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Abstract.: This paper proposes a generalization to the ordinary derivative,
the deformable derivative. For this, we employ a limit approach like the
ordinary derivative but use a parameter varying over the unit interval. The
definition makes the deformable derivative equivalent to the ordinary de-
rivative because one’s existence implies another. Its intrinsic property of
continuously deforming function to its derivative, together with the graph-
ical illustration of linear expression of the function and its derivative, ren-
ders sufficient substances to name it deformable derivative. We derive
Rolle’s, Mean-value and Taylor’s theorems for the deformable derivative
by establishing some of its basic properties. We also define the deformable
integral using the fundamental theorem of calculus and discuss associated
inverse, linearity, and commutativity property. In addition, we establish a
connection between deformable integral and Riemann-Liouville fractional
integral. As theoretical applications, we solve some fractional differential
equations.
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1. INTRODUCTION

A slight variation in looking at some mathematical concepts may sometimes shed light
on hidden facts. For instance, continuity and differentiability are based on limit concepts
but are defined differently. However, the latter tells more geometric facts about function
than the former. Similarly, a generalization of any mathematical concept, besides being
a great source of motivation on its own, not just simplifies various intricate facts about it
but extends its applicability to a broader class of problems. For instance, the first proof of
the prime number theorem, a very popular theorem in real numbers, goes through complex
analysis techniques. Likewise, there have been several generalizations of the notion of de-
rivative to fractional derivative since the time Leibniz first asked this question to L’Hospital

in his letter [9] in1695 about a meaningful interpretation of symbol:
d1/2y

dx1/2
. Various types

of fractional derivatives have been introduced so far. However, only a few became points of
attraction for mathematicians and became popular in fractional calculus, such as Grunwald-
Letnikov, Riemann-Liouville, Hadamard, Caputo, and Rieze fractional derivatives. To gain
insight into fractional calculus, the reader is advised to go through [14, 13, 15].

As described above, most definitions for generalizing derivatives are in integral forms.
In [8], R. Khalil introduced a fraction derivative, calling it the conformable fraction deriva-
tive in analogy to the standard one based on the limit approach. Unfortunately, his definition
neither contains zero nor negative numbers. However, in the works [4, 5, 6, 11, 18, 19], var-
ious results related to fractional derivatives are investigated. In [1], we proposed a new gen-
eralized derivative nameddeformable derivative, involving limit-based definition, stated as
follows:
• For some givenα ∈ [0, 1], the deformable derivative of a real-valued functiong =

g(t), in interval(a, b), is given by

Dαg(t) = lim
ε→0

(1 + ε(1− α))g(t + εα)− g(t)
ε

, (*)

provided the limit exists.
It can be seen that the definition (*) behaves well withα = 0, 1. More precisely, if

α = 0, D0g(t) = g(t) and if α = 1, Dg(to) = g′(t) that coincide with the classical
convection of ordinary derivative. Thus it can be assumed as a generalized derivative for
parameterα, which is much simpler than that of Khalil’s one and overcomes not only this
shortcoming but ranges over a more comprehensive class of functions.

The rest of the article is arranged in the following manner. Section 2 derives a formula
connecting bothα-derivative and ordinary derivative, viz.Dαg(t) = βg(t) + αDg(t) and
end it up with a conclusion that for a function,α-differentiability is the same as differentia-
bility in the sense that the existence of one implies that of other. Section 3 focuses on some
basic properties of the deformable derivative. We geometrically illustrate the behavior of
operatorDα on some elementary functions. It also includes examples of how a deformable
derivative sits between the function and its derivative. Section 4 discusses the forms of
Rolle’s, Mean-Value’s, and Taylor’s theorems in the context of the deformable derivative.
The following section opens to define the deformable integral operator as given by:

Iα
a g(t) =:

∫ t

a

e−
β
α (t−x)g(x) dαx, where dαx =

1
α

dx
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for continuous functiong = g(t) over the interval(a, b) with respect to the parameter
0 < α 6 1. It also includes some basic properties of this integral operatorIα

a . The last
section employs these operators to solve some simple fractional differential equations.

Unless specified in the article,α-derivative is sometimes referred to as the deformable
derivative concerning a givenα, and it is assumed that0 6 α 6 1.

2. PRELIMINARY RESULTS

This section shows a relation between the deformable derivative for the given function
and its ordinary derivative, leading us to name it the deformable derivative. The relation
further exposes the exciting fact that the deformable derivative’s graph lies linearly between
that of function and derivative.

The first result is quite natural and asserts thatdifferentiability impliesα-differentiability.
The proof connects both operators.

Theorem 2.1. A differentiable functiong at a pointt ∈ (a, b) is alwaysα-differentiable at
that point. Moreover in this case we have

Dαg(t) = βg(t) + αDg(t), where α + β = 1. (**)

Proof. The casesα = 0, 1 are trivially hold. For other values ofα, we have by definition

Dαg(t) = lim
ε→0

(1 + εβ) g(t + αε)− g(t)
ε

= lim
ε→0

(
g(t + αε)− g(t)

ε
− βg(t + αε)

)

= α ·Dg(t)− β · lim
ε→0

g(t + αε).

Both the terms exist asg, being differentiable att is continuous as well. Hence theorem
follows. ¤

The second result is also natural that talks about:Doesα-differentiability imply continu-
ity? The answer is affirmative. However, an auxiliary result concerning the locally bounded
function is required to prove it. A function is said to belocally boundedat a point if it is
bounded in some neighborhood of that point. Formally a functiong defined on(a, b) is
said to be locally bounded att if there exists positive numbersM andδ, such that

∣∣g(t + ε)
∣∣ 6 M whenever

∣∣ε∣∣ < δ.

Hereδ is chosen sufficiently small so thatt + ε ∈ (a, b).

Lemma 2.2. Supposeg is α-differentiable at a pointt ∈ (a, b). Then,g is locally bounded
there.
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Proof. Supposeg is α-differentiable att, there exist a numberδ > 0 such that
∣∣(1 + εβ)g(t + εα)− g(t)− ε ·Dαg(t)

∣∣ 6
∣∣ε

∣∣, whenever
∣∣ε

∣∣ < δ

⇒ ∣∣(1 + εβ)g(t + εα)
∣∣ 6 |ε|+ ∣∣g(t) + ε ·Dαg(t)

∣∣, whenever
∣∣ε∣∣ < δ

6 |ε| (1 +
∣∣Dαg(t)

∣∣) +
∣∣g(t)

∣∣, whenever
∣∣ε

∣∣ < δ

⇒
∣∣g(t + εα)

∣∣ 6
|ε| (1 +

∣∣Dαg(t)
∣∣) +

∣∣g(t)
∣∣

∣∣1 + βε
∣∣ whenever

∣∣ε
∣∣ < δ

This yields thatg is locally bounded att. ¤

The next theorem asserts thatα-differentiability implies continuity.

Theorem 2.3. Letg beα-differentiable at a pointt ∈ (a, b) for someα ∈ (0, 1]. Theng is
continuous there.

Proof. For continuity, it suffices to prove the following:

lim
ε→0

(g(t + εα)− g(t)) = 0.

The left hand side can also be written as:

lim
ε→0

(1 + εβ) g(t + εα)− g(t)− εβg(t + εα)
ε

ε

= lim
ε→0

(
(1 + εβ) g(t + εα)− g(t)

ε
· ε− βε · g(t + εα)

)

= Dαg(t) · 0− β lim
ε→0

εg(t + εα) = 0, (by hypothesis)

= −β lim
ε→0

εg(t + εα) = 0. (by using lemma 2.2)

This completes theorem. ¤

A strong version of Theorem 2.3 is now given as an easy consequence in the following
corollary:

Corollary 2.4. Anα-differentiable functiong in (a, b) is differentiable as well.

Proof. For the existence of derivative we use its definition

Dg(t) =
1
α
· lim

ε→0

g(t + αε)− g(t)
ε

=
1
α
· lim

ε→0

(1 + εβ) g(t + αε)− g(t)− εβg(t + αε)
ε

⇒ Dg(t) =
1
α

(
lim
ε→0

(1 + εβ) g(t + αε)− g(t)
ε

− β · lim
ε→0

g(t + αε)
)

By using hypothesis and theorem 2.3, we get the result done. ¤

We summarise all these by saying that two conceptsα-differentiability and classical
differentiability of a function defined in(a, b) are equivalent in the sense that the existence
of one implies other. We write it as a separate theorem.
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Theorem 2.5. Letg be defined in(a, b). For anyα, g is α-differentiable if and only if it is
differentiable.

Remark 2.6. We make a remark here that over the interval(a, b), the existence ofα-
derivative with respect to one particular value ofα > 0 is sufficient for the existence of
α-derivative with respect to all other values ofα.

Though the most important case forα is whenα ∈ [0, 1] but what happens ifα ∈
(n, n + 1] for any natural numbern and what should be definition? The extension is made
in a very natural way.

Definition 2.7. Supposeg is n-times differentiable att ∈ (a, b). For givenα ∈ (n, n + 1],
we extend deformable derivative in a very natural way and define it by the following limit:

Dαg(t) =: lim
ε→0

(1 + ε{β}))Dng (t + ε{α})−Dng(t)
ε

where{α} is the fractional part ofα and{α}+ {β} = 1.

As the consequence of the above definition, ifg(n+1) exists, we have

Dαg(t) = {β}Dng(t) + {α}Dn+1g(t).

3. BASIC PROPERTIES OF DEFORMABLE DERIVATIVE

Apart from discussing some basic properties of the deformable derivative, such as lin-
earity and commutativity, this section deals with fundamental theorems: Rolle’s, Mean-
Value, and Taylor’s theorems. The geometric illustration ofDα, concerning some of the
elementary functions, is also included.

Theorem 3.1. The operatorDα possesses the following properties:

(a) Linearity: Dα (ag + bh) = aDαg + bDαh.
(b) Commutativity:Dα1 ·Dα2 = Dα2 ·Dα1 . In general, we haveDα ·Dn = Dn ·Dα,

wheren is a positive integer.
(c) Dα(λ) = βλ, whereλ is a constant function.
(d) Dα(g · h) = (Dαg) · h + αg ·Dh, i.e., the Leibniz rule does not holds forDα.

Proof. Linearity is evident from definition. Commutativity follows readily by noticing the
symmetries in the expression below:

Dα1 (Dα2g) = β1β2g + (α1β2 + α2β1)Dg + α1α2D
2g,

whereαi + βi = 1 for i = 1, 2. Using the relation:Dα = βI + αD, the third and fourth
can be easily established. Violation of Leibniz rule in part (d) motivates to regardDα as
fractional derivative. Readers are advised to see [17]. ¤

Most of the familiar functions behave well with respect to differentiation, so their de-
formable derivatives can be obtained from expression (**) in theorem 2.1. We present the
deformable derivatives of some of the elementary functions in the following proposition.

Proposition 3.2.
(1) Dα(tr) = βtr + rαtr−1, r ∈ R.
(2) Dα(et) = et.
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(3) Dα(sin t) = β sin t + α cos t.

(4) Dα(log t) = β log t +
α

t
, t > 0.

It is intuitively clear that the operatorDα is continuous with respect to parameterα.
However, we leave it for the reader to prove. Instead, we focus on the geometric realiza-
tion of the ideal with some examples. The following figures depict not only continuity
phenomenon but also explain its nature of deforming function to its derivative.

4. SOME IMPORTANT THEOREMS ON DEFORMABLE DERIVATIVE

This section focuses on Rolle’s theorem, Mean Value theorem, and Taylor’s theorems
for the deformable derivative.

Theorem 4.1. (Rolle’s theorem for deformable derivative) Let g : [a, b] −→ R be a
function satisfying:

(i) g is continuous on[a, b]
(ii) g is α-differentiable in(a, b)
(iii ) g(a) = g(b).

Then there exists a pointp ∈ (a, b) such thatDαg(p) = βg(p).

Proof. By applying corollary 2.5,g is differentiable in(a, b). Henceg holds all conditions
of classical 4.1. Then there∃ a pointp ∈ (a, b) such thatDg(p) = 0. Hence using equation
(**) of theorem 2.1, we haveDαg(p) = βg(p). ¤

Mean Value theorem is a consequence of 4.1 so is the case with deformable derivative.

Theorem 4.2. (Mean Value theorem for deformable derivative)Let g : [a, b] −→ R be
a function satisfying:

(i) g is continuous on[a, b]
(ii) g is α- differentiable in(a, b).

Then, there∃ a pointp ∈ (a, b) such that

Dαg(p) = βg(p) + α
g(b)− g(a)

b− a
.

Proof. We consider a functionh defined by:

h(t) =: g(t)− g(a)− g(b)− g(a)
b− a

t

Notice thath(x) holds all the conditions of 4.1, there existsp ∈ (a, b) such thatDαh(p) =
βh(p). This yields the desired expression in the theorem. ¤

Theorem 4.3. (Taylor’s theorem for deformable derivative) Supposeg is n-timesα-
differentiable such that allα-derivatives are continuous on[a, a + h]. Then

g(a + h) =
n−1∑

k=0

hk

k!αk

(
Dα

k g(a)− β
(1− θ)k−n+1h

αn
Dα

k g(a + θh)
)

+
hn

n!α
Dα

ng(a + θh),

whereDα
k = DαDα · · ·Dα (k-times), 0 < θ < 1.
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Proof. Consider a functionφ defined by:

φ(t) =
n−1∑

k=0

(a + h− t)k

k!αk
Dα

k (t) +
A

n!αn
(a + h− t)n, (4. 1)

whereA is a constant to be chosenA such thatφ(a + h) = φ(a). This yields

A

n!αn
hn = g(a + h)−

n−1∑

k=0

hk

k!αk
Dα

k g(a). (4. 2)

Now by hypothesis,φ is α-differentiable in(a, a + h). Using part (d) of theorem 3.1, the
α-derivativeDαφ is given by

Dαφ(t) =
(a + h− t)n−1

αn−1(n− 1)!
Dα

ng(t) +
A

αnn!
(
β(a + h− t)n − αn(a + h− t)n−1

)
.

(4. 3)
Henceφ satisfies all the conditions of 4.1. So there is someθ ∈ (0, 1) such that

Dαφ(a + θh) = βφ(a + θh).

Using equations (1), (2) and (3), we have

g(a + h) =
n−1∑

k=0

hk

k!αk

(
Dα

k g(a)− β
(1− θ)k−n+1h

αn
Dα

k g(a + θh)
)

+
hn

n!α
Dα

ng(a + θh).

This completes the theorem. ¤

5. DEFORMABLE INTEGRAL

An integral, being an inverse operator to a derivative, plays an equally important role
as the derivative. The section defines a deformable integral as an inverse operator for the
deformable derivative, and we discuss some basic properties of this deformable integral.
All functions considered in this section are assumed to be continuous.

Definition 5.1. Let g be a continuous function defined on[a, b]. For α ∈ (0, 1], we define
deformable integral of orderα, denoted byIα

a g, by the integral:

Iα
a g(t) :=

∫ t

a

e−
β
α (t−x)g(x) dαx (5. 4)

wheredαx =
1
α

dx andα + β = 1, α ∈ (0, 1].

The reason for calling it deformable integral is because of being an inverse operator to
the deformable derivative. This is done in the following theorem, a version of the funda-
mental theorem of calculus. That is, it roughly says that deformable integralIα

a is the right
inverse operation ofα-differentiationDα.

Theorem 5.2(Inverse Property). Letg be a continuous function defined on[a, b]. Then,Iα
a g

is α-differentiable in(a, b). In fact, we haveDα (Iα
a g(x)) = g(x). Conversely, supposeh

is a continuous anti-α-derivative ofg over(a, b), that ish = Dαg. Then, we have

Iα
a (Dαg(t)) = Iα

a (h(t)) = g(t)− e
β
α (a−t)g(a).
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Proof. Sinceg is given to be continuous so in view of theorem 2.5,Iα
a g is α-differentiable.

If we seth = Iα
a g then we have

Dα (Iα
a g(t)) = Dαh(t) = αDh(t) + βh(t).

We know that a particular solution of the differential equation:αDh + βh = g is given as

h(t) =
1
α

e
−β
α t

∫ t

a

e
β
α xg(x)dx.

Thus the first part of the theorem is complete. For the second part, we have

h(t) = Dαg(t) = αDg(t) + βg(t)
⇒ Iα

a h(t) = αIα
a (Dg(t)) + βIα

a g(t)

= e
−β
α t

∫ t

a

e
β
α xg′(x)dx + βIα

a g(t)

= e
−β
α t

([
e

β
α xg(x)

]t

a
− β

α

∫ t

a

e
β
α xg(x)dx

)
+ βIα

a g(t)

⇒ Iα
a h(t) = g(t)− e

β
α (a−t)g(a).

This completes the second part. ¤

Some basic properties of deformable fractional integral are contained in following the-
orem:

Theorem 5.3. The operatorIα
a possesses the following properties:

(a) Linearity: Iα
a (bg + ch) = bIα

a g + cIα
a h.

(b) Commutativity:Iα1
a ◦ Iα2

a = Iα2
a ◦ Iα1

a , whereαi + βi = 1, i = 1, 2.

Proof. Linearity readily follows from definition (5. 4 ). For commutativity, we consider

Iα1
a ◦ Iα2

a g(t) = Iα1
a




t∫

a

e−
β2
α2

(t−θ)g(θ) dα2θ




=

t∫

a

e−
β1
α1

(t−x)




x∫

a

e−
β2
α2

(x−θ)g(θ) dα2θ


 dα1x

=
1

α1α2
e−

β1
α1

t

t∫

a

x∫

a

e(
β1
α1
− β2

α2
)xe

β2
α2

θg(θ) dθdx.
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Now reversing the order of integration, we get

Iα1
a ◦ Iα2

a g(t) =
1

α1α2
e−

β1
α1

t

t∫

a

t∫

θ

e(
β1
α1
− β2

α2
)xe

β2
α2

θg(θ) dxdθ

=
1

α1α2
e−

β1
α1

t

t∫

a

e
β2
α2

θg(θ)




t∫

θ

e(
β1
α1
− β2

α2
)xdx


 dθ

=
1

β1α2 − β2α1


e−

β2
α2

t

t∫

a

e
β2
α2

θg(θ)dθ − e−
β1
α1

t

t∫

a

e
β1
α1

θg(θ)dθ




=
1

β1α2 − β2α1
(α2I

α2
a − α1I

α1
a ) g(t).

Interchanging the role ofα1 andα2, it follows that

Iα2
a Iα1

a g(t) =
1

β2α1 − β1α2
(α1I

α1
a − α2I

α2
a ) g(t) = Iα1

a Iα2
a g(t).

This completes the proof. ¤

We end up the section with a list of the deformable integrals of some elementary func-
tions in the following proposition and leave their verification for the reader.

Proposition 5.4.

(1) Iα
a sin t =

1
α2 + β2

(
β sin t− α cos t + e

β
α (a−t) (α cos a− β sin a)

)
.

(2) Iα
a et =

(
et − e

(a−βt)
α

)
.

(3) Iα
a λ =

λ

β

(
1− e

β
α (a−t)

)
, whereλ is a constant.

(4) Iα
0 tn =

1
β

(
n∑

k=0

(−1)k n!
(n− k)!

(
α

β

)k

tn−k + (−1)n+1 n!
(

α

β

)n

e−
β
α t

)
.

6. CONNECTION TORIEMANN -L IOUVILLE FRACTIONAL INTEGRAL

This section explores the deformable integral operator and discovers its connection to
Riemann-Liouville fractional integral operator. Throughout the section, we assume that all
functions considered are defined in the interval[0,∞).

The deformable integral defined in (5. 4 ) can also be written as follows:

Iα
0 (g(t)) =

1
α

∫ t

0

e−
β
α (t−x)g(x)dx =

1
α

∫ t

0

g(t− x)e−
β
α xdx.

We know that Riemann-Liouville fractional integral for parameterγ ∈ C, Re(γ) > 0 is
defined by the integral:

RIγ
+ (g(t)) =:

1
Γ (γ)

∫ t

0

(t− x)γ−1g(x)dx.
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From these two above equations, we can get

Iα
0

(
xγ−1

)
=

1
α

∫ t

0

(t− x)γ−1e−
β
α xdx =

Γ (γ)
α

RIγ
+

(
e−

β
α t

)
.

This yields that

α · Iα
0

(
xγ−1

)
= Γ (γ) · RIγ

+

(
e−

β
α t

)
. (6. 5)

A Special case whenγ = n a natural number, we get

α · Iα
0 (xn) = n! · RIn+1

+

(
e−

β
α t

)
.

7. APPLICATIONS TO DEFORMABLEDIFFERENTIAL EQUATIONS

We solve some simple linear deformable differential equations using deformable derivative
operatorDα. In first example we discuss method of solving homogeneous linear, while in
second non-homogeneous linear deformable differential equations.

Example 7.1. Consider the deformable differential equation:

Dαy(t) + Q(t)y(t) = 0,

whereQ(t) is continuous. Using the expression given in (**), the equation gets transformed
to

αDy + βy + Q(t)y = 0

⇒ Dy +
(β + Q(t))

α
y = 0.

We get simple first order linear ordinary differential equation whose general solution is
given by

y = Ce

− (
βt +

∫
Q(t)dt

)

α ,

whereC is arbitrary constant.

Example 7.2. We now consider a non-homogeneous linear deformable equation:

D1/2y + y = te−t.

This can be written as

1
2
y +

1
2
Dy + y = te−t ⇒ Dy + 3y = 2te−t.

whose general solution is given by

y(t) = Ce−3t +
(

t− 1
2

)
e−t,

whereC is a constant.
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Example 7.3. The deformable differential equation :

Dα2 [Dα1y(t)] = 0

is equivalent to the following second order homogeneous differential equation:

α1α2D
2y + (α1β2 + α2β1)Dy + β1β2y = 0.

The roots its auxiliary equation are:

−β1

α1
and

−β2

α2
.

Hence in case of distinct roots the general solution of the deformable differential equation
is

y = C1e
−β1

α1
t
+ C2e

−β2

α2
t
,

and in case of repeated roots, we have

y = (C1 + C2t)e
−β

α
t
.

Example 7.4. Consider another problem

D
1/4
2 y(t)− 3

2
D1/4y(t) + y(t) = 0

with boundary conditionsy = 0 , D1/4y = 1 whent = 0.
which is equivalent to the following second order homogeneous differential equation:

D2y + 7y = 0

whose general solution is given by

y(t) = A cos
√

7t + B sin
√

7t,

whereA andB are arbitrary constants.

using boundary conditions, we have,A = 0 andB =
4
√

7
7

.

which yields the result

y(t) =
4
√

7
7

sin
√

7t.

8. CONCLUSION

This paper has presented a new fractional derivative, the deformable derivative, and its
inverse operator. The definition is based on the limit approach, using a parameter that varies
over a unit interval. The simple nature of the definition tells us how deformable and ordi-
nary derivatives imply each other. The linear relation of deformable derivative in terms of
function and its derivative is presented nicely. The deformable form of Rolle’s, Mean-value
and Taylor’s theorem makes the whole theory more efficient by enabling shorter between
simpler proofs based on the knowledge of its basic properties. A relation between the de-
formable integral operator and Riemann-Liouville integral operator is also established. The
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novelty of the proposed work reflects in solved numerical examples. The proposed oper-
ator converts fractional-order parts into a differential equation with constant coefficients.
Thus, the theory developed in this paper helps to solve fractional differential equations.
Future work may focus on obtaining the deformable Laplace Transform [12, 3, 2] and the
deformable Euler’s Theorem [10, 7, 16].

We end the paper with some critical questions yet to be answered.

(i) What are the geometric interpretation and physical significance of the deformable
derivative?

(ii) Is there any similarity between the classical fractional derivative and deformable
derivative?

(iii ) The deformable derivative is equivalent to the ordinary derivative but not the same,
so it could be used to analyze functions.
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