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Abstract.: This paper proposes a generalization to the ordinary derivative,
the deformable derivative. For this, we employ a limit approach like the
ordinary derivative but use a parameter varying over the unit interval. The
definition makes the deformable derivative equivalent to the ordinary de-
rivative because one’s existence implies another. lIts intrinsic property of
continuously deforming function to its derivative, together with the graph-
ical illustration of linear expression of the function and its derivative, ren-
ders sufficient substances to name it deformable derivative. We derive
Rolle’s, Mean-value and Taylor’s theorems for the deformable derivative
by establishing some of its basic properties. We also define the deformable
integral using the fundamental theorem of calculus and discuss associated
inverse, linearity, and commutativity property. In addition, we establish a
connection between deformable integral and Riemann-Liouville fractional
integral. As theoretical applications, we solve some fractional differential
equations.
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1. INTRODUCTION

A slight variation in looking at some mathematical concepts may sometimes shed light
on hidden facts. For instance, continuity and differentiability are based on limit concepts
but are defined differently. However, the latter tells more geometric facts about function
than the former. Similarly, a generalization of any mathematical concept, besides being
a great source of motivation on its own, not just simplifies various intricate facts about it
but extends its applicability to a broader class of problems. For instance, the first proof of
the prime number theorem, a very popular theorem in real numbers, goes through complex
analysis techniques. Likewise, there have been several generalizations of the notion of de-
rivative to fractional derivative since the time Leibniz first asked this question to L'Hospital

1/2
in his letter [9] in1695 about a meaningful interpretation of symbeg;/l—/'z. Various types
of fractional derivatives have been introduced so far. However, onﬂlcy a few became points of
attraction for mathematicians and became popular in fractional calculus, such as Grunwald-
Letnikov, Riemann-Liouville, Hadamard, Caputo, and Rieze fractional derivatives. To gain
insight into fractional calculus, the reader is advised to go through [14, 13, 15].

As described above, most definitions for generalizing derivatives are in integral forms.
In [8], R. Khalil introduced a fraction derivative, calling it the conformable fraction deriva-
tive in analogy to the standard one based on the limit approach. Unfortunately, his definition
neither contains zero nor negative numbers. However, in the works [4, 5, 6, 11, 18, 19], var-
ious results related to fractional derivatives are investigated. In [1], we proposed a new gen-
eralized derivative namatkformable derivativaénvolving limit-based definition, stated as
follows:

e For some giver € [0, 1], the deformable derivative of a real-valued functipa-

g(t), ininterval(a, b), is given by
Drg(t) = lim (L= 0)glt +e0) = g(t). )

e—0 €

provided the limit exists.

It can be seen that the definition (*) behaves well with= 0,1. More precisely, if
a =0, D%(t) = g(t) and ifa = 1, Dg(to) = ¢'(t) that coincide with the classical
convection of ordinary derivative. Thus it can be assumed as a generalized derivative for
parametery, which is much simpler than that of Khalil's one and overcomes not only this
shortcoming but ranges over a more comprehensive class of functions.

The rest of the article is arranged in the following manner. Section 2 derives a formula
connecting bothy-derivative and ordinary derivative, vif2*g(t) = 8¢(t) + aDg(t) and
end it up with a conclusion that for a functiamdifferentiability is the same as differentia-
bility in the sense that the existence of one implies that of other. Section 3 focuses on some
basic properties of the deformable derivative. We geometrically illustrate the behavior of
operatorD on some elementary functions. It also includes examples of how a deformable
derivative sits between the function and its derivative. Section 4 discusses the forms of
Rolle’s, Mean-Value’s, and Taylor’s theorems in the context of the deformable derivative.
The following section opens to define the deformable integral operator as given by:

t
1
IZg(t) 25/ e~ at=2g(z) d.z, where d,x= adg;
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for continuous functiory = g¢(t) over the interval(a, b) with respect to the parameter
0 < a < 1. It also includes some basic properties of this integral opeigtorThe last
section employs these operators to solve some simple fractional differential equations.

Unless specified in the article,-derivative is sometimes referred to as the deformable
derivative concerning a givem, and it is assumed that< o < 1.

2. PRELIMINARY RESULTS

This section shows a relation between the deformable derivative for the given function
and its ordinary derivative, leading us to name it the deformable derivative. The relation
further exposes the exciting fact that the deformable derivative’s graph lies linearly between
that of function and derivative.

The first resultis quite natural and asserts thifierentiability impliesx-differentiability.
The proof connects both operators.

Theorem 2.1. A differentiable functiory at a pointt € (a, b) is alwaysa-differentiable at
that point. Moreover in this case we have

D%g(t) = Bg(t) + aDg(t), where o+ = 1. **)
Proof. The cases: = 0, 1 are trivially hold. For other values @f, we have by definition

Dag(t) —_ ll_{% (1+€ﬂ)g(t:a6)79(t)

-y (ere0 =0

€

— Bg(t+ ae))
a-Dg(t)—f- 1%9@ + ae).

e—0

Both the terms exist ag, being differentiable at is continuous as well. Hence theorem
follows. O

The second result is also natural that talks abbuaesa-differentiability imply continu-
ity? The answer is affirmative. However, an auxiliary result concerning the locally bounded
function is required to prove it. A function is said to lmeally boundedat a point if it is
bounded in some neighborhood of that point. Formally a funciiaiefined on(a, b) is
said to be locally bounded &if there exists positive numberfd andd, such that

lg(t+€)| <M whenever|e| <.
Hered is chosen sufficiently small so that- € € (a, b).

Lemma 2.2. Supposg is a-differentiable at a point € (a, b). Then,g is locally bounded
there.
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Proof. Supposey is a-differentiable at, there exist a numbér > 0 such that
’(1 +€8)g(t +ea) — g(t) —e- D(t)| < |e], whenever]e| <46
= [(1+eB)g(t+ ea)| < el + |g(t) +€- Dg(1)], whenever || < ¢
< el (L+[Dg(1)]) + |9(t)],
lel (L+[Dg(1)]) + |9(t)]
|1 + ﬁe|
This yields thay is locally bounded at. O

whenever |e| < §

= |g(t+ea)| < whenever [¢| < §

The next theorem asserts thatifferentiability implies continuity.

Theorem 2.3. Letg be a-differentiable at a point € (a, b) for somex € (0,1]. Theng is
continuous there.

Proof. For continuity, it suffices to prove the following:
lim (g(t + ecr) — g(1)) = 0.

The left hand side can also be written as:

Lo (L eB) gt +ea) — g(t) — efglt +ca)

e—0 €

((1 +eB) g(t + ear) — g(t)

€

= lim -e—ﬁe-g(t+€a)>
= D%(t) -0 — ﬁli_r}(l) eg(t +ea) =0, (by hypothesis
=-4 21_13% eg(t+ea) = 0. (by using lemma 2.2
This completes theorem. d

A strong version of Theorem 2.3 is now given as an easy consequence in the following
corollary:

Corollary 2.4. An a-differentiable functiory in (a, b) is differentiable as well.

Proof. For the existence of derivative we use its definition

Dy(t) = +.nm I =90

o €e—0 €

_ 1y, (4 eBglttac) —g(t) — efg(t + ae)

N « €e—0 c
1 1 _

- D=y (hm Lrcholttad —ald) G- lim g(t + a6)>
(0% e—0 € Jm
By using hypothesis and theorem 2.3, we get the result done. .

We summarise all these by saying that two conceptifferentiability and classical
differentiability of a function defined ifla, b) are equivalent in the sense that the existence
of one implies other. We write it as a separate theorem.
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Theorem 2.5. Let g be defined ir{a, b). For anyq, g is a-differentiable if and only if it is
differentiable.

Remark 2.6. We make a remark here that over the interyalb), the existence odi-
derivative with respect to one particular value @f> 0 is sufficient for the existence of
a-derivative with respect to all other values ®f

Though the most important case faris whena € [0,1] but what happens ifv €
(n,n + 1] for any natural numbet and what should be definition? The extension is made
in a very natural way.

Definition 2.7. Supposg is n-times differentiable at € (a,b). For givena € (n,n + 1],
we extend deformable derivative in a very natural way and define it by the following limit:

D%(t) = lim (1+¢{B8}))D"g (t + e{a}) — D g(t)

e—0 €

where{a} is the fractional part ok and{a} + {3} = 1.
As the consequence of the above definitiom, 1) exists, we have
Dg(t) = {BYD"g(t) + {a} D" g(t).
3. BASIC PROPERTIES OF DEFORMABLE DERIVATIVE

Apart from discussing some basic properties of the deformable derivative, such as lin-
earity and commutativity, this section deals with fundamental theorems: Rolle’s, Mean-
Value, and Taylor's theorems. The geometric illustrationsf, concerning some of the
elementary functions, is also included.

Theorem 3.1. The operatorD“ possesses the following properties:
(a) Linearity: D (ag + bh) = aD%g + bD%h.
(b) Commutativity:D“* - D> = D*2. D*!. In general, we hav®® - D" = D" - D%,
wheren is a positive integer.
(c) D*(\) = pBA, where\ is a constant function.
(d) D%(g-h) = (D%)-h+ ag- Dh,i.e., the Leibniz rule does not holds fbx".

Proof. Linearity is evident from definition. Commutativity follows readily by noticing the
symmetries in the expression below:

D™ (D*?g) = 1329 + (a1 B2 + 1) Dg + a1 D?g,

whereq; + 8; = 1 fori = 1, 2. Using the relationD® = I + aD, the third and fourth
can be easily established. Violation of Leibniz rule in part (d) motivates to reQérds
fractional derivative. Readers are advised to see [17]. O

Most of the familiar functions behave well with respect to differentiation, so their de-
formable derivatives can be obtained from expression (**) in theorem 2.1. We present the
deformable derivatives of some of the elementary functions in the following proposition.

Proposition 3.2.
(1) D*(t") = Bt" +rat"™ ', reR.
(2) D*(e") = €.
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(3) D%(sint) = @sint 4+ acost.
(4) D*(logt) = Blogt + %,t > 0.

It is intuitively clear that the operataD® is continuous with respect to parameter
However, we leave it for the reader to prove. Instead, we focus on the geometric realiza-
tion of the ideal with some examples. The following figures depict not only continuity
phenomenon but also explain its nature of deforming function to its derivative.

4. SOME IMPORTANT THEOREMS ON DEFORMABLE DERIVATIVE

This section focuses on Rolle’s theorem, Mean Value theorem, and Taylor's theorems
for the deformable derivative.

Theorem 4.1. (Rolle’s theorem for deformable derivative) Let g : [a,b] — R be a
function satisfying:
(i) gis continuous otja, b]
(i) g is a-differentiable in(a, b)
(iii) g(a) = g(b).
Then there exists a poipte (a, b) such thatD“g(p) = Bg(p).
Proof. By applying corollary 2.5¢ is differentiable in(a, b). Henceg holds all conditions

of classical 4.1. Then thetea pointp € (a, b) such thatDg(p) = 0. Hence using equation
(**) of theorem 2.1, we havé“g(p) = Bg(p). d

Mean Value theorem is a consequence of 4.1 so is the case with deformable derivative.
Theorem 4.2. (Mean Value theorem for deformable derivative)Letg : [a,b] — R be
a function satisfying:
(i) gis continuous otfa, b]
(ii) g is a- differentiable in(a, b).
Then, thered a pointp € (a, b) such that

b) —
D%(p) = Byg(p) + a%-
Proof. We consider a functioh defined by:
b) —
n(t) = 9(t) — g(a) ~ 20—,

Notice thath(x) holds all the conditions of 4.1, there exigtg (a, b) such thatD“h(p) =
Bh(p). This yields the desired expression in the theorem. O

Theorem 4.3. (Taylor’s theorem for deformable derivative) Supposey is n-times a-
differentiable such that alk-derivatives are continuous dn, a + h]. Then

(1 _ 9)k7n+1h
an

n

n—1
h¥ h
satm) = jor (Dio( - o Di(a+01)) + 15 Diala-+ 0h),
k=0 " )

whereDy = DD .. D% (k-timeg, 0 < 6 < 1.
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Proof. Consider a functior defined by:

n—1
(ath-—t)" , A n
o(t) = ek DR+ (et h—1)", (4.1)
k=0
whereA is a constant to be chosehsuch thatp(a + ) = ¢(a). This yields
A n
o h" =gla+h) - Zk' - (4. 2)

Now by hypothesisg is a-differentiable in(a,a + h). Using part (d) of theorem 3.1, the

a-derivativeD%¢ is given by
( + h _ t)n 1
an~1(n —1)!

(Bla+h—t)" —an(a+h—t)"1).
(4. 3)

D¢(t) = Dyg(t) +

ann!

Henceg satisfies all the conditions of 4.1. So there is séhee (0, 1) such that
D%¢p(a+ 0h) = Bp(a + 0h).
Using equationsl() (2) and @), we have

(1_9)k n+1h a h" «
gla+h) = Zk, k( R9(a) — 85— Diga+0h) ) + = —Digla-+6h).

This completes the theorem. d

5. DEFORMABLE INTEGRAL

An integral, being an inverse operator to a derivative, plays an equally important role
as the derivative. The section defines a deformable integral as an inverse operator for the
deformable derivative, and we discuss some basic properties of this deformable integral.
All functions considered in this section are assumed to be continuous.

Definition 5.1. Letg be a continuous function defined finb]. For a € (0, 1], we define
deformable integral of ordett, denoted by g, by the integral:

t
IZg(t) ::/ e_g(t_‘”)g(x) d.x (5. 4)

1
whered,z = —dx anda+ =1, a € (0,1].
o

The reason for calling it deformable integral is because of being an inverse operator to
the deformable derivative. This is done in the following theorem, a version of the funda-
mental theorem of calculus. That is, it roughly says that deformable intEgialthe right
inverse operation af-differentiationD®.

Theorem 5.2(Inverse Property)Letg be a continuous function defined fanb]. Then, I g
is a-differentiable in(a, b). In fact, we haveD” (Ig(z)) = g(x). Conversely, suppoge
is a continuous antix-derivative ofg over(a, b), thatish = D%g. Then, we have

12 (D(t)) = I2 (h(1) = g(t) — =@ D g(a).
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Proof. Sinceg is given to be continuous so in view of theorem 2;5¢ is a-differentiable.
If we seth = Ig then we have

D® (I%g(t)) = D*h(t) = aDh(t) + Bh(t).

We know that a particular solution of the differential equatiai2h + Gh = g is given as

t
h(t) = —e™= / ea"g(x)dx.
Thus the first part of the theorem is complete. For the second part, we have

ht) = D%(t) = aDy(t) + By(t)
= Igh(t) = alg(Dg(t)) + BIgg(t)

=By

t
= @ / e20g/ (@)de + BI%g(t)

3 B ¢ "o

a a

= IJh(t)

I
S}
=~

iy
S—

I

®

°

This completes the second part. O

Some basic properties of deformable fractional integral are contained in following the-
orem:

Theorem 5.3. The operatot/ possesses the following properties:

a b h b Oéz a h/
y a a a a ?

Proof. Linearity readily follows from definition (5. 4 ). For commutativity, we consider

t
B
felrgt) = 1| R0 d.0

t T

a

a
t x
1 _ b1 B1_ B2 B2
= e “it//e(”i ”g)me"ieg(@) dodzx.
Q10

a a
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Now reversing the order of integration we get

o] Qo — ﬁlt 7_572
I3 o Ig2g(t) = e o1 oo ?9(6) dzdo
a1
) t
B s B
= et eaieg(ﬁ) /e(a_é)wdaj df
Q1009
a %

t t
1 7ﬁi2t/ ﬁ? 7ﬁ71t ﬁl
= — | e =« ex2 g(0)dd —e 1 e>1 g(0)do
Bras — Baon “9(0) ’9(0)
a a

G (@l — ) g(0).
Interchanging the role af; andas, it follows that
1
Boay — Braa

This completes the proof. O

122157 g(t) = (I — aglg®) g(t) = IgH I g(t).

We end up the section with a list of the deformable integrals of some elementary func-
tions in the following proposition and leave their verification for the reader.

Proposition 5.4.
o ]‘
(1) Ia sint = m
R |
« A g(a—t) H
(3) IZA = 3 (1 —en ) , Where\ is a constant.

(4) Igt" = % (i ((;1)27;,' (g)kt"—k + (=)™ ! (g)n e—fit)_

k=0

(Bsmt— acost +ea (@D (acosa —ﬁsina)).

6. CONNECTION TORIEMANN-LIOUVILLE FRACTIONAL INTEGRAL

This section explores the deformable integral operator and discovers its connection to
Riemann-Liouville fractional integral operator. Throughout the section, we assume that all
functions considered are defined in the intef@abo).

The deformable integral defined in (5. 4 ) can also be written as follows:

i 60) = & [ i gwpte = L [ gte—aje i

o Jo o

We know that Riemann-Liouville fractional integral for parametee C, Re(y) > 0 is
defined by the integral:

RIT(00) = 7 [ (= a) gt
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From these two above equations, we can get

_ 17 4 .8 I'(y) B
a ~—1 y—1 cx Y St
I§ (277 = —a/o (t—x)"" e dx—ia rl] (6 )
This yields that
a-I§ (a771) = I'(7) - rl] (67%) : (6. 5)

A Special case whef = n a natural number, we get

a-I§ (2") = nl- gI}H (e_gt) .

7. APPLICATIONS TO DEFORMABLEDIFFERENTIAL EQUATIONS

We solve some simple linear deformable differential equations using deformable derivative
operatorD®. In first example we discuss method of solving homogeneous linear, while in
second non-homogeneous linear deformable differential equations.

Example 7.1. Consider the deformable differential equation:

Dy(t) + Q(t)y(t) = 0,

whereQ(t) is continuous. Using the expression given in (**), the equation gets transformed
to

aDy + By + Q(t)y 0

L ooy GO,

We get simple first order linear ordinary differential equation whose general solution is
given by
— (Bt + [Q(t)dt)
y=Ce «a ,

where(C' is arbitrary constant.

Example 7.2. We now consider a non-homogeneous linear deformable equation:
D1/2y +y=te "

This can be written as

11
SVt oPy+y=tet = Dy+3y=2te"

whose general solution is given by
1
y(t) = Ce 3" + (t - 2) et

whereC is a constant.
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Example 7.3. The deformable differential equation :
D*2[D*y(t)] =0
is equivalent to the following second order homogeneous differential equation:
o102 D%y + (a1 82 + a261) Dy + B1 B2y = 0.
The roots its auxiliary equation are:

;’61 and ;52
a1 (6%}
Hence in case of distinct roots the general solution of the deformable differential equation
is
by P,

y=Ce @ 4+ (Che 2 |

and in case of repeated roots, we have
_bB,
y=(C1+ Cat)e «
Example 7.4. Consider another problem
DY/ y(t) — 2 DMy(t) + (1) = 0
with boundary conditiong = 0, D'/*y = 1 whent = 0.
which is equivalent to the following second order homogeneous differential equation:
D%y + Ty =0
whose general solution is given by
y(t) = Acos /Tt + Bsin VTt

whereA and B are arbitrary constants.

4T

using boundary conditions, we havé,—= 0 and B = 77

which yields the result

y(t) = 4\7ﬁ sin V/7t.

8. CONCLUSION

This paper has presented a new fractional derivative, the deformable derivative, and its
inverse operator. The definition is based on the limit approach, using a parameter that varies
over a unit interval. The simple nature of the definition tells us how deformable and ordi-
nary derivatives imply each other. The linear relation of deformable derivative in terms of
function and its derivative is presented nicely. The deformable form of Rolle’s, Mean-value
and Taylor’s theorem makes the whole theory more efficient by enabling shorter between
simpler proofs based on the knowledge of its basic properties. A relation between the de-
formable integral operator and Riemann-Liouville integral operator is also established. The
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novelty of the proposed work reflects in solved numerical examples. The proposed oper-
ator converts fractional-order parts into a differential equation with constant coefficients.
Thus, the theory developed in this paper helps to solve fractional differential equations.
Future work may focus on obtaining the deformable Laplace Transform [12, 3, 2] and the
deformable Euler’'s Theorem [10, 7, 16].

We end the paper with some critical questions yet to be answered.

(i) What are the geometric interpretation and physical significance of the deformable
derivative?
(i) Is there any similarity between the classical fractional derivative and deformable
derivative?
(i) The deformable derivative is equivalent to the ordinary derivative but not the same,
so it could be used to analyze functions.
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