉.

RN Sets R′(v2v6) R′(v3v7)
Deleted Vertices v4 v5

The local RN setsR′(v3v4), R′(v4v5), have minimum cardinality and their union isV (T7〈1, 4〉).
Therefore, we define a minimal ULRFf : V (T7〈1, 4〉) → [0, 1], asf(v) = 1

5 , ∀ v ∈
V (T7〈1, 4〉 hencedimlF (T7〈1, 4〉) ≤ 7

5 .

From, above the local RN sets,R′(v1v5), R′(v2v6) have cardinality 6 and their union is
V (T7〈1, 4〉). Therefore, we define a maximal ULRFf ′ : V (T7〈1, 4〉) → [0, 1] asf ′(v) =
1
6 hencedimlF (T7〈1, 4〉) ≥ 7

6 . Consequently,

7
6
≤ dimlF (T7〈1, 4〉) ≤ 7

5
.

Case 2
For m ≥ 11, wherem ∼= 3( mod 4) by Lemma 3.1.3|R′(vn−3vn−4)| ≤ R′(x) and

|
m⋃

i=1

R′(vm−3vm−4)| = |V (Tm〈1, 4〉|, whereR′(x) are other local RN sets. Therefore, we

define a minimal LLRFf : V (Tm〈1, 2〉) → [0, 1] asf(v) = 4
3n+1 , ∀ v ∈ V (Tm〈1, 4〉.

Consequently,dimlF (Tm〈1, 4〉) ≤ 4m
3m−1 . Simlarly, |R′(vivi+4)|〉|R′(x)|, whereR′(x)
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are other local RN sets. Hence we define a maximal LLRFf ′ : V (Tm〈1, 4〉)) → [0, 1] as
f ′(v) = 1

m−1 ∀ v ∈ V (Tm〈1, 4〉) . HencedimlF (Tm〈1, 4〉) ≥ m
m−1 . Consequently,

m

m− 1
≤ dimlF (Tm〈1, 4〉) ≤ 4m

3m + 1
.

Theorem 3.2.6
Let Tm〈1, 4〉, be a Toeplitz network, wherem ∼= 0 ( mod 4). Then

m

m− 1
≤ dimlF (Tm〈1, 4〉) ≤ 4

3
.

Proof
For different vertices ofTm〈1, 4〉, we have following cases
Case 1
Form = 8 the possible local RN sets are,

TABLE 7. Local RN sets of Toeplitz networksT8〈1, 4〉

RN Sets R′(v1v2) R′(v2v3) R′(v3v4) R′(v5v6) R′(v6v7) R′(v7v8) R′(v1v5)
Deleted Vertices v4, v8 v5 v1, v6 v2, v7 v4 v1, v5 v3

TABLE 8. Local RN sets of Toeplitz networksT8〈1, 4〉

RN Sets R′(v2v6) R′(v5v9)
Deleted Vertices v4 v7

The local RN setsR′(v1v2), R′(v3v4), R′(v4v5), R′(v5v6), R′(v7v8), have minimum
cardinality and their union isV (T8〈1, 4〉). Therefore, we define a minimal ULRFf :
V (T8〈1, 4〉) → [0, 1], asf(v) = 1

6 , ∀ v ∈ V (T8〈1, 4〉. HencedimlF (T8〈1, 4〉) ≤ 4
3 .

The local RN setsR′(v1v5), R′(v2v6), R′(v5v9) andR′(v3v7), have maximum cardinality
and their union isV (T8〈1, 4〉). Therefore, we define a maximal LLRFf ′ : V (T8〈1, 4〉) →
[0, 1] asf ′(v) = 1

7 hencedimlF (T8〈1, 4〉) ≥ 8
7 . Consequently,

8
7
≤ dimlF (T8〈1, 4〉) ≤ 4

3
.

Case 2

For m ≥ 12, wherem ∼= 0 ( mod 4) by Lemma 3.1.4|R′(vivi+1)| ≤ R′(x) and

|
n⋃

i=1

R′(vivi+1)| = |V (Tm〈1, 4〉|, whereR′(x) are other local RN sets . Therefore, we

a minimal ULRFf : V (Tm〈1, 4〉) → [0, 1] asf(v) = 4n
3 , ∀ v ∈ V (Tm〈1, 4〉. Hence,
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dimlF (Tm〈1, 4〉) ≤ 4
3 . Likewise, |R′(vivi+4)|〉|R′(x)|, whereR′(x) are other local RN

sets. Hence, we define a minimal LLRFf ′ : V (Tm〈1, 4〉)) → [0, 1] asf ′(v) = 1
m−1

∀ v ∈ V (Tm〈1, 4〉) hencedimlF (Tm〈1, 4〉) ≥ m
m−1 . Consequently,

m

m− 1
≤ dimlF (Tm〈1, 4〉) ≤ 4

3
.

4. CONCISION

In this manuscript, we have computed local fractional metric dimension of different fami-
lies of generalized Toeplitz networks in the form of exact values and bounds. Furthermore,
the upper bound of local fractional metric dimension ofTm〈1, 4〉 is constant. It has also
observed that local fractional metric dimension of these Toeplitz networks remain bounded
whenm →∞.
• Boundedness of Toeplitz networks illustrated in Table 8.

TABLE 9. Boundedness of LFMD of Toeplitz networks.

Network LFMD Lower bound Upper bound Comment
Tm〈1, 2〉 m

m−1 ≤ dimlF (Tm〈1, 2〉)≤ 2m
m+1 . 1 2 Bounded

Tm〈1, 4〉
When m ∼=
3( mod 4)

m
m−1 ≤ dimlF (Tm〈1, 4〉) ≤ 4m

3m−1 . 1 4
3 Bounded

Tm〈1, 4〉
When m ∼=
0( mod 4)

m
m−1 ≤ dimlF (Tm〈1, 4〉) ≤ 4

3 . 1 4
3 Bounded

Tm〈1, 4〉
When m ∼=
1( mod 4)

m
m−1 ≤ dimlF (Tm〈1, 4〉) ≤ 4m

3m+1 . 1 4
3 Bounded
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